
COS 522: Complexity Theory : Boaz Barak

Handout 10: Parallel Repetition Lemma

Reading: (1) A Parallel Repetition Theorem / Ran Raz (available on his website) (2) Parallel Rep-
etition: Simplifications and the No-Signalling Case / Thomas Holenstein http://arxiv.org/abs/cs/0607139

Parallel Repetition We state and prove it for 2 prover games, can be easily generalized to 2-query
PCP’s (see Exercise 1).

Def: In a two-prover game:

1. Two provers first coordinate two strategies P1 and P2 (possibly with shared randomness).

2. The verifier selects a random pair of strings (x, y) from a joint distribution (X, Y ) and
gives each input to each prover respectively.

3. We denote by a = P1(x) the first prover’s answer and b = P2(y) the second prover’s
answer.

4. The verifier decides to accept or not based on some predicate V (c, y, a, b).

The value of the game is the maximum over all strategies P1, P2 of the probability that V
accepts (this probability is over (X, Y ) and possibly the provers’ randomization).

The n-times parallel repetition of the game, is when V chooses (x1, y1), . . . , (xn, yn) indepen-
dently from the distribution (X, Y ), gives to P1 the values (x1, . . . , xn) and to P2 the values
(y1, . . . , yn) to obtain the respective answers (a1 . . . , an) and (b1, . . . , bn). V accepts only if
all the answers check out. Note that V acts independently on each instance, but the provers
may correlate their answers to different instances.

“Theorem”: (Fortnow, Rompel, Sipser 88) If the original game had value at most (1 − δ)
then repeated game has value at most (1− δ)n.

“Proof”: Obvious— since the all the queries are independent and each one can be satisfied
with probability at most 1− δ, the probability that the provers can satisfy all n of them is at
most (1− δ)n.

Counterexample to “theorem” (Fortnow, Feige): Consider following game: verifier chooses
two random and independent bits x, y, the answers are pairs in {1, 2} × {0, 1}. The verifier
accepts the answers a, b iff a = b = (i, σ) and Prover i received the bit σ.

Two observations:

1. The value of the game is at most 1/2: for the verifier to accept, the two provers have
to send a message with the same i, which means that one prover has to “guess” the bit
received by the other prover.

2. The value of the repeated game is at least 1/2: consider the following strategy: first
prover on x, x′ outputs the answers (1, x) and (2, x) and second prover on input (y, y′)
will output (1, y′) and (2, y′). Now if x = y′ (which happens with probability 1/2) then
the verifier will accept.

Parallel Repetition Theorem (Raz 95, Holenstein 07) The value of the repeated game is at most
2−Ω(δ3n) where the constant in the Ω notation depends (logarithmically) on the alphabet size
of the provers’ answers.
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Proof strategy Let P1, P2 be some arbitrary provers. We want to bound the probability of the
event W1 ∧ W2 ∧ · · · ∧ Wn (where Wi is the event that they win the ith instance). Since
2−Ω(δ3n) = (1− δ)Ω(δ2n), it suffices to show that

for all k ≤ cδ2n Pr[Wk+1|W1 ∧ · · · ∧Wk] ≤ 1− δ/100 ,

for c some constant depending logarithmically on the provers’ alphabet.

In fact, since we can reorder coordinates as we wish, it will suffice to prove the following:

Main Lemma: There’s c > 0 (depending logarithmically on prover’s alphabet) such that
for all k ≤ cδ2n, ∃j > k such that

Pr[Wj |W1 ∧ · · · ∧Wk] ≤ 1− δ/100 (1)

Indeed, since we only want to prove that W1 ∧ · · · ∧ Wn is low, it suffices to prove (1)
under the assumption that Pr[W1 ∧ · · · ∧Wk] ≥ 2−(k+1), where Σ is the size of the prover’s
alphabet. This will ensure that letting pk be the probability of W1 ∧ · · · ∧Wk, then pk+1 ≤
max{2−(k+1), pk(1− δ/100)}, which suffices to prove the lemma.

