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5.4 THE OPTIMAL SEPARATING HYPERPLANE

Below we consider a new type of universal learning machine that imple-
ments the second strategy: keep the value of the empirical risk fixed and
minimize the confidence interval.
As in the case of neural networks, we start by considering —EQE. deci-
sion rules (the separating hyperplanes). However, in contrast to previous
considerations, we use a special type of hyperplane, the so-called Optimal
separating hyperplanes (Vapnik and Chervonenkis, 1974), (Vapnik, 1979).
First we consider the Optimal separating hyperplane for the case where the
training data are linearly separable. Then, in Section 5.5.1 we generalize the
idea of Optimal separating hyperplanes to the case of nonseparable data.
Using a technique for constructing Optimal hyperplanes, we describe a new
type of universal learning machine, the Support Vector machine. Finally
we construct the Support Vector machine for solving regression estimation
problems.

5.4.1 The Optimal Hyperplane
Suppose the training data ‘
(x1,%1),- -, (Te,y2), =€ R, ye{+1, -1}
can be separated by a hyperplane:
(w-z)+b=0. (5.7)

We say that this set of vectors is separated by the Optimal hyperplane if it
is separated without error and the distance between the closest vector to
the hyperplane is maximal (Fig. 5.2 ).
To describe the separating hyperplane let us use the mozos:bm canonical
form:
(w-z;)+b21 ifyi=1,

(w-z;)+b< -1 ify;=
In the following we use a compact notation for these inequalities:
yiltw-z;)+b =1, i=1,...,L (5.8)

It is easy to check that the Optimal hyperplane is the one that satisfies the
conditions (5.8) and minimizes

e(w) = |w|l*. N (5.9)

(The minimization is taken with respect to both vector w and scalar b.)
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FIGURE 5.2. The Optimal separating hyperplane is the one that separates the
data with maximal margin.
5.4.2 The Structure of Canonical Hyperplanes
Now let separating hyperplanes is defined on the set of vectors
X*=z,...,Zy,
bounded by a sphere of the radius R
|z; — a| < R, .a...m D &

(a is the center of the sphere). Consider a set of hyperplanes in canonical
Jform (with respect to these vectors) defined by the pairs (w,b) satisfying
the condition

i x)+ b =1
in |(w-z:) +b|

Note that the set of canonical separating hyperplanes coincides with the
set of all separating hyperplanes. It only specifies the normalization of the
parameters of hyperplanes.

The idea of constructing a machine that fixes the empirical risk and
minimizes the confidence interval is based on the existence of the following
bound on the VC dimension of canonical hyperplanes.

Theorem 5.1. A subset of canonical hyperplanes
f(z,w,b) = sign{(w - z) + b},
defined on X* and satisfying the constraint
llwll < A
has the VC dimension h bounded by the inequality
h < min ([R*A%,n) + 1.
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In Section 3.5 we stated that the VC dimension of the set of hyperplanes
is equal to n + 1, where n is dimensionality of the space. However, the
VC dimension of the subset of the set of hyperplanes, with canonical form
satisfying (w|? < A2, can be less.?

Below we consider hyperplanes only in canonical form, constructed on
the basis of the training vectors X* = z,,...,z,.% For simplicity we call
them hyperplanes.

Let us construct the structure on the set of hyperplanes by increasing the
norm of the weights w. Then in order to obtain the smallest probability
of error on the test set, we choose the hyperplane from the element of
the structure which separates the training data and whose element of the
structure gives the smallest bound on the VC dimension, that is, with the
smallest norm of weights.

5.5 CONSTRUCTING THE OPTIMAL HYPERPLANE

To construct the Optimal hyperplane one has to separate the vectors z; of
the training set

AQTHC. ey C\?an
belonging to two different classes y € {—1,1} using the hyperplane with
the smallest norm of coefficients.

To find this hyperplane one has to solve the following quadratic program-
ming problem: minimize the functional

B(i) = W.E -w) (5.10)
under the constraints of inequality type
yil(zi-w)+8>1, i=12,...,¢ (5.11)

The solution to this optimization problem is given by the saddle point of
the Lagrange functional (Lagrangian):

1

n .
N\A,E. &. Qv = MA‘E ' gv - MQ-.:AS : .EV + SS - Hw. Au.“—wv
i=1

where the o; are Lagrange multipliers. The Lagrangian has to be minimized
with respect to w, b and maximized with respect to a; > 0.

