
COS 424: Interacting with Data

Lecturer: Dave Blei Lecture #12
Scribe: Joe Wenjie Jiang Mar 15, 2007

Some questions and answers regarding the comments in the last lecture. Which learning al-
gorithms do current spam filters use? The answer is not available since it is business confidential.
Generally, Naive Bayes is not utilized, while logistic regression and SVM boosting may be good
candidates.

1 Review of Naive Bayes for Text Classification
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Figure 1: Naive Bayes model for text classification

Here shows the highlight of the concepts. Figure 1 depicts the Naive Bayes model for text
classification. We haveD documents, each containingN words. The document is labelled a class
cd, which is generated by a distributionπ. There areL different classes, each of which possesses a
word distributionβl on a vocabulary of sizeV . In this graphical model, the joint distribution of a
document can be written as:

P (c, w1:N |π, β) = P (c|π)
N∏

n=1

P (wn|c, β) (1)

Note that the Naive Bayes assumes that the words are independent given the document’s class,
which is not true in reality. For instance, if the word “house” appears in a document, it is very likely
that “mortgage” will also appear. The generative process of a document follows a multi-nomial
distribution:

c ∼ Multi− nomial (π) (2)

For each wordwn, it is generated by a multi-nomial distribution given its specific document classc:

wn|c ∼ Multi− nomial (βc) (3)

We classify these documents based on its posterior distribution, e.g.,

ĉ = argmaxc P (c|w1:N , π, β) (4)



which is the same as choosing the classes that maximize the joint distribution:

ĉ = argmaxc P (c|π)
∏
n

P (wn|c, β) (5)

Therefore, we can write down the log-likelihood as

L(π, β;D) =
D∑

d=1

L∑

l=1

cl
d log πl +

D∑

d=1

L∑

l=1

cl
d

N∑

n=1

V∑

v=1

wv
d,n log βl,v (6)

Note that the first term of this log-likelihood function counts the number of documents we saw for
each class, and the second term shows the word counts of each document given its class. To produce
an MLE ofP (π, β;D), we are lucky to be able to separate the problem intoL + 1 different MLEs.
As shown in Equation (7)

π̂l =
D∑

d=1

cl
d/D

ˆβl,v =
D∑

d=1

cl
d

N∑

n=1

wv
d,n/

D∑

d=1

cl
dN, (7)

we obtain an estimation of the parametersπ andβ. The explanation is rather straight-forward: the
probability of a document being classl is the number of documents we saw of classl, divided by
the total number of documents, and the probability of a wordv appearing in a document of classl
is the number of times we saw the wordv in all documents of classl, divided by the total number
of words in documents of classl. Essentially, the estimation is interpreted as the relative frequency.

2 The Theoretical Foundation of Smoothing

2.1 Smoothing

The problem of Naive Bayes is that the estimation ofβl,v is zero if we never saw this word in the
training data. In the last lecture, we introduced smoothing to alleviate the inaccuracy. The basic
idea of smoothing is to add a constant term in both the numerator and the denominator, to “smooth”
the estimation when some data is not in the training set. The smoothed estimation ofβl,v is

ˆβl,v =

∑D
d=1 cl

d

∑N
n=1 wv

d,n + α
∑D

d=1 cl
dN + V α

(8)

andα is some parameter. Smoothing can greatly improve the accuracy of Naive Bayes from75%
to 97%.

Next we are going to explore the probability model of smoothing. Figure 2 shows the graphical
model of smoothing. Note that in the original model,β is a parameter (which is represented as
a circle with a dot). Nowβ becomes a random variable with a parameterα, which decides the
distribution ofβ. That is, instead of estimatingβ merely from the data sets, we considerβ which
is determined by the training set as well as a hyper-parameterα. We assumeβ follows a prior
distributionp(β|α) before we see any data, given a parameterα. Following up we amend this
probability by looking at its posterior distributionp(β|α, w1:N ), e.g., what is the bestβ given our
observation in the data?
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Figure 2: Graphical model for smoothing

2.2 Dirichlet Distribution

We sayβ lives on the simplex if
βv > 0,

∑
v

βv = 1 (9)