Rough proof idea for Main Lemma: We’ll prove the main lemma by reduction. That is, we
will assume that there are provers’ strategies violating (1) and will use them to succeed in
the original (unrepeated) game with probability more than 1− δ.

The idea is that for some coordinate j we will show that if Prover 1 is given xj and Prover 2
is given yj with (xj , yj) chosen from (X, Y ) then Prover 1 is able to sample values {xi}i6=j and
Prover 2 is able to sample values {yi}i6=j such that the joint distribution of x1, . . . , xn, y1, . . . , yn

is statistically close to the distribution of these values conditioned on the first k games suc-
ceeding (i.e., conditioned on the event W1 ∧ · · · ∧ Wk). Therefore, they will be able to win
the single game with probability close to Pr[Wj |W1 ∧ · · · ∧Wk].

This is from now on our focus: how can the two provers perform this sampling.

Easy example: if the provers’ messages in one instance do not depend on the questions
of another instance then distribution of {xi}i6=j and {yi}i6=j is still independent of (xj , yj).
Hence, the provers can sample from it using shared randomness.

Two useful lemmas: The following two lemmas will be crucial to the proof.

Lemma 1: Let U = U1, . . . , Un be a product distribution and let Ũ = Ũ1, . . . , Ũn be the distri-
bution of U conditioned on some event that happens with probability at least 2−d. Then
1
n

∑
j ∆(Uj , Ũi) ≤

√
d/n.1

We’ll use Lemma 1 to argue that when d � n, most indices j satisfy that ∆(Uj , Ũj) is small.

Proof: We prove the lemma for the case that for all i, Ui is the uniform distribution on
{0, 1}` for some ` (this is without loss of generality since we can map {0, 1}` to arbitrary

1∆(X, Y ) denotes the statistical distance of X and Y : ∆(X, Y ) = 1/2
∑

z |Pr[X = z] − Pr[Y = z]|.
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distribution within ∼ 2−` accuracy). Let H() denote the Shannon entropy function. Then
H(U) = n` and H(Ũ) ≥ H(U)− d. But, since

n∑
j=1

H(Ũj) ≥ H(Ũ)

we get that

1
n

n∑
j=1

H(Ũj) ≥ `− d/n

Thus if we let δi = `−H(Ũj) then

1
n

n∑
j=1

δi ≤ d/n (2)

The following fact is left as Exercise 2: If X is a distribution over {0, 1}` with H(X) ≥ `− δ
then ∆(X, U`)2 ≤ δ.

Using it, (2) implies

1
n

n∑
j=1

∆(Ũj , Uj)2 ≤ d/n

which using E[X2] ≥ (E[X])2 implies 1
n

n∑
j=1

∆(Ũj , Uj)

2

≤ d/n

and taking square roots completes the proof.

We’ll also use a version of Lemma 1 where there might be an additional variable T that is
correlated with U1, . . . , Un:

Lemma 1’: Let U = U1, . . . , Un and T be correlated r.v.’s such that for every t ∈ Supp(T ), U |t is
a product distribution and let Ũ be the distribution of U conditioned on some event W that
happens with probability at least 2−d. Then, 1

n

∑
j ∆(T̃Uj |T̃ , T̃ Ũj) ≤

√
d/n, where T̃ = T |W .

Explanation of terms in Lemma 1’: The distribution T̃ Ũj is defined as follows: choose
(t, u1 . . . un) from the correlated random variables T,U conditioning on W , and output tuj .

The distribution T̃Uj |T̃ is defined as follows: choose t from T conditioned on W , then choose
u1 . . . un from U conditioned on T = t but not on W . Then output tuj .
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Proof of Lemma 1’ The proof follows by applying Jensen’s inequality to Lemma 1.