3In Section 5.7 we describe a separating hyperplane in 10 dimensional space
with relatively small estimate of the VC dimension (=~ 10°).
3In Section 5.11 we will discuss this choice of the set X*.
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In the saddle point, the solutions wo, by, and a® should satisfy the con-

ditions
OL(wy, by, a®)
b
%N\?eo. vc. Dc
ow

Rewriting these equations in explicit form one obtains the following prop-
erties of the Optimal hyperplane:

(i) The coefficients a? for the Optimal hyperplane should satisfy the
constraints

= (),

=0.

4
doalu=0, al>0, i=1,.. ¢ (5.13)

i=1
(first equation).

(ii) The Optimal hyperplane (vector wp) is a linear combination of the
vectors of the training set.

[4
wo=) walz;, >0, i=1,... ¢ (5.14)

i=1
(second equation).

(iii) Moreover, only the so-called support vectors can have nonzero coeffi-
cients a? in the expansion of wq. The support vectors are the vectors
for which, in inequality (5-11), the equality is achieved. Therefore we
obtain

wp = > vialzi, ol >0. (5.15)
support vectors

This fact follows from the classical Kithn-Tucker theorem, accord-
ing to which the hecessary and sufficient conditions for the Optimal
hyperplane are that the separating hyperplane satisfy the conditions:

o {{(zi - wo) + boly; — 1} = 0, i=1,...,¢ (5.16)

Putting the expression for wo into the Lagrangian and taking into account
the Kiihn—Tucker conditions, one obtains the functional

¢ ¢
1
W(a) = M -5 M iy (i - z;). (5.17)
ﬂ-b.

i=1
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It remains to maximize this functional in the non-negative quadrant
@ 20, i=1,...7¢ (5.18)

_E%,_. the constraint .
D =o. (5.19)

=1

According to Eq. (5.15) the Lagrange multipliers and support vectors deter-
mine the Optimal hyperplane. Thus, to construct the Optimal hyperplane
one has to solve a simple quadratic programming problem: maximize the
quadratic form (5.17) under constraints$ (5.18) and (5.19).

Let ap = (al,..., a?) be a solution to this quadratic optimization prob-
lem. Then the norm of the vector Wo corresponding to the Optimal hyper-
plane equals:

lwol® = 2W (ap) = M afal(z; T )il
support vectors

The separating rule, based on the Optimal hyperplane, is the following
indicator function

f(z) = sign A M viad(z; - z) — ?v , (5.20)

support vectors

where z; are the support vectors, af are the corresponding Lagrange coef-
ficients, and by is the constant (threshold)

bo = 5 [0 2" (1)) + (un - 2*(-1)],

where we denote by z*(1) some (any) support vector belonging to the first
class and we denote by z*(~1) a support vector belonging to the second
class (Vapnik and Chervonenkis, 1974), (Vapnik, 1979).

5.5.1 Generalization Jor the Nonseparable Case

To construct the Optimal type hyperplane in the case when the data are
linearly nonseparable, we introduce hon-negative variables ¢; > 0 and a

4This quadratic programming problem is simple because it has simple con-
straints. For the solution of this problem, one can use special methods which are
fast and applicable for the case with a large number of support vectors (~ 10*
support vectors) (More and Toraldo, 1991). Note that in the training data the
support vectors constitute only a small part of the training vectors (in our ex-
periments 3% to 5%).
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function .
F(6)=) ¢
f=1
with parameter o > 0.
Let us minimize the functional F,(£) subject to constraints

w((w-z)+0)>1-§&, i=12,...,¢ (5.21)

and one more constraint
(w-w) < cn. (5.22)

For sufficiently small o > 0 the solution to this optimization problem
defines a hyperplane that minimizes number of training errors under con-
dition that the parameters of this hyperplane belong to the subset (5.22)
(to the element of the structure

Sn={(w-z)+b: (w-w)<cy}

determined by constant c,).

For computational reasons, however, we consider the case o = 1. This
case corresponds to the smallest o > 0 that is still computationally simple.
We call this hyperplane the Generalized Optimal hyperplane.

