COS 424: Interacting with Data

Lecturer: Rob Schapire & David Blei Lecture # 16
Scribe: Janet Suzie Yoon April 10, 2007

1 Logistic Regression and Naive Bayes (Rob)

Logistic Regression overview

The Logistic Regression (LR) model, given data x € R", predicts y € {—1,+1} by directly
modeling the probability y = +1 for given example x:

Py = +1|x,w) = o(w - x)

where w is the weight vector and o(2) = 7= +e ~. The problem of finding the weight vector

w is solved by using maximum likelihood (i.e. minimum negative log likelihood).
m
min — Z log(P(yi|x;w)) = minz log(1 + exp(y;w - x3))
i=1
Therefore Logistic Regression is a discriminative model. It only models P(y|x), it does not
care about the distribution over x.
Naive Bayes overview
The Naive Bayes (NB) model, given data x € R”, predicts y € {—1,+1} by modeling
P(x[y), P(y)
Naive Bayes is thus a generative model since it produces the probability distribution of
pairs (x,y) (i.e. generates observed data).
Relating Logistic Regression with Naive Bayes
Let’s focus our attention to the special boolean case of Naive Bayes. Suppose
X =< X1, L2, ..., T, >,z € {0,1}
Assume y is generated first, and each x; is independently generated (see figure 1). Let
Ply) ==
P(zjly = +1) = 04
P(zjly=—1) =6

Applying Bayes rule (and then a lot of algebra) we see that
Ply=+1x) = Pxly=+1)P(y=+1)/P(x)

= o (o (5)) S (202 + S (J220=0)

= o(wy+w-x)




Figure 1: Naive Bayes Model

>> and w; = log (M) This is exactly

1-0.,
where wyg = o (log (ﬁ) + Zj log (1_9+§ 0_;(1—0+))

the same form as Logistic Regression!!!!

The two models produce the same results as the training set size approaches co IF' the
Naive Bayes assumption holds that the x;’s are conditionally independent of one another
given y. So what are the differences between the two models?

Naive Bayes comes up with o (wp + w - X) using a restrictive generative model. Thus,
to build this model, it needs to infer w, 6_;, 6, ;. These values can be estimated from
frequency counts. Thus the amount of data needed to acheive good results (i.e. the same
results as when we have an infinate number of data) is relatively small. More specificially,
it can be shown to be O(logn).

Logistic Regression, on the otherhand, is less restrictive. Although consistent with the
Naive Bayes assumption that the x;’s are conditionally independent given y, Logistic Re-
gression is not rigidly tied to this assumption. If data is given that violates this assumption,
then Logistic Regression will adjust the weights to maximize fit to the data. The weights
are chosen arbitrarily and thus require a full search over the linear space of possible mod-
els. The data requirement for this is of size O(n). Therefore Logistic Regression converges
slower to its asymptotic accuracy than Naive Bayes.

To conclude, Naive Bayes is the better choice for small data sets (Logistic Regression
will overfit). For large data sets, the winner is Logistic Regression (Naive Bayes underfits).

In figure 2 we see how Naive Bayes and Logistic Regression compare over different data
sets. Each graph is a different data set. The plots are the error verses the size of the training
data. The dashed lines are Logistic Regression and the solid lines are Naive Bayes. These
graphs support the claim that Naive Bayes works better over smaller data sets, and Logistic
Regression works better over larger data sets.
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2 Dimensionality Reduction (Dave)

Dimensionality Reduction is the real value analog to clustering. The goal is to reduce the
representation of our data. Therefore, if we have data x € RP, we want to transform it to
% € R? where g < p.

Tp Xq
Why would we want to do this?

e find a simpler way of looking at the data (exploratory technique)
e use the simpler representation for better learning
e you think the data is simpler then it seems

e faster computation, reduced memory requirements (compression)

One way to achieve Dimensionality Reduction is Principle Components Analysis.

Principle Components Analysis (PCA)

The basic idea of PCA is to project the high dimensional data in a low dimension manifold
in the original space. For an example, suppose we want to convert our 2D data into 1D.
Figure 3 shows our data in 2 dimensions.
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Figure 3: Data points in R?

A subspace in one-dimension is a line (such as the line in red in figure 4). We project the
data point (x1,x2) on the line (figure 5). Now the data point is represented by its location
on the line. Thus PCA works in the following steps:

1. Define a low dimensional manifold (in our example, the line) in the orginal space.

2. Represent each data point x by its projection onto this manifold.

But, how do we choose the line (subspace)?



Figure 4: One dimensional subspace (the red line) in R?

Figure 5: Projection of 2D data points onto a line.

Choosing the subspace

There are three equivalent methods for picking a subspace.

e Maximize the variance of the projection (Hotelling 1933). In other words, this
method tries to maximize the spread of the projected data. Once more taking our 2D
to 1D example, if we look in figure 6 we see the line x = y has a better spread of the
data points then y = 0 (the x axis). Thus, x = y would be a better pick out of these
two.

e Minimize the reconstruction error (Pearson 1901). Another method is to min-
imize the squared distance between the original data and its ”estimate” in the low
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Figure 6: Variance of y =0 and y =«

dimensional space.

>,

e MLE of the parameter in a latent variable (Bishop 1996, Roqeig 1998, Rob!!!
2001). The projection of z onto a subspace in rank-g can be modeled by Y7 | ajz;+€;
where the a;’s are the latent variables and ¢; is the error. The model is fit by maximum

likelihood.

Figure 7 illustrates for when g = 2. The right plot shows the projection x;’s onto the

2D subspace.

Second principal component

1.0

0.5

0.0
!

-0.5
!

. o ®
°
o
& °
.
. °
° 4 . °
LR ... . ..
° ...o .o °
° F 2 .o .
. 23
T T T T
-0.5 0.0 0.5 1.0

First principal component

Figure 7: The best rank-two linear approximation to the half-sphere data.




Example

Figure 8 shows a sample of 130 handwritten threes, each a digitized 16 x 16 grayscale image.
We can see noticible variations in writing style, thickness, and orientation of these samples.
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Figure 8: A sample of 130 handwritten threes shows a variety of writing styles.

Consider these images as points z; € R?°6. In other words, the images are defined by 256
components (or features). Figure 9 shows the nature of the first two principle components
of the data. The grid super-imposed on the left graph is defined by the 0.05,0.25,0.5,0.75
and 0.95 quantile points. The 0.05 quantile point ¢ is the point such that P (X < ¢q) = .05.
The circled points are the images that are close to the vertices of the grid and correspond
to the grid on the right. From left to right, the lower tail of the three’s lengthen and from
top down, the thickness increases. These features are represented by the variables vy and
v respectively. Thus the two-component model has the form shown in Figure 10.

Data Reconstruction

Let data x1, ..., x, € RP. We define the reconstruction of the data projection on the subspace
RY back to space RP as f(\).
f)=p+VeA

where € RP, V; is a p x ¢ matrix consisting of ¢ orthogonal unit vectors, and 0 is a vector
in RY. The value X is the low dimenional representation of the data points and the matrix
Vy is its representation on the line. Thus finding a good low-D space is basically finding
good V, A, u values. Fitting this model to data amounts to minimizing the reconstruction
€rror.

min Y [lxi — g — Vol |?
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Figure 9: Projection of 3-dimensional datapoints onto a 2-dimensional subspace.
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Figure 10: The first two principal component diractions, v; and v9 are displayed as images.



