CHAPTER

INSTANCE-BASED
LEARNING

In contrast to learning methods that construct a ecneral. explicit description of
the target function when training examples are provided. instance-hased uning

methods simply store the training examples. Generalizing bevond these examples
is postponed until a new instance must be classificd. Each time

0 new query
instance is encountered. its relationship to the previously stered ex

1ples 18 ex-
amined in order to assign a target function value for the new instance. Instance
based learning includes nearest neighbor and locally weighted regression meth-

ods that assume instances can be represented as points in o Fuclidean space. It
also inctudes case-based reasoning methods that use more complex, symbolic rep-

resentations for instances. Instance-based methods are someimes referred 1o 8
“lazy™ learning methods because they delay processing unGl o new instance must
be classified. A key advantage of this kind of deiaved. or lazy, learning I8
that instead of estimating the target function once for the entire instance spice,
these methods can estimate it locally and differently for cach new inst: to be
classified.

8.1 INTRODUCTION

Instance-based learning methods such as nearest neighbor and Tocally weighted re
gression are conceptually straightforward approaches to approximating real-valued
or discrete-valued target functions. Learning in these algorithms consists of simply
storing the presented training data. When a new query instance is encountered, 8
set of similar related mstances is retrieved from memory and used to classify the

230

CHAPTER 8 INSTANCE-BASED LEARNING 231

uery instance. One key difference between these approaches and the meth-
“cw(g-scui“sed in other chapters is that instance-based approaches can construct
:d;ifferem approximation to the target function for each distinct query instance
that must be classified. In fact, many techniques construct only a local approxi-
mation to the target function that appli.es il? the‘ rlﬁ':ighborhood ‘of the new query
instance. and never const.ruct an approximation designed to perform well over th@
entire instance space. Th1§ has mgmﬁcant advantages vyhen the target function is
very complex. but can still be described by a collection of less complex local

approximalions. .

Instance-based methods can also use more complex, symbolic representa-
tions for instances. In case-based learning, instances are represented in this fashion
and the process for identifying “neighboring” instances is elaborated accordingly.
Case-based reasoning has been applied to tasks such as storing and reusing past
experience at a help desk, reasoning about legal cases by referring to previous
cases, and solving complex scheduling problems by reusing relevant portions of
previously solved problems.

One disadvantage of instance-based approaches is that the cost of classifying
new instances can be high. This is due to the fact that nearly all computation
takes place at classification time rather than when the training examples are first
encountered. Therefore, techniques for efficiently indexing training examples are
a significant practical issue in reducing the computation required at query time.
A second disadvantage to many instance-based approaches. especially nearest-
, neighbor approaches. is that they typically consider all attributes of the instances
- when attempting 1o retrieve similar training examples from memory. If the target
' concept depends on only a few of the many available attributes, then the instances
that are truly most “similar” may well be a large d:stance apart.

In the next section we introduce the A-NEAREST NEIGHBOR learning algo-
rithm, including several variants of this widely-used approach. The subsequent
section discusses locally weighted regression, a learning method that constructs
* local approximations to the target function and that can be viewed as a general-
ization of k-NEAREST NEIGHBOR algorithms. We then describe radial basis function
networks. which provide an interesting bridge between instance-based and neural
network learning algorithms. The next section discusses case-based reasoning, an
instance-based approach that employs symbolic representations and knowledge-
based inference. This section includes an example Aapplication of case-based rea-
soning to a problem in engineering design. Finally, we discuss the fundamen-
tal differences in capabilities that distinguish lazy learning methods discussed in
this chapter from eager learning methods discussed in the other chapters of this

book.

82 k-NEAREST NEIGHBOR LEARNING

The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm. This

algorithm agsumes all instances correspond to points in the n-dimensional $pace
n . - . ~ - ~

H". The nearest neighbors of an instance are defined in terms of the standard

Euclidean distance. More precisely, let an arbitrary instance v be described by the
feature vector

(@ (x). arx(x). . oa,(x)

where g, (x) denotes the value of the rth attribute of instance v. Then the distance

between two instances x; and x; is defined to be d(x,. x;). where

|

d{x; . x;)) = | Z(u/.(,\u) — ()7

\jr:]

In nearest-neighbor learning the target function may be either discre
or real-valued. Let us first consider learning discrete-valued target fi
form f:)" — V. where V is the finite set {vi... .0t The A-NEAREST NEIGHROR
algorithm for approximating a discrete-valued target tunctior. is given in Table §
As shown there. the value _/A'(.\'(/) returned by this algorithm as its estimate of £ (x
1s just the most common value of f among the A training examples neare
xg. If we choose & = 1. then the 1-NEaresT NeiGhrow algorithm assigns (o /(.
the value f(x;) where x; is the training instance nearest (o x,. For [

of k. the algorithm assigns the most common value among the & nearest trainine

examples.