1. One can show (using the technique described above) that the Gener-
alized Optimal hyperplane is determined by the vector

where parameters a;, i = 1,...,£ and C* are the solutions to the following
convex optimization problem:
Maximize the functional

u 4
. 1
W(a,C*) = Mun.. ~ 30~ MU oia;yiy; (2 - 7;) -

i=1 ij=1

cC*
2

subject to constraints
]
M via; =0
i=1

QMQ«MH; s."H.....N
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2. To simplify computations one can introduce the following (slightly
modified) concept of the Generalized Optimal hyperplane (Cortes and Vap-
nik, 1995). The Generalized Optimal hyperplane is determined by the vec-
tor w that minimizes the functional

]
1
B(w,§) = 3w w) +C Ammv
(here C is a given value) subject to constraint (5.21).
The technique of solution of this quadratic optimization problem is al-
most equivalent to the technique used in the separable case: to find the
coefficients of the generalized Optimal hyperplane

{4
w= MU XiYiTiy
$=1

one has to find the parameters o, i = 1,...,£ one that maximize the same
quadratic form as in the separable case

4 [}
1
S\ADV = M Qg ~ M M Q..Qu.Q..Qh.AH-. . P.n.v
fz=1 6,J=1

under slightly different constraints

OMQ-.MQ. u."_.....,h.

¢
Y ey =o0.
=1
As in the separable case, only some of the coefficients ay, i = 1,..., £ differ
from zero. They determine the support vectors.
Note that if the coefficient C in the functional ®(w,¢) is equal to the
optimal value of parameter C* for minimization of the functional F;(£)

c=c",

then the solution to both optimization problems (defined by the functional
F;(¢) and by the functional &(w, £)) coincide.

9.6 SUPPORT VECTOR (SV) MACHINES

The Support Vector (SV) machine implements the following idea: it maps
the input vectors z into a high-dimensional feature space Z through some
nonlinear mapping, chosen a priori. In this space, an Optimal separating
hyperplane is constructed (Fig. 5.3).
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Optimal hyperplane in the feature space

Feature space

# R 8L E B RSEESS

Input space

FIGURE 5.3. The SV machine maps the input space into a high-dimensional
feature space and then constructs an Optimal hyperplane in the feature space.

Example. To construct a decision surface corresponding to a polynomial
of degree two, one can create a feature space Z which has N = m.b.ul...ﬁ
coordinates of the form

l=gl,..., 2"=2", n coordinates ,
2"=(z")?,...,2=(2")®,  n coordinates ,
Nn:...u"a\.uﬁun....nzuﬁ.:&:ln , 3_3».;: li tes ,

where z = (z!,...,2"). The separating hyperplane constructed in this
space is a second degree polynomial in the input space.

Two problems arise in the above approach: one conceptual and one tech-
nical.
(i) How to find a separating hyperplane that will generalize well?
(The conceptual problem.)

The dimensionality of the feature space will be huge, and a hyperplane
that separates the training data will not necessarily generalize well.5

(ii) How to treat computationally such high-dimensional spaces?
(The technical problem.)

To construct a polynomial of degree 4 or 5 in a 200 dimensional
space it is necessary to construct hyperplanes in a billion dimensional
feature space. How can this “curse of dimensionality” be overcome?

®Recall Fisher’s concern about the small amount of data for constructing a
quadratic discriminant function in classical discriminant analysis (Section 1.9).
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5.6.1 Generalization in High-Dimensional Space

The conceptual part of this problem can be solved by constructing the
Optimal hyperplane. *

According to Theorem 5.1, if it happens that in the high-dimensional
input space one can construct a separating hyperplane with a small value
of [R? A?], the VC dimension of the corresponding element of the structure
will be small, and therefore the generalization ability of the constructed
hyperplane will be high.

Furthermore, the following theorem holds.

Theorem 5.2. If the training vectors are separated by the Optimal hy-
perplane (or generalized Optimal hyperplane), then the expectation value of
the probability of committing an error on a test example is bounded by the
ratio of the expectation of the number of support vectors to the number of
ezamples in the training set:

E[number of support vectors)
(number of training vectors) — 1 °

E[P(error)] < (5.23)

This bound depends neither on the dimensionality of the space, nor on
the norm of the vector of coefficients, nor on the bound of the norm of
the input vectors. Therefore, if the Optimal hyperplane can be constructed
from a small number of support vectors relative to the training set size,

‘the generalization ability will be high — even in an infinite-dimensional
6

space.

