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COS 424: Interacting with Data

Lecturer: Rob Schapire and David Blei Lecture # 8
Scribe: Indraneel Mukherjee March 1, 2007

In the previous lecture we saw how Support Vector Machines (SVMs) serve as effective
tools in classifying data by obtaining a hyperplane that separates the positive and negative
examples by the maximum margin. We also saw how projecting the data into a higher
dimensional space and linearly separating the projected data allowed us to separate the
examples by polynomial surfaces in case the data was not linearly separable. Further the
use of a kernel allowed us to carry out computations in high dimensions without suffering
more than a logarithmic (in the degree of the polynomial) overhead in time complexity.

1 Case study of SVM (Rob)

We wrap up our discussion of SVMs by analyzing how well they are able to classify hand-
written digits, represented as 16 × 16 arrays of pixel-intensities. The training set consists
of 2000 examples, and the test-set is of size 7300.

According to Rob’s report, the linear classifier misclassified 340 training examples, a
polynomial kernel of degree 2 achieved a training-error of only 4, erring on what are evidently
outliers (fig. 1), while a degree 3 polynomial perfectly classified the training set.

Figure 1: The outliers misclassified by degree 2 kernel

In general, the simplicity vs training-accuracy tradeoff makes the task of finding the
optimum degree of the kernel-polynomial difficult. A trial and error approach could consist
of splitting our collection of training examples into a test set and a training set, and trying
out SVM’s with various degree kernels to find the best fit. However, this leads to wastage
of data.

For this problem, however, we could find, among the kernels that suffer negligible train-
ing error, the one that minimizes the explicit estimate (R/δ)2 of the VC-dimension(simplicity)
of linear classifiers achieving margin δ on examples of norm at most R. A plot of this es-
timate against different degrees is shown in figure 2, and the optimal degree can be read
off from the graph. Since the given problem is not a binary-classification task, we have
to consider the possibility that the optimum degree could vary with the digits(fig. 3). In
that case, on a test example, we run the SVMs for each digit separately and break ties by
choosing the prediction that maximizes confidence, i.e. margin.

The table in figure 4 compares the performance of SVMs having degree chosen to min-
imize (R/δ)2 with those having other degrees for different digits. In each case, the best
performing degrees (enclosed in squares) are the ones which are chosen as above.



Figure 2:

To sum up, SVM’s are highly popular since they are the state-of-the-art for many prob-
lems of practical interest. So even though the algorithms for finding SVM’s are complicated,
they have been well-studied.

2 Clustering (David)

Till now we have been looking at the problem of supervised learning; namely, we are pre-
sented with a number of labelled training examples which we use to output a hypothesis
that guesses the correct label when presented with a new unlabelled test example. The
training set is typically small, since labelled data is expensive to generate. In the unsuper-
vised learning setting, there is an abundance of unlabelled training examples, and we strive
to gain some understanding of the data. Generally learning problems can be broadly classi-
fied as supervised or unsupervised learning, although there are certain problems combining
features of both settings.

Understanding unlabelled examples essentially consists of segmenting the data into
groups of similar points. For instance, we might want to group customers according to
purchase histories, genes according to expression profiles, web-search results according to
topics, MySpace users according to interests, etc. . This could be useful, for instance,
in automatically organizing the data, discovering hidden structures, or representing high-
dimensional data in a low-dimensional space.

2.1 Clustering Setup

We will assume our data consists of a set D = {x1, . . . ,xN} of points in Rp, each point
xn being represented as xn = 〈xn,1, . . . , xn,p〉. We will also need a notion of distance
d(xn,xm) between data-points. We want to segment the data into k groups {z1, . . . , zN}
where zi ∈ {1, . . . ,K}, for some choice of k (how k is chosen will be discussed later).

Before discussing clustering algorithms in the general setup, we look at a motivating
example. Consider the problem of clustering the collection of 500 2-dimensional points
shown in figure 5.

Squared Euclidean distance (squared to simplify computations), defined as d(xn,xm) =∑p
i=1(xn,i − xm,i)2 = ‖xn − xm‖2, seems a reasonable candidate for the distance function,
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Figure 3:

either by visual inspection, or from the fact that the samples lie in the Euclidean plane.
Our goal is to group the data into k groups, for an appropriate choice of k. Automatically
choosing k is complicated. To keep things simple, we will assume a value of 4. While there
are different ways in which one may use the data and distances to cluster, we begin with
the simplest algorithm: k-means.

2.2 k-means

The basic idea in k-means is to describe each cluster by its mean value, i.e. the point
obtained by coordinate-wise summing up the points within a cluster and taking average.
Pseudocode for the algorithm follows:

1. Initialization

• Data are x1:N

3



Figure 4:

• Choose initial cluster means m1:k (same dimension as data).