Figure 8.1 illustrates the operation of the A-NraresT NEIGHBOR 4l¢
the case where the instances are points in a two-dimensiona! space and wl
target function is boolean valued. The positive and negative training examy
shown by "+ and “—" respectively. A query point ¥, is shown as well. |
I-NEAREST NEIGHBOR algorithm classifies v, as a positive example 10 this figure
whereas the 5-Nrarest NEIGHBOR algorithm classifies it as a negative e campls

What is the nature of the hypothesis space /7 implicitly considered by the

k-NEAREST NEIGHBOR algorithm? Note the &-Neartst NeiGHsor algorithy
forms an explicit general hypothesis f regarding the target function [t sir

computes the classification of each new query instance as needed. Nevertheless.

Training algorithm:
e For each training exampic (x. f(0)). add the example to the list trainin

Classtfication algorithn:
e Given a query instance 1, o be classified.
o et vy .oy denote the 4 instances from rafnesexamples that
e Return

. -
JEy« argman E U ARYRD

[

where Sta by = 1 il « = b and where Ste. bi - U otherwise.

TABLE 8.1
The &-Neares1 NEIGHBOR algorithm for approximating o discrete-alued function }

FIGURE 8.1

k-NEAREST NEIGHBOR. A set of positive and negative training cxamples is shown on the left, along
with a query instance x, 10 be classified. The 1-NEAREST NEIGHBOR algorithm classifies x,, positive,
whereas 5-NEAREST NEIGHBOR classifies it as negative. On the right is the decision surface induced
by the I-NEAREST NEIGHBOR algorithm for a typcal set of training examples. The convex polygon
surrounding each training example indicates the region of instance space closest to that point (i.e.,
the instances for which the 1-NearEsT NuIGHBOR algorithm will assign the classification belonging
to that training example).

we can still ask what the implicit general function is, or what classifications
would be assigned if we were to hold the training examples constant and query
the algorithm with every possible instance in X. The diagram on the right side
of Figure 8.1 shows the shape of this decision surface induced by I-NEAREST

NEIGHBOR over the entire instance space. The decision surface is a combination of

convex polyhedra surrounding each of the training examples. For every training
example, the polyhedron indicates the set of query points whose classification
will be completely determined by that training example. Query points outside the
polyhedron are closer to some other training example. This kind of diagram is
often called the Voronoi diagram of the set of training examples.

The k-Nearest NEiGHBOR algorithm is easily adapted to approximating
continuous-valued target functions. To accomplish this, we have the algorithm
calculate the mean value of the k nearest training examples rather than calculate
their most common value. More precisely. to approximate a real-valued target
function f :)" — M we replace the final line of the above algorithm by the line

' Y F)

fx,) < £~_:‘A__ (8.1)

8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm

One obvious refinement to the k-NEaREST NEIGHBOR algorithm is to weight the con-
tribution of each of the k neighbors acco-ding to their distance to the query point
X4, giving greater weight to closer neighbors. For example. in the algorithm of
Table 8.1. which approximates discrete-valued target functions. we might weight
the vote of each neighbor according to the inverse square of its distance from x,,.

This can be accomplished by replacing the final line ot the algorithm by
i
F(x,) «— argmax Z widte. [(8.2)

p=d i

where

]

U=
dx,. x;)"

To accommodate the case where the query point v, exactly matches one of the
training instances x; and the denominator d{x,. .y, > is therefore zero. we assion
f(,\‘(,) to be f(x;) in this case. If there are several such training examples, we
assign the majority classification among them.

We can distance-weight the instances for real-valued target functions in o
similar fashion, replacing the final line of the algorithn in this case by

where w; is as defined in Equation (8.3). Note the deneminator in Equation (8.4 15
& constant that normalizes the contributions of the various weights (e.g.. it assures
that if f(x;1 = ¢ for all training examples, then [(x, — ¢ as well).

Note all of the above variants of the A-NEarest NetGrusor algorithm consider
only the & nearest neighbors to classify the query pomt. Once we add dista
weighting. there is really no harm in allowing all training exemples to have an
influence on the classification of the x . because very distant cxamples will have

very little effect on f'(.\‘q), The only disadvantage of considering all examples 15
that our classifier will run more stowly. If all training examples are consider
when classifying a new query instance, we call the algorithm a global method
If only the nearest training examples are considered. we call 1t a local method
When the rule in Equation (8.4) is applied as a global method. using all tramning
examples, it is known as Shepard’s method (Shepard 1968).

8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm

The distance-weighted A-NEAREST NEIGHBOR algorithm is o highly effective indu
tive inference method for many practical problems. 1t is robust to noisy training
data and quite eftective when 1t is provided a sufficiently large set of training
data. Note that by taking the weighted average of the 4 neighbors nearest to the
query point, it can smooth out the impact of 1solated noisy training examples

What is the inductive bias of k-NEAREST NEIGHBOR? The basis for classifyving
new query points 1s casily understood based on the diagrams in Figure &.1. The
inductive bias corresponds to an assumption that the classification of an instance
.ty will be most similar 1o the classification of other mstances that are nearby
IZuclidean distance.