5.6.2 Convolution of the Inner Product

However, even if the Optimal hyperplane generalizes well and can theoret-
ically be found, the technical problem of how to treat the high-dimensional
feature space remains.

In 1992 it was observed (Boser, Guyon, and Vapnik, 1992) that for con-
structing the Optimal separating hyperplane in the feature space Z, one

%One can compare the result of this theorem to result of analysis of the fol-
lowing compression scheme. To construct the Optimal separating hyperplane one
only needs to specify among the training data the support vectors and its classifi-
cation. This requires: = [lg, m] bits to specify the number m of support vectors,
{1g; C7*] bits to specify the support vectors; and [lg; Cm!] bits to specify rep-
resentatives of the first class among the support vectors. Therefore for m << £
and m; =~ m/2 the compression coefficient is

K~ m(lg; ¢/m+1)
—

The expectation of this coefficient should be compared to the value Em/(£ — 1)
(the right hand side of inequality (5.23)).
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" does not need to consider the feature space in explicit form. One only has
to be able to calculate the inner products between support vectors and the
vectors of the feature space (Eqs. (5.17) and (5.20)).

Consider a general expression for the inner product in Hilbert space”

AN.. : Nv = NAH- H-.v.

where z is the image in feature space of the vector z in input space.

According to Hilbert-Schmidt theory, K(z, z;) can be any symmetric
function satisfying the following general conditions (Courant and Hilbert,
1953):

Theorem 5.3. (Mercer) To guarantee that the symmetric function K (u,v)
from La has an ezpansion

K(u,v) = ) axth(u)yu(v) (5.24)
k=1

with positive coefficients ax > 0 (i.e., K(u,v) describes a inner product in
some feature space), it is necessary and sufficient that the condition

\ \, K(u,v)g(u)g(v)dudv > 0

be valid for all g # 0 for which

\.bn?vkﬂ < 0.

5.6.8 Constructing SV Machines

The convolution of the inner product allows the construction of decision
functions that are nonlinear in the input space

ET%A > ssia...sév. (5.25)

support vectors

and that are equivalent to linear decision functions in the high-dimensional
feature space ¥1(z), .., ¥n(z) (K(z;,z) is a convolution of the inner prod-
uct for this feature space).

"This idea was used in 1964 by Aizerman, Braverman, and Rozonoer in their
analysis of the convergence properties of the method of Potential functions (Aiz-
erman, Braverman, and Rozonoer, 1964, 1970). It happened at the same time
(1965) when the method of the Optimal hyperplane was developed (Vapnik and
Chervonenkis 1965). However, combining these two ideas, which lead to the SV
machines, was only done in 1992.
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To find the coefficients a; in the separable case (analogously in the non-
separable case) it is sufficient to find the maximum of the functional

.

4 ¢
W) =Y o~ 2 3 aosusK (i, zy) (5.26)

i=1 £,J

subject to the constraints

[4
MQ-.Q.. =0,

i=1

%20, i=12,...,¢ (5.27)

This functional coincides with the functional for finding the Optimal
hyperplane, except for the form of the inner products: instead of inner
products (z; - z;) in Eq. (5.17), we now use the convolution of the inner
products K(z;,z;).

The learning machines which construct decision functions of the type
(5.25) are called Support Vector (SV) Machines. (With this name we stress
the idea of expanding the solution on support vectors. In SV machines the
complexity of the construction depends on the number of support vectors
rather than on the dimensionality of the feature space.) The scheme of SV
machines is shown in Fig. 5.4.

5.6.4 Ezamples of SV Machines

Using different functions for convolution of the inner products K (z,z;), one
can construct learning machines with different types of nonlinear decision
surfaces in input space. Below, we consider three types of learning machines:

(i) Polynomial Learning Machines,
(ii) Radial Basis Functions Machines, and
(ili) Two Layer Neural Networks.

For simplicity we consider here the regime where the training vectors are
separated without error.

