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What is an Image?

• An image is a discrete array of samples
representing a continuous 2D function 

Continuous function Discrete samples

Sampling and Reconstruction
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Sampling and Reconstruction

Figure 19.9 FvDFH

Sampling Theory

• How many samples are enough?
� How many samples are required to represent a given 

signal without loss of information?
� What signals can be reconstructed without loss for a 

given sampling rate?

Reconstructed function

Original function
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Sampling Theory

• What happens when use too few samples?
� Aliasing

Figure 14.17 FvDFH
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Sampling Theory

• How many samples are enough to avoid aliasing?
� How many samples are required to represent a given 

signal without loss of information?
� What signals can be reconstructed without loss for a 

given sampling rate?

Spectral Analysis

• Spatial domain:
� Function: f(x)
� Filtering: convolution

• Frequency domain:
� Function: F(u)
� Filtering: multiplication

Any signal can be written as a 
sum of periodic functions.

Fourier Transform

Figure 2.6 Wolberg

Fourier Transform
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• Fourier transform:

• Inverse Fourier transform:

Sampling Theorem

• A signal can be reconstructed from its samples, 
if the original signal has no frequencies 
above 1/2 the sampling frequency - Shannon

• The minimum sampling rate for bandlimited
function is called “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.

The frequency is called the bandwidth.

A signal is bandlimited if its
highest frequency is bounded.

The frequency is called the bandwidth.

Image Processing

• Pixel operations
� Add random noise
� Add luminance
� Add contrast
� Add saturation

• Filtering
� Blur
� Detect edges
� Sharpen
� Emboss
� Median

• Quantization
� Uniform Quantization
� Floyd-Steinberg dither 

• Warping
� Scale
� Rotate
� Warp

• Combining
� Composite
� Morph
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Adjusting Brightness

• Simply scale pixel components
� Must clamp to range (e.g., 0 to 1) 

Original Brighter

Adjusting Contrast

• Compute mean luminance for all pixels
� luminance = 0.30*r + 0.59*g + 0.11*b

• Scale deviation from for each pixel component
� Must clamp to range (e.g., 0 to 1) 

Original More Contrast

Image Processing

• Pixel operations
� Add random noise
� Add luminance
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� Add saturation

• Filtering
� Blur
� Detect edges
� Sharpen
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• Quantization
� Uniform Quantization
� Floyd-Steinberg dither 

• Warping
� Scale
� Rotate
� Warp

• Combining
� Composite
� Morph

Linear Filtering

• Convolution
� Each output pixel is a linear combination of input pixels 

in neighborhood with weights prescribed by a filter

Input Image
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Linear Filtering

• Convolution
� Each output pixel is a linear combination of input pixels 

in neighborhood with weights prescribed by a filter
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Linear Filtering

• Convolution
� Each output pixel is a linear combination of input pixels 

in neighborhood with weights prescribed by a filter

Input Image

Filter

Output Image

Adjust Blurriness

• Convolve with a filter whose entries sum to one
� Each pixel becomes a weighted average of its neighbors
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Edge Detection

• Convolve with a filter that finds differences 
between neighbor pixels 

Original Detect edges
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Sharpen

• Sum detected edges with original image 

Original Sharpened
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Emboss

• Convolve with a filter that highlights gradients
in particular directions

Original Embossed
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Non-Linear Filtering

• Each output pixel is a non-linear function of input 
pixels in neighborhood (filter depends on input)

Original Oil Stain Glass

Image Processing

• Pixel operations
� Add random noise
� Add luminance
� Add contrast
� Add saturation

• Filtering
� Blur
� Detect edges
� Sharpen
� Emboss
� Median

• Quantization
� Uniform Quantization
� Floyd-Steinberg dither 

• Warping
� Scale
� Rotate
� Warp

• Combining
� Composite
� Morph

Quantization

• Reduce intensity resolution
� Frame buffers have limited number of bits per pixel
� Physical devices have limited dynamic range

Uniform Quantization

P(x, y) = round( I(x, y) )
where round() chooses nearest
value that can be represented.

I(x,y)

P(
x,

y)

P(x,y)
(2 bits per pixel)

I(x,y)

Uniform Quantization

8 bits 4 bits 2 bits 1 bit 

Notice contouring.

• Images with decreasing bits per pixel:

Reducing Effects of Quantization

• Dithering
� Random dither
� Ordered dither
� Error diffusion dither

• Halftoning
� Classical halftoning
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Dithering

• Distribute errors among pixels
� Exploit spatial integration in our eye
� Display greater range of perceptible intensities

Uniform
Quantization

(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Original
(8 bits)

Random Dither

• Randomize quantization errors
� Errors appear as noise

P(x, y) = round( I(x, y) + noise(x,y) )

I(x,y)
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I(x,y)

P(
x,

y)

Random Dither

Uniform
Quantization

(1 bit)

Random 
Dither
(1 bit)

Original
(8 bits)

Ordered Dither

• Pseudo-random quantization errors
� Matrix stores pattern of threshholds

i = x mod n
j = y mod n
e = I(x,y) - trunc(I(x,y))
threshold = (D(i,j)+1)/(n2+1)
if (e > threshold) 