1
n

∑
j

∆(Uj ◦T, Ũj ◦T ) = 1
n

∑
j

∑
t

Pr[T = t|W ]
∑

u

|Pr[Uj = u|T = t]−Pr[Ũj = u|T = t| =

∑
t

Pr[T = t|W ] 1
n

∑
j

∆(Ũj |T = t, Uj |T = t) ≤ by Lemma 1

∑
t

Pr[T = t|W ]
√

log(1/ Pr[W |T=t])
n ≤

1√
n

√√√√log

(∑
t

Pr[T=t|W ]
Pr[W |T=t]

)

where the last inequality follows from the fact that E[f(x)] ≤ f(E[x]) for a concave function
f , and x 7→

√
log x is concave for x > 1.

But Pr[T=t|W ]
Pr[W |T=t] = Pr[T=t]

Pr[W ] and hence this sum is equal to

1√
n

√√√√log

(
1

Pr[W ]

∑
t

Pr[T = t]

)
=
√

log(1/ Pr[W ])
n

Lemma 2: There is a method for two provers with shared randomness to perform the following:
Prover 1 is given a specification of a distribution D and Prover 2 a specification of D′, where
∆(D,D′) ≤ ε. Then, letting d and d′ be the outputs of Prover 1 and Prover 2 respectively,
(1) the distribution of d is within ε statistical distance to D and (2) Pr[d = d′] ≥ 1− 2ε.

Proof: First, it’s worthwhile to note that the obvious procedure to this when D ≡ D′ (choose
a random p ∈ [0, 1] and output the first i such that

∑
j≤i Pr[D − j] ≥ p) completely breaks

down if D′ is even slightly different than D.

Consider the case where D and D′ are flat distributions. In this case, we can think of
them as sets with symmetric difference at most 2ε compared to their size. The provers use
their shared randomness to take a random ordering of the universe. Prover 1 will output
the minimal element in D according to this ordering, and Prover 2 will output the minimal
element in D′ according to this ordering. The probability that the minimal element falls
inside the shared intersection is at least 1− 2ε.

This case is actually general, since we can make D and D′ flat by considering the distribution
(x, p) over all pairs (x, p) such that x ∈ Supp(D) and p ∈ [0,Pr[D = x]].

Proof of the Main Lemma: let k ≤ δ2n
log |Σ|106 (where Σ is the alphabet used in the provers’

responses) and assume (1) is false for some prover strategies P1, P2.

Let’s fix x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yk), ā = (a1, . . . , ak), b̄ = (b1, . . . , bk) to be a “typical”
winning transcript of the first k rounds (i.e., a transcript that causes the verifier to accept all
these k rounds). By “typical” we mean the following:
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• Conditioned on the queries and answers falling in this transcript, 90% of the coordinates
j satisfy that Wj with probability at least 1− δ/2. Since we assume (1) is false, this will
happen with at least 0.9 probability.

• Conditioned on the verifier’s first k queries being x̄, ȳ, the probability that the two
provers will answer with ā, b̄ is at least |Σ|−4k, where Σ is the alphabet used in the
provers’ responses. (Because the provers’ responses in the first k rounds may de-
pend on the verifier’s queries in different rounds, this probability is over the choice
of (xk+1, yk+1), . . . , (xn, yn).)
Indeed, because that there are at most |Σ|2k possible answers, with 0.9 probability, a
random winning transcript will satisfy that the answers ā, b̄ are obtained with probability
at least Pr[W1 ∧ · · · ∧Wk]/(100|Σ|2k), and we assume that Pr[W1 ∧ · · · ∧Wk] ≥ |Σ|−k.

Define the distribution (X1, Y1), . . . , (Xn, Yn) as follows: for i ≤ k, Xi = xi and Yi = yi with
probability 1, and for i > k, (Xi, Yi) is distributed independently according to (X, Y ). Note
that that is a product distribution (each pair (Xi, Yi) is independent of the other pairs).