Note that the support vector machines implement the SRM principle.
Indeed, let
¥(z) = (¥1(2),...,¥n(x))

be a feature space and w = (wy, ..., wy) be a vector of weights determining
a hyperplane in this space. Consider a structure on the set of hyperplanes
with elements Sy containing the functions satisfying the conditions

R*|w|?® <k,
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Decision rule

N
V.HmmmaA.M-Sfm.Axfpvlcv

Weights Y10y, vy INON

Nonlinear transformation
based on support vectors

Xy oy e s Xy

x! x2 x? x" Input vector x = ( x}, ..., x")

FIGURE 5.4. The two-layer SV machine is a compact realization of an Optimal
hyperplane in the high-dimensional feature space Z.

where R is the radius of the smallest sphere that contains the vectors ¥(z),
jw| is the norm of the weights (we use canonical hyperplanes in feature
space with respect to the vectors z = ¥(xz;) where z; are the elements of
the training data).

According to Theorem 5.1 (now applied in the feature space), k gives an
estimate of the VC dimension of the set of functions Sk.

The SV machine separates without error the training data

vi[(O(z:) - w)+ 8] > 1, y={+1, -1}, i=12,...,¢
and has a minimal norm |wj.
In other words, the SV machine separates the training data using func-

tions from element S; with the smallest estimate of the VC dimension.
Recall that in the feature space the equality

[
_.Eo_w = MU QwaNﬂA&? z; VSQ.Q. Amnmv
£

holds true. To control the generalization ability of the machine (to min-
imize the probability of test errors) one has to construct the separating
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hyperplane that minimizes the functional

m~u_.E o_n ;
7

Indeed, for separating hyperplanes the probability of test errors with prob-

ability 1 — n is bounded by the expression

A(ln% +1) - Iny/4
; .

The right-hand side of £ attains its minimum when h/¢ is minimal. We es-
timate the minimum of h/{ by estimating h by h.,; = R?|wo|?. To estimate
this functional it is sufficient to estimate |wo|? (say by expression (5.28))
and estimate R? by finding .

B(R, wo, £) = (5.29)

E=4

. R? = R*(K) = -ﬁ:@c..lwﬁsrsb + K(a,a) — 2K(z;,a)]. (5.30)

Polynomial Learning Machine .
To construct polynomial decision rules of degree d, one can use the fol-
lowing function for convolution of the inner product:

K(z,z:) = [(z - z:) + 1)%. (5.31)

This symmetric function satisfies the conditions of Theorem 5.3, therefore
it describes a convolution of the inner product in the feature space that con-
tains all products z; - z; - Zx up to degree d. Using the described technique,
one constructs a decision function of the form

f(z,a) =sign MU vis[(zi-z) + 1) -0 ],
support vectors

which is a factorization of d-dimension polynomials in n-dimensional input
space.

In spite of the very high dimensionality of the feature space (polynomials
of degree d in n-dimensional input space have O(n?) free parameters) the
estimate of the VC dimension of the subset of polynomials that solve real
life problems can be low.

As described above to estimate the VC dimension of the element of the
structure from which the decision function is chosen, one has only to esti-
mate the radius R of the smallest sphere that contains the training data,
and the norm of weights in feature space (Theorem 5.1).

Note that both the radius R = R(d) and the norm of weights in the
feature space depends on the degree of the polynomial.

This gives the opportunity to choose the best degree of polynomial for
the given data.
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To make a local polynomial approximation in the neighborhood of a point
of interest xg, let us consider the hard threshold neighborhood function
(4.16). According to the theory of local algorithms, one chooses a ball with
radius Rg around point zg in which £g elements of the training set fall,
and then using only these training data, constructs the decision function
that minimizes the probability of errors in the chosen neighborhood. The
solution to this problem is a radius Rg that minimizes the functional

R} |wol?

®(Ra, wo, bg) = 7

(5.32)

(the parameter |wo| depends on the chosen radius as well). This functional
describes a trade-off between the chosen radius Rg, the value of the mini-
mum of the norm |wp|, and the number of training vectors {5 that fall into
radius Rg.