One practical issue in applying A-NEarest NEtGHsor aleorithms is that the
distance between instances is calculated based on «/f attributes of the instance

(l.e., on all axes in the Euclidean space containing the instances). This Hes in
contrast to methods such as rule and decision tree learning systems that select
only a subset of the instance attributes when forming the hypothesis. To see the
effect of this policy. consider applying k-NiaREST NEIGHBOR to a problem in which
each instance is described by 20 attributes, but where only 2 of these attributes
are relevant to determining the classification for the particular target function. In
this case. instances that have identical values for the 2 relevant attributes may
nevertheless be distant from one another in the 20-dimensional instance space.
As a result. the similarity metric used by k-Nearest NEIGHBOR—depending on
all 20 atributes—will be misleading. The distance between neighbors will be
dominated by the large number of irrelevant attributes. This difficulty. which
arises when many irrelevant attributes are oresent. is sometimes referred to as the
curse of dimensionality. Nearest-neighbor approaches are especially sensitive to
this problem.

One interesting approach to overcoming this problem is to weight each
attribute differently when calculating the distance between two instances. This
corresponds to stretching the axes in the Euclidean space, shortening the axes that
correspond to less relevant attributes, and lengthening the axes that correspond
to more relevant attributes. The amount by which each axis should be stretched
can be determined automatically using a cross-validation approach. To see how.
first note that we wish to stretch (multiply) the jth axis by some factor 2. where
the values z)...z, are chosen to minimize the true classification error of the
learning algorithm. Second. note that this true error can be estimated using cross-
validation. Hence. one algorithm is to select a random subsct of the available
data to usc as training examples, then determine the values of z; ...Z, that lead
to the minimum error in classifying the remaining examples. By repeating this
process multiple times the estimate for these weighting factors can be made more
accurate. This process of stretching the axes in order to optimize the performance
of A-NEAREST NEIGHBOR provides a mechanism for suppressing the impact of
irrelevant attributes.

An even more drastic alternative is to completely eliminate the least relevant
attributes from the instance space. This is equivalent to setting some of the z;
scaling factors to zero. Moore and Lee (1994) discuss efficient cross-validation
methods for selecting relevant subsets of the attributes for 4-NEaresT NEIGHBOR
algorithms. In particular, they explore mathods based on leave-one-out cross-
validation, in which the set of m training instances is repeatedly divided into a
training set of size m — 1 and test set of size 1, in all possible ways. This leave-one-
out approach is easily implemented in A-NEarEST NEIGHBOR algorithms because
no additional training effort is required each time the training set is redefined.
Note both of the above approaches can be seen as stretching each axis by some
constant factor. Alternatively. we could streich each axis by a value that varies over
the instance space. However. as we increase the number of degrees of freedom
available to the algorithm for redefining its distance metric in such a fashion, we
also increase the risk of overfitting. Therefore. the approach of locally stretching
the axes is much less common.

23D MACHINE LEARNING

One additional practical issue in applying A-NEAREST NEIGHBOR is efficient
memory indexing. Because this algorithm delays all processing until a new query
is received. significant computation can be required to process cach new query
Various methods have been developed for indexing the stored training examples so
that the nearest neighbors can be identified more efficiently at some additional cost
in memory. One such indexing method is the kd-tree (Bentley 1975: Friedman
et al. 1977), in which instances are stored at the leaves of a tree. with nearby
instances stored at the same or nearby nodes. The internal nodes of the tree sort
the new query x, to the relevant leaf by testing selected attributes of x,.

8.2.3 A Note on Terminology

Much of the literature on nearest-neighbor methods and weighted local regression
uses a terminology that has arisen from the field of statistical pattern recognitior
In reading that literature. it is useful to know the following terms:

e Regression means approximating a real-valued target function.

e Residual is the error f(x) — f(x) in approximating the target function.

e Kernel fimction is the function of distance that is used ro determine the
weight of cach training example. In other words. the kernel function is the
function K such that v, = K(d(x;. x,)).

8.3 LOCALLY WEIGHTED REGRESSION

The nearest-neighbor approaches described in the previous section can be thought
of as approximating the target function f(v) at the single query point x = x,
Locally weighted regression is a generalization of this approach. It constructs an
explicit approximation 1o/ over a local region surrounding x,. Locally weighted
regression uses nearby or distance-weighted training examples to form this local
approximation 1o ;. For example, we might approximate the target function 1n
the neighborhood surrounding v, using a lincar function. a quadratic function.
a multilayer neural network. or some other functional form. The phrase “locally
weighted regression” is called Jocal because the function is approximated based
only on data near the query point. weighted because the contribution of each
training example is weighted by its distance from the query point, and regression
tecause this is the term used widely in the statistical learning community for the
problem of approximating real-valued functions.

Given a new query instance x,. the general approach in locally weighted
regression is to construct an approximation f' that fits the training examples in the
reighborhood surrounding v,. This approximation is then used to calculate the
value f'(.\'(,). which is output as the estimated target value for the query instance.
The description of { may then be deleted. because a dificrent local approximation
will be calculated Tor each distinct query instance.