Let W denote the event that the two provers’ responses are ā and b̄ respectively, and let
(X̃1, Ỹ1), . . . , (X̃n, Ỹn) be the distribution of (X1, Y1), . . . , (Xn, Yn) conditioned on W . Note
that this is no longer necessarily a product distribution.

Definition of T : We now make the following crucial definition of a random variable T
that is correlated with (X1, Y1), . . . , (Xn, Yn). Given a sequence of values, x1, y1, . . . , xn, yn,
for every j > k, we define the random variable Tj correlated with (xj , yj) as follows: with
probability 1/2 we set Tj = (‘x’, xj) and with probability 1/2 we set Tj = (‘y’, yj). We
define the variable T to be the concatenation of Tj for all j > k and the variable T\j to be
the concatenation of Ti for i 6= j. We denote T̃j to be the distribution of Tj conditioned on
W , and define similarly T̃ ,T̃\j .

The lemma will follow from the following claim:

Claim: Let ε = δ/10. Then for 80% of the coordinates j > k:

(X̃j , Ỹj) ≈ε (X, Y ) (3)

T̃\j |X̃j , Ỹj ≈ε T̃\j |X̃j (4)

T̃\j |X̃j , Ỹj ≈ε T̃\j |Ỹj (5)

The magic of the proof (in both Raz and Holenstein’s paper) is in this claim. (4) and (5)
deserve some explanation. For example (4) means that if we choose (x̃j , ỹj) from (X̃j , Ỹj),
then the expected statistical distance of the following two distributions is at most ε:

• Choose x̃i, ỹi for i 6= j according to X̃1, Ỹ1, . . . , X̃n, Ỹn|X̃j = x̃j , Ỹk = ỹj . Choose t from
T̃\j conditioned on x̃1, ỹ1, . . . , x̃n, ỹn. Output t.

• Choose yj conditioned on x̃j only (i.e. yj does not necessarily equal ỹj). Choose x̃i, ỹi for
i 6= j according to X̃1, Ỹ1, . . . , X̃n, Ỹn|X̃j = x̃j , Ỹk = yj . Choose t from T̃\j conditioned
on x̃1, ỹ1, . . . , x̃j , yj , . . . , x̃n, ỹn. Output t.

Proof of Lemma from Claim Choose j at random and fix it. The two provers will use the
following algorithm:
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1. Verifier chooses (x, y) from (X, Y ). Prover 1 gets x and sets xj = x and Prover 2 gets y
and sets yj = y.

2. Both provers set x1, y1, . . . , xk, yk according to x̄, ȳ.
3. Prover 1 computes the distribution D = T̃\j |xj and Prover 2 computes the distribution

D′ = T̃\j |yj . Due to (4) and 5 we know these two distributions are close to one another
and to T̃\j |xj , yj . They both use the procedure of Lemma 2 to sample the same value t
from this distribution.

4. Recall that t contains for every i > k with i 6= j a pair (di, zi) where di ∈ {1, 2}. Let
S be the set of i’s such that di = ‘x’, and S̄ the sets of i’s such that di = ‘y’. Both
provers set xi = zi for i ∈ S and yi = zi for i ∈ S̄. At this point for every i, each prover
has a value for at least one of xi or yi.

5. Prover 1 chooses xi for all i ∈ S in the following way: it chooses xi according to the
distribution X|Y = yi, and then it conditions on the first k values of P1(x1, . . . , xn)
being ā (i.e., if this condition doesn’t hold the prover makes all choices again). Similarly
for all i ∈ S̄, Prover 2 chooses yi conditioned on xi and then conditions on the first k
values of P2(y1, . . . , yn) being b̄.

6. Prover 1’s answer is the jth value of P1(x1, . . . , xn). Similarly, Prover 2’s answer is the
jth value of P2(x1, . . . , xn).