Radial Basis Function Machines
Classical Radial Basis Function (RBF) Machines use the following set of
decision rules:

N
f(z) = sign AMU a:Ky(|lz — i) - ev ) (5.33)

i=1

where K., (|z — z;|) depends on the distance |z — z;| between two vectors.
For the theory of RBF machines see (Micchelli, 1986), (Powell, 1992).
The function K, (|x — z;|) is for any fixed v, a non-negative monotonic
function; it tends to zero as z goes to infinity. The most popular function
of this type is
Ko (Jz - i) = exp{~vlz - zi[%}. (5.34)

To construct the decision rule (5.33) one has to estimate
(i) The value of the parameter v,
(if) the number N of the centers z;,
(iii) the vectors z;, describing the centers,
(iv) the value of the parameters a;.

In the classical RBF method the first three steps (determining the param-
eters 4, N, and vectors (centers) z;, ¢ = 1,..., N) are based on heuristics
and only the fourth step (after finding these parameters) is determined by
minimizing the empirical risk functional.

The radial function can be chosen as a function for the convolution of the
inner product for a SV machine. In this case, the SV machine will construct
a function from the set (5.33). One can show (Aizerman, Braverman, and
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Rozonoer, 1964, 1970) that radial functions (5.34) satisfy the condition of
Theorem 5.3.

In contrast to classical RBF methods, in the SV technique all four types
of parameters are chosen to minimize the bound on probability of test error
by controlling the parameters R, wy in the functional (5.29). By minimizing
the functional (5.29) one determines

(i) N, the number of support vectors,

(ii) z, (the pre-images of) support vectors;
(iii) a; = a;y;, the coefficients of expansion, and
(iv) 4, the width parameter of the kernel-function.

Two-Layer Neural Networks )
Finally, one can define two-layer neural networks by choosing kernels:

K(z,z;) = Slv(z - z;) + ],

where S(u) is a sigmoid function. In contrast to kernels for polynomial
machines or for radial basis function machines that alway satisfy Mercer
conditions, the sigmoid kernel tanh(vu+c), |u| < 1, satisfies Mercer condi-
tions only for some values of parameters v, c. For these values of parameters
one can construct SV machines implementing the rules:

N
f(z,a) = sign AMU o S(v(z-zi) +¢c) + ev .

=1
Using the technique described above, the following are found automatically:

(i) The architecture of the two layer machine, determining the number
N of hidden units (the number of support vectors),

_ (it) the vectors of the weights w; = z; in the neurons of the first (hidden)
layer (the support vectors), and

(iii) the vector of weights for the second layer (values of a).

5.7 EXPERIMENTS WITH SV MACHINES

In the following we will present two types of experiments constructing the
decision rules in the pattern recognition problem®:

$The experiments were conducted in the Adaptive System Research Depart-
ment, AT&T Bell Laboratories.
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FIGURE 5.5. Two classes of vectors are represented in the picture by black and
white balls. The decision boundaries were constructed using an inner product of
polynomial type with d = 2. In the pictures the examples cannot be separated
without errors; the errors are indicated by crosses and the support vectors by
double circles.

(i) Experiments in the plane with artificial data that can be visualized,
and

(ii) experiments with real-life data.

5.7.1 Ezample in the Plane

To demonstrate the SV technique we first give an artificial example (Fig.
5.5).

The two classes of vectors are represented in the picture by black and
white balls. The decision boundaries were constructed using a inner prod-
uct of polynomial type with d = 2. In the pictures the examples cannot
be separated without errors; the errors are indicated by crosses and the
support vectors by double circles.

Notice that in both examples the number of support vectors is small
relative to the number of training data and that the number of training
errors is minimal for polynomials of degree two.

5.7.2 Handuwritten Digit Recognition

Since the first experiments of Rosenblatt, the interest in the problem of
learning to recognize handwritten digits has remained strong. In the fol-
lowing we describe results of experiments on learning the recognition of
handwritten digits using different SV machines. We also compare these re-
sults to results obtained by other classifiers. In these experiments, the U.S.
Postal Service database (LeCun et al., 1990) was used. It contains 7,300
training patterns and 2,000 test patterns collected from real-life zip—codes.
The resolution of the database is 16 x 16 pixels, therefore the dimensionality
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Classifier Raw error%
Human performance 2.5 .
Decision tree, C4.5 16.2
Best two-layer neural network 59
Five-layer network (LeNet 1) 5.1

TABLE 5.1. Human performance and performance of the various learning ma-
chines, solving the problem of digit recognition on U.S. Postal Service data.

of the input space is 256. Figure 5.6 gives examples from this data-base.
Table 5.1 describes the performance of various classifiers, solving this
problem.?