P(x,y) = ceil(I(x, y))
else 

P(x,y) = floor(I(x,y))
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• Bayer’s ordered dither matrices
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Error Diffusion Dither

• Spread quantization error over neighbor pixels
� Error dispersed to pixels right and below

Figure 14.42 from H&B

α
β γ δ

α + β + γ + δ = 1.0

Error Diffusion Dither

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither 
(1 bit)

Floyd-Steinberg
Dither 
(1 bit)

Reducing Effects of Quantization

• Dithering
� Random dither
� Ordered dither
� Error diffusion dither

Ø Halftoning
� Classical halftoning

Classical Halftoning

• Use dots of varying size to represent intensities
� Area of dots proportional to intensity in image

P(x,y)I(x,y)

Classical Halftoning

From Town Topics, Princeton

Halftone patterns

• Use cluster of pixels to represent intensity
� Trade spatial resolution for intensity resolution

Figure 14.37 from H&B

Q: In this case, would we use four “halftoned” pixels 
in place of one original pixel?
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Image Processing

• Pixel operations
� Add random noise
� Add luminance
� Add contrast
� Add saturation

• Filtering
� Blur
� Detect edges
� Sharpen
� Emboss
� Median

• Quantization
� Uniform Quantization
� Floyd-Steinberg dither 

• Warping
� Scale
� Rotate
� Warp

• Combining
� Composite
� Morph

Image Processing

• Consider reducing the image resolution

Original image 1/4  resolution

Image Processing

Resampling

• Image processing is a resampling problem

Sampling Theorem

• A signal can be reconstructed from its samples, 
if the original signal has no frequencies 
above 1/2 the sampling frequency - Shannon

Figure 14.17 FvDFHUnder-sampling

Aliasing will occur if the signal is under-sampled

Aliasing

• In general:
� Artifacts due to under-sampling or poor reconstruction

• Specifically, in graphics:
� Spatial aliasing
� Temporal aliasing

Figure 14.17 FvDFHUnder-sampling

Spatial Aliasing

• Artifacts due to limited spatial resolution
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Spatial Aliasing

• Artifacts due to limited spatial resolution

“Jaggies”

Temporal Aliasing

• Artifacts due to limited temporal resolution
� Strobing
� Flickering

Temporal Aliasing

• Artifacts due to limited temporal resolution
� Strobing
� Flickering

Temporal Aliasing

• Artifacts due to limited temporal resolution
� Strobing
� Flickering

Temporal Aliasing

• Artifacts due to limited temporal resolution
� Strobing
� Flickering

Antialiasing

• Sample at higher rate
� Not always possible
� Doesn’t always solve problem

• Pre-filter to form bandlimited signal
� Form bandlimited function using low-pass filter
� Trades aliasing for blurring
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Image Processing
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Transform

Reconstructed function

Filter
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Bandlimited Function
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Image Processing

Sample

Real world

Reconstruct
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Transform

Reconstructed function
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Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Display

Ideal Bandlimiting Filter

• Frequency domain

• Spatial domain

Figure 4.5 Wolberg
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Practical Image Processing

• Finite low-pass filters
� Point sampling (bad)
� Triangle filter
� Gaussian filter

Sample
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Convolution

• Spatial domain: output pixel is weighted sum of 
pixels in neighborhood of input image
� Pattern of weights is the “filter”

Input Output

Filter

Convolution with a Triangle Filter

• Example 1:

Input Output

Filter
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Convolution with a Triangle Filter

• Example 1:

Input Output

Filter
0.5

0.250.25
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Convolution with a Triangle Filter

• Example 1:

Input Output

Filter
0.5

0.250.25

Convolution with a Triangle Filter

• Q: What if the filter runs off the end?

Input Output

Filter

Convolution with a Triangle Filter

• Example 1:

Input Output

Filter
0.67

0.33
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Convolution with a Triangle Filter

• Q: what if the filter is not centered on a sample?

Input Output

Filter

Convolution with a Triangle Filter

• Example 2:

Input Output

Filter0.35
0.100.15

0.40

Convolution with a Triangle Filter

• Example 2:

Input Output

Filter0.35
0.100.15

0.40

Convolution with a Triangle Filter

• Example 3 (triangle filter of radius 1):

Input Output

Figure 2.4 Wolberg

Filter

Convolution with a Gaussian Filter

• Example 4:

Input Output

Figure 2.4 Wolberg

Filter

Image Processing

• Pixel operations
� Add random noise
� Add luminance
� Add contrast
� Add saturation

• Filtering
� Blur
� Detect edges
� Sharpen
� Emboss
� Median

• Quantization
� Uniform Quantization
� Floyd-Steinberg dither 

• Warping
� Scale
� Rotate
� Warp

• Combining
� Composite
� Morph
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Scaling

• Resample with triangle or Gaussian filter

Original 1/4X 
resolution

4X 
resolution

More on this next lecture!More on this next lecture!

Summary

• Image filtering
� Compute new values for image pixels based on 

function of old values  

• Halftoning and dithering
� Reduce visual artifacts due to quantization
� Distribute errors among pixels

» Exploit spatial integration in our eye

• Sampling and reconstruction
� Reduce visual artifacts due to aliasing
� Filter to avoid undersampling

» Blurring is better than aliasing