The key observation is that if (3),(4), and (4) held with ε = 0 then the values xk+1, . . . , xn,yk+1, . . . , yn

would be exactly distributed according to the distribution X̃k+1, . . . , X̃n, Ỹk+1, . . . , Ỹn, and so
the provers will convince the verifier with probability 1− δ/2. Now, since they hold approx-
imately, they will still convince the verifier with probability at least 1 − δ/2 − 5ε > 1 − δ,
leading to a contradiction.

Proof of Claim We now prove the claim. By Lemma 1 for 90% of the coordinates j the statistical
distance of X̃j , Ỹj from the original distribution (X, Y ) is at most

√
k/n = δ/100 = ε/10 and

hence (3) is satisfied.

By Lemma 1’, for 90% of the j’s, the statistical distance of T̃ , X̃j , Ỹj from T̃ , (Xj , Yj)|T̃ is
also at most ε/10. Since T̃ is equal to T̃\j(‘x’)X̃j with probability 1/2 and T̃\j(‘y’)Ỹj with
probability 1/2,

1/2∆(T̃\jX̃j Ỹj , T̃\jX̃j Yj |X̃j) + 1/2∆(T̃\jX̃j Ỹj , T̃\jXj |Ỹj Ỹj) ≤ ε/10

implying that

T̃\jX̃j Ỹj ≈ε/5 T̃\jX̃j Yj |X̃j (6)

T̃\jX̃j Ỹj ≈ε/5 T̃\jXj |Ỹj Ỹj (7)

Yet (6) and (7) imply (4) and (5) respectively. (6) implies (4) since if (4) was false there
would be a distinguisher that on input x, y that are selected from X̃j , Ỹj and a third input
t manages to tell apart if t is selected from T̃\j |x or t is selected from T̃\j |x, y.2 But an
equivalent way to describe this is that the distinguisher is given x, y, t that either come from
X̃j , Ỹj , T̃\j , or y is only chosen conditioned on x and ignoring t (we use here the fact that
by (3) choosing y according to Y |X = x is the same as choosing y according to Ỹj |X̃j = x).
Such a distinguisher violates (6). The proof that (7) implies (5) is symmetric.

2We use the fact that we can always flip the output of a distinguisher violating (4) to ensure that it’s more likely
to output 1 on the left hand side distribution.
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Homework Assignments

§1 (25 points)

(a) Given the PCP Theorem as a black-box (NP ⊆ PCP(O(logn), O(1))) prove that for
any language in NP there exists a two query PCP proof system where verifier uses
O(log n) randomness and the prover’s answers are in an alphabet of constant size, with
perfect completeness, and soundness parameter at most ρ for some constant ρ < 1. (By
soundness parameter we mean the maximum probability of accepting a false statement.)

(b) Using the Parallel Repetition Theorem, show that for every NP-language and ε > 0,
there exists such a system with soundness parameter at most ε.

§2 (30 points) Recall that the entropy of a distribution (p1, . . . , pN ) is defined to be
∑

i pi log(1/pi).
Prove that for every δ ∈ (0, 1), if X is a distribution over {0, 1}` with H(X) ≥ ` − δ then
∆(X,U)2 ≤ 100δ (this is true even if the constant 100 is replaced by 1, but this version
suffices for the proof of the parallel repetition theorem). See footnote for hint3

§3 (25 points) Complete the proof of Lemma 1, by showing that the case of general distributions
reduces to the case of the uniform distribution.

§4 (30 points) Write down the full proof of the Main Lemma from the claim:

(a) Prove that if (3),(4) and (5) held with ε = 0, then the distribution of values x1, . . . , xn, y1, . . . , yn

the two provers pick is exactly equal to the distribution X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn.

(b) Prove that generally, using (3),(4) and (5) , the distribution of values x1, . . . , xn, y1, . . . , yn

the two provers pick is within 10ε statistical distance to the distribution X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn.

3Hint: If pi is the probability that X = i, then write pi = 2−`(1 + xi) and use the estimate log(1 + x) ∼ x for small x’s.
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