To put it another way, a vector that satisfies (9) is on the simplex. Next we move on to define a
distribution over the space of a simplex. Dirichlet (Dir(α)) is a family of continuous multivariate
probability distributions over a simplex, parameterized by the vectorα of positive values. Formally,
let ~α be a positiveV -vector. The probability density function of the Dirichlet distribution is defined
as

p(β|α) = Z(α) · βα1−1
1 βα2−1

2 · · ·βαV −1
V (10)

whereinZ(α) is a factor that normalizes the pdf such that it integrates to one. We first take a
look at the Dirichlet distribution over a 2-simplex, e.g.,V = 2. The domain ofβ is defined on
{β|β ∈ R2

+, β1 + β2 = 1}. Figure 3 shows the shape of a family of Dirichlet distributions in 2D
(Note that in 2D this is also called the beta distribution). The mean of a random variable with a
Dirichlet distribution can be readily shown:

E
[
βv|α

]
=

αv∑
v′ αv′

(11)

After defining the prior Dirichlet distributionp(β|α), we ask, what is the posterior distribution
given the data we observed? We have,

p(β|w1:N , α) =
p(β|α) · p(w1:N |β)

p(w1:N |α)
∝ p(β|α) · p(w1:N |β)

= Z(α)
V∏

v=1

βαv−1
v

N∏

n=1

βwn

= Z(α)
V∏

v=1

βαv−1+Kv
v

∝
V∏

v=1

βαv−1+Kv
v (12)

whereinKv is the number of appearance of wordv in the training data. Equation (12) reveals the
truth that the posterior distribution given the observed data is still a Dirichlet distributionDir(~α +
~K), where~K is a vector of word counts! Sop(β|w1:N , α) is a Dirichlet distribution with parameter
~α+ ~K. This nice property is calledconjugacy. We can further write down the expectation given the
posterior distribution,

E
[
β|w1:N , α

]
=

Kv + αv∑
v′ Kv′ + α

(13)
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Whenαv = α, e.g., all the components have the same value, the expectation simplifies to

E
[
β|w1:N , α

]
=

Kv + α∑
v′(Kv′ + α)

=
Kv + α

N + V · α (14)

which looks like what smoothing does with a smoothing parameterα. Essentially, the probabilistic
interpretation of smoothing is more clear: when we have little data in the training set, we assume
that the data we did not see and what we saw are uniformly distributed on a simplex in prior.

How to choose a good parameterα is important. Generally speaking there are two approaches:
(i) MLE fund with a method called “empirical Bayes” (ii) cross validation. Whenα = 1, it is called
the Laplace smoothing. Whenα = 0.5, it is called Jeffery’s prior. However, the purely Bayesian
approach towards smoothing argues that we chooseα before we actually see the data set.

3 Preliminary of EM Algorithm

In the next two lectures, we are going to explore the case when the random variablecd becomes an
empty circle, e.g.,cd becomes a hidden variable. So we do not observe the class of our data any
more and we have no idea which document comes from which class. The only observed data is
the documents{ ~wd}D

d=1. So we are introducing the idea of clustering into our graphical models.
It has got a namemixture model, or model-based clustering. In the case of text classification, it is
modeled as a mixture of multi-nomials. The estimation includes two parameters: (i)π, which is
the distribution over possible groups, and the data turns out to be a mixture of groups with different
proportions. (ii)β, which is the per group word distribution, and the data of each group is a mixture
of its components. The observed data iswd,n. The conditional probability density function can be
written as

p(w1:N |β, π) =
L∑

l=1

p(c = l|π)
N∏

n=1

p(wn|β, c = l) (15)

The corresponding log-likelihood is

L(β, π,D) = log
D∏

d=1

p( ~wd|π, β)

=
D∑

d=1

log
∑

l

p(c = l|π)
N∏

n=1

p(wn|c = l, β) (16)

We have no analytical solutions for this MLE since there are summations in the log. One option is
to perform numerical optimization. An alternative is to leverage the iterative method to solve this
optimization problem, e.g., EM algorithm. Actually EM algorithm is a powerful machinery to solve
arbitrary graphical models with any hidden variables.

Before we formally introduce the EM algorithm, let us first recall what K-mean algorithm does.
The K-mean algorithm repeatedly performs the following two steps:

• Partition the data according to current cluster centers.

• Estimate new cluster centers based on the partition.

The EM algorithm possesses the similar idea. The question is, suppose we know the grouping of
the data, which is the best way to estimate the parameters? Use Naive Bayes! Therefore, we present
the high level description of the EM algorithm as:
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• Suppose we have current estimates ofπ(t), β(t)

• Replacecd with E
[
cd|wd, π

(t), β(t)
]

In the next lecture, we are going to see how the expectation is calculated.
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Figure 3: A family of Dirichlet distributions
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