For constructing the decision rules three types of SV machines were
used1?:

(i) A polynomial machine with convolution function:

&
K@z = (520), amy 0z

(ii) A radial basis function machine with convolution function:
(z = )"
K(z,z;) = exp Allw.mmlqwl .

(iii) A two layers neural network machine with convolution function:

K(z,z;) = tanh ARMwML - nv .

All machines constructed ten classifiers, each one separating one class from
the rest. The ten class classification was done by choosing the class with
the largest classifier output value.

The results of these experiments are given in Table 5.2. For different
types of SV machines, Table 5.2 shows: the best parameters for the ma-
chines (column 2), the average (over one classifier) of the number of support
vectors, and the performance of machine.

°The result of human performance was reported by J. Bromley and E.
Sickinger; the result of C4.5 was obtained by C. Cortes; the result for the two
layer neural net was obtained by B. Schélkopf; the results for the special purpose
neural network architecture with five layers (LeNet 1), was obtained by Y. LeCun
et al

'9The results were obtained by C. Burges, C. Cortes, and B. Schélkopf.
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FIGURE 5.6. Examples of patterns (with labels) from the U.S. Postal Service .
database.
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Type of Parameters Number of Raw
SV classifier of classifier | support vectors | error ||
Polynomials d=3 274 40 ||
RBEF classifiers 62=03 201 4.1
Neural network || b=2, c=1 254 4.2

TABLE 5.2. Results of digit recognition experiments with various SV machines
using the U.S. Postal Service database. The number of support vectors means
the average per classifier.

I | Poly | RBF [ NN | Common ]
total# of sup.vect. 1677 | 1727 | 1611 | 1377
% of common sup. vect. || 82 80 85 100

TABLE 5.3. Total number (in ten classifiers) of support vectors for various SV
machines and percentage of common support vectors.

Note that for this problem, all types of SV machines demonstrate ap-
proximately the same performance. This performance is better than the
performance of any other type of learning machine solving the digit recog-
nition problem by constructing the entire decision rules on the basis of the
U.S. Postal Service database.!! ,

In these experiments one important singularity was observed: different
types of SV machines use approximately the same set of support vectors.
The percentage of common support vectors for three different classifiers
exceeded 80%.

Table 5.3 describes the total number of different support vectors for ten
classifiers of different machines: Polynomial machine (Poly), Radial Basis
Function machine (RBF), and Neural Network machine (NN). It shows also
the number of common support vectors for all machines.

}!Note that using a local approximation approach described in Section 5.7 (that
does not construct entire decision rule but approximates the decision rule in any
point of interest) one can obtain a better result: 3.3% error rate (L. Bottou and
V Vapnik, 1992).

The best results for this database, 2.7% was obtained by P. Simard, Y. LeCun,
and J. Denker without using any learning methods. They suggested a special
method of elastic matching with 7200 templates using a smart concept of distance
(so-called Tangent distance) that takes into account invariance with respect to
small translations, rotations, distortions, and so on (P. Simard, Y. LeCun, and
J. Denker, 1993).
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( [| Poly | RBF | NN ||
Poly || 100 | 84 | 94
RBF || 87 100 | 88

NN 91 82 | 100

TABLE 5.4. Percentage of common (total) support vectors for two SV machines.

Table 5.4 describes the percentage of support vectors of the classifier
given in the columns contained in the support vectors of the classifier given
in the rows.

This fact, if it holds true for a wide class of real-life problems, is very
important.

5.7.8 Some Important Details

In this subsection we give some important details on solving the digit recog-
nition problem using a polynomial SV machine.

The training data are not linearly separable. The total number of mis-
classifications on the training set for linear rules is equal to 340 (= 5%
errors). For second degree polynomial classifiers the total number of mis-
classifications on the training set is down to four. These four mis-classified
examples (with desired labels) are shown in Fig. 5.7.Starting with polyno-
mials of degree three, the training data are separable.

Table 5.5 describes the results of experiments using decision polynomials
(ten polynomials, one per classifier in one experiment) of various degrees.
The number of support vectors shown in the table is a mean value per
classifier.