2. Repeat

(a) Assign each data point to its closest mean

zn = arg min
i∈{1,...,k}

d(xn,mi)

(b) Compute each cluster mean to be the coordinate-wise average over data points
assigned to that cluster,

mk =
1

Nk

∑
{n : zn=k}

xn

3. Until assignments z1:N do not change

The positions of the means in different iterations of a sample run of the algorithm on
the above dataset is shown below.
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Intuitively, it is clear that we produce increasingly better clusterings as the algorithm
proceeds. This can be captured formally by measuring the quality of a particular clustering
by the k-means objective function F (z1:N ,m1:k) = 1

2

∑N
n=1 ‖xn − mzn‖2. The changing

values of the objective function in the sample run is written at the top of the respective
slides, and can be seen to be steadily decreasing. A plot of the same can be seen below.

7



●

●

●

● ● ●

1 2 3 4 5 6

10
15

20
25

30
35

40
45

Round of k−means

O
bj

ec
tiv

e

2.3 k-means is Coordinate Descent

We could think of k-means as trying to minimize the objective function F (z1:N ,m1:k) =
1
2

∑N
n=1 ‖xn − mzn‖2. It is easy to see that step 2(a) of the algorithm minimizes F if the

centroids of the clusters are fixed to be m1:k: each point contributes (independently of
other points) its distance to its assigned mean to the sum, and choosing the closest mean
minimizes this contribution.

On the other hand, if the assignments z1:N are fixed, minimizing F is equivalent to
minimizing

∑
i:zi=t ‖xi − mt‖2 for each cluster t ∈ [k] separately. Note this expression is

exactly the negative log-likelihood of the points labelled t by z, assuming the points are
distributed according to a Gaussian distribution centered at mt. This is an important
connection that motivates the choice of the objective function and which will be explored
later. From the first homework assignment, we know that the choice of center maximizing
the likelihood is the empirical mean of the samples, which is chosen in step 2(b) of the
algorithm.

Thus k-means strives to minimize its objective function by fixing different subsets of
its coordinates, and minimizing the resulting simplified objective function. Algorithms
adhering to this general paradigm form a family referred to as coordinate descent algorithms.
These are used when the objective function is non-convex, and the solution they converge
to, which depends on the initial choice of the cluster-means, are local minima. Multiple
restarts with different initial choices are often necessary to find the global minimum.

2.4 Compressing Images: an application

An image consists of a grid of pixels xn. A pixel consists of a triple of real numbers,
corresponding to proportions of red, green and blue in the color that it represents.
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For example, the above 1024 × 1024 image is a collection of 1048576 triples, which
requires 3M of storage. A possible means of compression is vector quantization, where we
decide to approximate the colors in an image by a small set of colors, called the codebook,
and replace each pixel xn in the compressed image by the index zn of the color in the
codebook “closest” to it. For instance, if we choose a codebook of size k = 100, then we’d
need only 7 bits per pixel for the compressed image, along with the 100 × 3 bits for the
codebook, for a total storage of only 897K.

Given a notion of closeness, the problem reduces to finding the codebook of some size
k. Thinking of the xn as 3-dim points, and letting squared euclidean norm be a measure
of closeness of colors, the centers m found by the k-means algorithm applied to xn could
serve as the codebook. In this case, the choice of the size k represents a tradeoff between
the extent of compression obtained and the quality of the compressed image. Applying
k-means to achieve compression by means of vector quantization to the above image, for
k = 2, 8, 32, 128, is shown below (in that order).
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Notice how the quality of the compression improves rapidly initially, but is hardly per-
ceptible later on, although the value of k, and hence the compressed size, is increasing
exponentially. A plot showing how the distortion, as measured by the k-means objective
function, changes with k confirms our observations.
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2.5 k-medoids

In many practical settings, when the data is multivariate discrete, like customer purchase
histories, or is only positive, such as time spent on a web-page, Euclidean norm is no
longer an appropriate measure of the distance. Further, as in the case of purchase histories,
the mean of a cluster may be meaningless. k-medoids is an algorithm which works on an
arbitrary metric d on the data points, and associates each cluster with its “most typical”
member, namely the one that minimizes the sum of distances from all the other points in
that cluster. Pseudocode for k-medoids is given below:

1. Initialization

• Data are x1:N

• Choose initial cluster identities m1:k
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2. Repeat

(a) Assign each data point to its closest center

zn = arg min
i∈{1,...,k}

d(xn,mi)

(b) For each cluster, find the data point in that cluster that is closest to the other
points in that cluster

ik = arg min{n : zn=k}
∑

{m : zm=k} d(xn,xm)

(c) Set each cluster center equal to their closest data points

mk = xik

3. Until assignments z1:N do not change

2.6 Choosing k

Choosing k is a nagging problem in cluster analysis. Sometimes the problem determines
k, e.g. a certain required compression in the vector quantization of an image, clustering
customers for an available number of salespeople in a business, etc. . We try to choose a
“natural” value for the number of clusters, but in general this notion is not well-defined.
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