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What is an Image”?

« Animage is a discrete array of samples
representing a continuous 2D function
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Sampling Theory

¢ How many samples are enough?
o How many samples are required to represent a given
signal without loss of information?

o What signals can be reconstructed without loss for a
given sampling rate?
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Sampling Theory

What happens when use too few samples?
o Aliasing
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Sampling Theory

* How many samples are enough to avoid aliasing?
o How many samples are required to represent a given
signal without loss of information?
o What signals can be reconstructed without loss for a
given sampling rate?
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Sampling Theory

« How many samples are enough to avoid aliasing?
o How many samples are required to represent a given
signal without loss of information?
o What signals can be reconstructed without loss for a
given sampling rate?
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Sampling Theory
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Sampling Theory

* How many samples are enough to avoid aliasing?
o How many samples are required to represent a given
signal without loss of information?
o What signals can be reconstructed without loss for a
given sampling rate?
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Spectral Analysis

¢ Spatial domain:
o Function: f(x)
o Filtering: convolution

¢ Frequency domain:
o Function: F(u)
o Filtering: multiplication
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Any signal can be written as a
sum of periodic functions.
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Fourier Transform

« Fourier transform:

F(u) = j f (x)e7 ™ dx
« Inverse Fourier transform:

f(x)= TF(u)e*‘z’“Xdu

P
Fourier Transform W
&
Cammiv VA
120] T
L = i
Loy ~S W
u O TS 2 [ 5w 2
Figure 2.6 Wolberg
~

Sampling Theorem

» Asignal can be reconstructed from its samples,
if the original signal has no frequencies
above 1/2 the sampling frequency - Shannon

e The minimum sampling rate for bandlimited
function is called “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.
The frequency is called the bandwidth.
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Image Processing

* Pixel operations
o Add random noise
o Add luminance
o Add contrast

¢ Quantization
o Uniform Quantization
o Floyd-Steinberg dither

o Add saturation * Warping
o Scale
* Filtering o Rotate
o Blur o Warp
o Detect edges .
9 e Combining
o Sharpen :
o Emboss ° Com;;osne
o Median e Morp!
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Adjusting Brightness

¢ Simply scale pixel components
o Must clamp to range (e.g., 0 to 1)
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Image Processing W

¢ Quantization
o Uniform Quantization
o Floyd-Steinberg dither

* Warping
o Scale
- Filtering ° Rotate
o Blur ° Warp
o Detect edges » Combining
o Sharpen i
o Emboss [ ohastte
o Median - Moreh
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Linear Filtering
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Adjusting Contrast

+ Compute mean luminance £ for all pixels
o luminance = 0.30*r + 0.59*g + 0.11*b

« Scale deviation from £ for each pixel component
o Must clamp to range (e.g., 0 to 1)

Original More Contrast
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Linear Filtering

« Convolution
o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
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» Convolution
o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
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Linear Filtering

» Convolution
o Each output pixel is a linear combination of input pixels
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Linear Filtering

« Convolution

o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
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Linear Filtering

« Convolution

o Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter
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Edge Detection

Filter
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Adjust Blurriness W
« Convolve with a filter whose entries sum to one
o Each pixel becomes a weighted average of its neighbors
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Sharpen @?

* Sum detected edges with original image
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Original Sharpened

-1 -1 -1

« Convolve with a filter that finds differences
between neighbor pixels
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Emboss
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Filter= -1 +9 -1
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» Convolve with a filter that highlights gradients
in particular directions
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Non-Linear Filtering

« Each output pixel is a non-linear function of input
pixels in neighborhood (filter depends on input)
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Quantization ?

¢ Reduce intensity resolution
o Frame buffers have limited number of bits per pixel
o Physical devices have limited dynamic range
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Image Processing w

¢ Quantization
o Uniform Quantization
o Floyd-Steinberg dither

* Warping
o Scale
o Rotate
o Warp

« Combining

o Composite
o Morph
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Uniform Quantization
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Uniform Quantization W

* Images with decreasing bits per pixel:

2 bits

Notice contouring.

P(x, y) = round( I(x, y) )
where round() chooses nearest
value that can be represented.

P(x,y)

I(x,y)
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P(xy)
(2 bits per pixel) /
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Reducing Effects of Quantization ﬁg

« Dithering
o Random dither
o Ordered dither
o Error diffusion dither

« Halftoning
o Classical halftoning
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Random Dither

e
Dithering
« Distribute errors among pixels
o Exploit spatial integration in our eye
o Display greater range of perceptible intensities
:
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(8 bits) Quantization Dither
(1 bit) (1 bit)
-
Random Dither W
N
Original Uniform Random
(8 bits) Quantization Dither
(1 bit) (1 bit)
\
e
Ordered Dither
» Bayer’s ordered dither matrices
4D_, +D,(1,1 4D_, +D,(1,2
5 :{ % DZ(’)LJ% % D2<, )t’J%
" 14D, +D,(2,1 4D,, +D,(2,2

P(x,y)

Randomize quantization errors
o Errors appear as noise

P(x.,y)

Ixy) Ix,y)

P(x, y) = round( I(x, y) + noise(X,y) )
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Ordered Dither

¢ Pseudo-random quantization errors
o Matrix stores pattern of threshholds

% =xmod n {3 1}
j=ymodn D, =
e =1(x,y) - trunc(I(x,y)) 0 2

threshold = (D(i,j)+1)/(n?+1)
if (e > threshold)

P(ny) — Ceil(I(X, y)) 0 1/5 2/5 3/5 45 1
else

P(x,y) = floor(I(x,y)) TthrTeshl)lds
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Ordered Dither
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Error Diffusion Dither

#

« Spread quantization error over neighbor pixels
o Error dispersed to pixels right and below
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Error Diffusion Dither
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Reducing Effects of Quantization W

« Dithering
o Random dither
o Ordered dither
o Error diffusion dither

Halftoning
o Classical halftoning

Random

Original Ordered
(8 bits) Dither Dither Dither
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Classical Halftoning
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Classical Halftoning ﬁ

From Town Topics, Princeton

« Use dots of varying size to represent intensities
o Area of dots proportional to intensity in image

I(x.y)
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Halftone patterns

« Use cluster of pixels to represent intensity
o Trade spatial resolution for intensity resolution

[ 3 4
0=1<02

1 2
02=1<04 04=1<06 06=I<08 08=I=10

Q: In this case, would we use four “halftoned” pixels
in place of one original pixel?

Figure 14.37 from H&B
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Image Processing

* Warping
o Scale
o Rotate
o Warp

« Combining

o Composite
o Morph

Vs

Image Processing v&

« Image processing is a resampling problem

Ml
MR

Resampling
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Image Processing
« Consider reducing the image resolution
Ogmal image 1/4 resolution
J
-

Sampling Theorem
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Aliasing

* Ingeneral:
o Artifacts due to under-sampling or poor reconstruction

« Specifically, in graphics:

o Spatial aliasing
o Temporal aliasing

» Asignal can be reconstructed from its samples,
if the original signal has no frequencies
above 1/2 the sampling frequency - Shannon

[Aliasing will occur if the signal is under—sampled]

Under-sampling Figure 14.17 FyDFH |
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Spatial Aliasing

Under-sampling

Figure 14.17 FvDFH
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« Artifacts due to limited spatial resolution
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Spatial Aliasing

« Artifacts due to limited spatial resolution

“Jaggies”
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Temporal Aliasing
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Temporal Aliasing

« Artifacts due to limited temporal resolution
o Strobing
o Flickering

« Artifacts due to limited temporal resolution
o Strobing
o Flickering
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Temporal Aliasing
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Temporal Aliasing

* Artifacts due to limited temporal resolution
o Strobing
o Flickering

 Artifacts due to limited temporal resolution
o Strobing
o Flickering

Vs

Antialiasing

« Sample at higher rate
o Not always possible
o Doesn't always solve problem

 Pre-filter to form bandlimited signal
o Form bandlimited function using low-pass filter
o Trades aliasing for blurring

10
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Image Processing

l Real world

Discrete samples (pixels)

Reconstructed function

Transform

Transformed function

Bandlimited function

Discrete samples (pixels)

Display
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Image Processing

l Real world

P
Image Processing

Discrete samples (pixels)
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Discrete Samples

Continuous Function

P
Image Processing

Reconstruct
Reconstructed function

p
Image Processing

Transform
Transformed function

Transformed Function

Reconstructed Function

p
Image Processing

Bandlimited function

Bandlimited Function
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Image Processing

Discrete samples

(pixels)

1]

Discrete samples
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Ideal Bandlimiting Filter W

¢ Frequency domain

¢ Spatial domain

VWVJ\/\/M s M

Figure 4.5 Wolberg
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Convolution

» Spatial domain: output pixel is weighted sum of
pixels in neighborhood of input image
o Pattern of weights is the “filter”

i i Filter

nl'l!’l|

Input

Output
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Image Processing

Display
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Practical Image Processing

Display Y,

« Finite low-pass filters | Real world

o Point sampling (bad)
o Triangle filter Discrete samples (pixels)

o Gaussian filter

Reconstructed function

Transform

Transformed function

Bandlimited function

Convolution

Discrete samples (pixels)

Display Y,
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Convolution with a Triangle Filter Qg

* Example 1:

i i Filter

|‘|‘|

Input Output
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Convolution with a Triangle Filter ﬂ Convolution with a Triangle Filter Q

« Example 1: « Example 1:
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Convolution with a Triangle Filter gﬂ Convolution with a Triangle Filter Qg

* Q: What if the filter runs off the end? * Example 1:

ull, TR

Input Output Input Output

067
033 Filter
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Convolution with a Triangle Filter ﬂ

« Q: what if the filter is not centered on a sample?

ii Filter
l‘“f

Input Output
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Convolution with a Triangle Filter Q
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Convolution with a Triangle Filter W

* Example 2:

, 15"1‘" :" ¥ Filter
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Convolution with a Gaussian Filter gﬂ

* Example 4:

Input Output

Figure 2.4 Wolberg

« Example 2:
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Convolution with a Triangle Filter

« Example 3 (triangle filter of radius 1):

i E Filter
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Input Output

Figure 2.4 Wolberg
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Image Processing

« Warping
o Scale
o Rotate
o Warp

e Combining
o Composite
o Morph

14
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Scaling W

« Resample with triangle or Gaussian filter

| More on this next lecture! |

Original 1/4X 4X
resolution resolution

-
Summary

« Image filtering
o Compute new values for image pixels based on
function of old values

« Halftoning and dithering
o Reduce visual artifacts due to quantization
o Distribute errors among pixels
» Exploit spatial integration in our eye

« Sampling and reconstruction
o Reduce visual artifacts due to aliasing
o Filter to avoid undersampling
» Blurring is better than aliasing
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