4 4 8 5

FIGURE 5.7. Labeled examples of training errors for the second degree polyno-
mials.
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degree of || dimensionality of | support | raw
polynomial feature space vectors | error || -

1 256 282 8.9

2 ~ 33000 227 4.7

3 ~1x108 274 4.0

4 ~1x10° 321 4.2

5 ~ 1 x 1012 374 43

6 ~1x 1014 377 4.5

7 ~ 1 x 108 422 45

TABLE m.mg&. experiments with polynomials of the different degrees.

/\\? \\\‘

Note that the number of support vectors increases slowly with the degree
of the polynomials. The seventh degree polynomial has only 50% more
support vectors than the third degree polynomial.!?

The dimensionality of the feature space for a seventh degree polynomial
is however 10'° times larger than the dimensionality of the feature space
for a third degree polynomial classifier. Note that the performance does
not change significantly with increasing dimensionality of the space — in-
dicating no overfitting problems.

To choose the degree of the best polynomials for one specific classifier we
estimate the VC dimension (using the estimate [R2A2]) for all constructed
polynomials (from degree two up to degree seven) and choose the one with
the smallest estimate of the VC dimension. In this way we found the ten
best classifiers (with different degrees of polynomials) for the ten two-class
problems. These estimates are shown on Fig. 5.8 where for all ten two-class
decision rules, the estimated VC dimension, is plotted versus the degree of
the polynomials.The question is:

Do the polynomials with the smallest estimate of the VC dimension pro-
vide the best classifier?

To answer this question we constructed Table 5.6 which describes the
performance of the classifiers for each degree of polynomial.

Each row describes one two—class classifier separating one digit (stated
in the first column) from the all ather digits.

The remaining columns contain:

deg.: the degree of the polynomial as chosen (from two up to seven)
by the described procedure,

3The relatively high number of support vectors for the linear separator is
due to nonseparability: the number 282 includes both support vectors and miss-
classified data.
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FIGURE 5.8. The estimate of the VC dimension of the best element of the struc-
ture (defined on the set of canonical hyperplanes in the corresponding feature
space) versus the degree of polynomial for various two-class digit recognition
problems (denoted digit versus the rest).
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Chosen classifier || Number of test errors
Digit [[deg. | dim. [heoe | 1 [ 2] 3 | 4 | 5 [ 6.] 7
0 8 [~10° [ 530 36[1a][n2]] 11 ] 11 [12] 17
1 7 |~10%) 100 117 15[ 14 | 11 | 10 |10 [T10]
2 3 | ~10° | 842 (153 |32[[28]] 26 | 28 | 27| 32
3 3 | ~10° J157 |57 (25 [[22]] 22 | 22 [ 22 23
4 4 | ~10° | 962150 |32] 32 [[30]] 30 [29] 33
5 3 | ~10% | 1090 [ 37 |20 [[22]| 24 | 24 [ 26| 28
6 4 | ~10° | 626 f 23|12 12 [[15]] 17 [17] 19
7 5 [~10"] 53025 ]|15] 12 | 10 [[11]] 13} 14
8 4 | ~10° | 1445 |71 [33] 28 |[24]| 2832 34
| 9 | 5 |~107]1226[51]18] 15 | s [[m][12] 15

TABLE 5.6. Experiments on choosing the best degree of polynomial.

dim.: the dimensionality of the corresponding feature space, which is
also the maximum possible VC dimension for linear classifiers in that

space,

hest.: the VC dimension estimate for the chosen polynomial, (which
is much smaller than the number of free parameters),

Number of test errors: the number of test errors, using the constructed
polynomial of corresponding degree; the boxes show the number of
errors for the chosen polynomial.

Thus, Table 5.5 shows that for the SV polynomial machine there are no
overfitting problems with increasing degree of polynomials, while Table 5.6
shows that even in situations where the difference between the best and
the worst solutions is small (for polynomials starting from degree two up
to degree seven), the theory gives a method for approximating the best

solutions (finding the best degree of the polynomial).

Note also that Table 5.6 demonstrates that the problem is essentially
nonlinear. The difference in the number of errors between the best polyno-
mial classifier and the linear classifier can be as much as a factor of four
(for digit 9).

5.8 REMARKS ON SV MACHINES

The quality of any learning machine is characterized by three main com-
ponents:



