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A primer: Molecular biology 101 
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Cells are 
fundamental 
working units 
of all 
organisms
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Yeast are unicellular organisms

Humans are multi-cellular organisms

Understanding how a cell works is critical to 
understanding how the organism functions
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DNA

Uses alphabet of 4 
letters {ATCG}, 
called bases
Encodes genetic 
information in triplet 
code
Structure: a double 
helix
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Proteins

A sequence of 
amino acids 
(alphabet of 20)
Each amino acid 
encoded by 3 DNA 
bases
Perform most of the 
actual work in the 
cell
Fold into complex 
3D structure

Courtesy of the Zhou Laboratory, The State University of New York 
at Buffalo
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How does a cell function?

Courtesy U.S. Department of Energy Genomes to Life program 

DNA is a sequence of 
bases {A, T, C, G}

TAT-CGT-AGT
Proteins consist of 
amino acids, whose 
sequence is encoded 
in DNA

Tyr-Arg-Ser

Each 3 bases of DNA 
encode 1 amino acid
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DNA-RNA-protein
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Genes vs. proteins

Genes are units of inheritance
They are static blueprints
It’s proteins (dynamic) that do most of the 
work 
The process of making mRNA, and then 
protein from a gene (or genes) is called GENE 
EXPRESSION
It’s the control of gene expression that 
causes most phenotypic differences in 
organisms
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Gene Regulatory Circuit

Genes  =? wires
Motifs =? gates

A B Make DC

If C then D

If B then NOT D

If A and B then D D

Make BD

If D then B

C

gene D

gene B
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The “greatness” of genomics…

Biological systems are complex
Many biological processes & diseases 
result from complex changes on 
molecular level
Need to observe & model cellular 
processes on a systems level

High-throughput technologies have lead to 
an explosion of data in biology in hopes of 

understanding biological systems
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Explosion of 
functional genomic 
DATA

KNOWLEDGE of components 
and inter-relationships that lead to 
function

?

… And its “downfall”
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13 Why have genomic data not been 
utilized fully?

Challenges: 

•Genomic data are noisy

•Genomic data are heterogeneous

•Coverage/accuracy varies  by biological process

14 Computation is a 
tool for functional genomics 

Our approach:
(1) Integrated analysis of diverse data
(2) Probabilistic methods to battle noise in data
(3) Integrating computation and experiments
(4) Accessibility and usefulness to community   

(bringing experts into the analysis loop and    
feedback to experimental biology)

Computational methods (and targeted experiments) can greatly 
aid in extracting knowledge from biological data, 

but several challenges must be addressed:
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Story #1: predicting function of 
unknown proteins

16 Predicting gene function using the 
Gene Ontology hierarchy

A number of previous approaches to 
function prediction from diverse data, most 
use GO biological process terms
However, GO is a hierarchy

• Could improve accuracy by enforcing 
Hierarchical consistency

Biological Process

Regulation Cellular Process

Regulation of
Cellular Process

Unknown

Cell Differentiation
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Hierarchical Consistency

All genes

All genes

All genes

TRAINING

cytokinesis
NO

bud site selection
YES

cell proliferation
YES

EVALUATION
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Our Method

Individual classifiers for each class
Inconsistent predictions allowed
Any classification algorithm can be used
Parallel evaluation

Bayesian combination of predictions
Inconsistencies resolved globally
Any inference algorithm can be used
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mRNA processing

mRNA metabolism RNA processing

RNA metabolism

A Bayesian Framework

y4

y2 y3

y1g1

g3

g4

g2

Given predictions g1...gN ∈ ℜ, find true labels y1...yN ∈ {0,1}
that maximize

P(y1...yN | g1...gN)  =  α P(g1...gN | y1...yN) P(y1...yN)
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Data Types  (for Saccharomyces cerevisiae)

The Gene Ontology
105 “meaningful” nodes 
selected

Pairwise Interaction (GRID)
Affinity Precipitation
Affinity Chromatography
Two-Hybrid
Purified Complex
Biochemical Assay
Synthetic Lethality
Synthetic Rescue
Dosage Lethality

Colocalization
O’Shea
Curated Complexes

(152 features)

Transcription Factor Binding 
Sites

PROSPECT
(39 features)

Microarrays (SMD)
Spellman et al., 1998
Gasch et al., 2000, 2001
Sudarsanam et al., 2000
Yoshimoto et al., 2002
Chu et al., 1998
Shakoury-Elizeh et al., 2003
Ogawa et al., 2000

(342 features)
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Does hierarchical consistency help?

For each class, 10 linear SVMs trained by 
bootstrapping
Median of unthresholded outputs used 
(bagging)
Area under the ROC curve (AUC) for 
evaluation

93 of 105 nodes (86%) are improved by 
Bayesian correction.

Best  ΔAUC = +0.346 (+63% of old AUC)
Worst ΔAUC = -0.031 (-3% of old AUC)
Average ΔAUC = +0.033 (+4% of old AUC)

22 Most processes improve in accuracy 
(AUC Scatter Plot)

23

AUC Changes
24

Held-out Example: YNL261W

Raw SVM outputs

Bayes-marginal 
probabilities

Raw SVM Predictions Bayes Net Probabilities
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Verification: New Data

GO since our April 2004 snapshot
105 new annotations for 88 genes

Predictions over the 88 genes on our data
Independent SVMs

32% precision, 7% recall
Bayesian correction

32% precision, 20% recall
51% precision, 7 % recall

26 Predictions of novel proteins involved 
in mitosis

Lab testing of some predictions for mitosis
YMR144W - “mitotic chromosome segregation”

Large-budded YMR144WΔ cells -> frequent nuclear 
defects

YOR315W - “mitotic spindle assembly”
Cells were fixed and
Large-budded YOR315WΔ cells -> frequent misaligned 
spindles (anti-a-tubulin antibody) and nuclear defects.

YMR299C – “mitotic cell cycle”
Lee et al. (2005) showed YMR299C protein that is part of 
a dynein pathway

Independent SVMs miss these.
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Experimental validation

YMR144WΔ YOR315WΔWild Type
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Summary

Using multiple information sources helps 
prediction accuracy

Multiple diverse data sources
Using gene ontology hierarchy

Probabilistic and machine learning 
approaches can generate experimentally 
testable predictions
Our hierarchical consistency approach 
increases accuracy and generates novel 
predictions
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Story #2: predicting biological 
networks

30

Functional genomic 
DATA

KNOWLEDGE of components 
and inter-relationships that lead to 
function

?

Specific goal: building biological 
networks from experimental data

• Gene expression

• Physical protein-
protein interactions

• Genetic interactions

• Cellular localization

• Sequence 

…

Key ideas: 

Integration:  combine information 
from all available sources in a robust 
way

Understand/use information on 
biological context

Building a practical system that 
directly involves biologists in the 
prediction process and can direct 
further experiments
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http://pixie.princeton.edu

bioPIXIE – a system for discovery & analysis of 
biological networks

(in specific biological context)

•For S. cerevisiae: integrates 
data from ~6500 publications

•Other organisms coming

32

System overview

Data integration via a 
Bayesian network

Network recovery algorithm
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bioPIXIE: 
Pathway Inference 
from eXperimental
Interaction Evidence 

Query 
determines

biological 
context
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Bayesian context-specific 
integration

Functional 
Relationship

Co-expression Physical
interaction

Genetic 
interaction 

profiles
Co-

localization

Functional 
Relationship

Co-expression Physical
interaction

Genetic 
interaction 

profiles
Co-

localization

Functional 
Relationship

Co-expression Physical
interaction

Genetic 
interaction 

profiles
Co-

localization

DNA repair

Cell cycle
…

Query selects 
context

• We infer:  
• 174 observable nodes (datasets grouped by publication and by assay)
• Naïve bayes

(compares favorably against more sophisticated alternatives, e.g. TAN)
• Training set: GO biological process co-annotated proteins
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System overview

Data integration via a 
Bayesian network

Network recovery algorithm
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bioPIXIE: 
Pathway Inference 
from eXperimental
Interaction Evidence 

Query 
determines

biological 
context

Myers et al.  Discovery of biological networks from diverse functional genomic data. Genome Biology (2005). 
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From integrated pairwise data 
to process-specific networks

?

use existing knowledge:

Expert-driven discovery
36

• Rad23 entered with 
Rad4, Rad3, and 
Rad24 

• The resulting 
network is enriched 
(22 of 44) for DNA 
repair proteins 
(GO:0006281)

Experts can drive the search process
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• Query: Rad23 with 
proteasome components 
Pup1, Pre6, Rpn12 

• Recovered network is 
enriched (36 of 44) for 
ubiquitin-dependent 
catabolism proteins and 
only contains 2 DNA 
repair proteins (Rad6 and 
Rad23).  

38

Network recovery algorithm

proteins

qu
er

y

A

B

A: determine a “characteristic” interaction profile for the query set
B: search the remaining set of proteins for the closest matches to the characteristic 
profile

Basic idea: local search in the PPI network centered at the 
query

Which proteins should we extract as a single, functionally 
coherent group?

39

RNA splicing (GO:0008380)

Evaluation: the importance of 
biological context

RNA splicing: same 5 query genes

Global network:
22 FPs/27% precision

Context-specific 
network:
6 FPs/ 80% precision

10-protein 
query; each 
point-
average of 50 
trials

Context-specific integration improves 44/53 evaluated 
bio. process GO terms an average of 25% 
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RNA splicing dataset relevance

(16 of 174 input datasets)
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A consistent improvement
• Context-specific integration improves 44/53 evaluated bio. 

process GO terms an average of 25% 
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Global network (# of recovered proteins)

10-protein 
query; each 
point: average 
of 50 trials
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• How accurately can we recover known network components?

• How much does integration of diverse data help?

Evaluation: measure how often observed data connects 
functionally related proteins (e.g. shared GO annotations)

General network recovery 
evaluation

# of recovered same-process protein pairsPr
ec

is
io

n 
( T

P 
/ [

 T
P 

+ 
FP

 ] 
)

(8 of 174 input datasets)
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Evaluation: what about noise in the 
query set?

A
U

P
R

C

# of random proteins 
out of 20 total query 

proteins
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Biological validation: 
characterizing unknown genes

Uncharacterized genes:
YPL077C, YPL017C, 

YPL144W
Predicted involvement 
in chromosome 
segregation
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Biological validation: 
characterizing unknown genes

Wild type

YPL017CΔ

YPL077CΔ

YPL144WΔ

Differential Interference
Contrast DAPI FACS

Prediction: 
Chromosome

segregation
46

Using bioPIXIE to form testable 
hypotheses

• Hsp90 complex
– Heat shock protein (Hsp): 

• present under normal conditions, but highly expressed under 
stress (e.g. heat shock, oxidative stress, heavy metals, etc.)

• Molecular chaperones that refold, translocate denatured proteins 
to prevent aggregation

– Hsp90 is unique: many of its clients are signaling 
kinases, hormone receptors

– Targeted by recent cancer drugs (Geldanamycin)
– highly conserved protein (bacteria to humans).
– two Hsp90 homologs in yeast: Hsc82 and Hsp82.

We predicted and have initial experimental confirmation 
for a link between Hsp82/Hsc82 and several co-

chaperones with DNA replication complex (Cdc7/Dbf4)

47
(illustration by Helmut Pospiech)

DNA replication initiation: 
Cdc7/Dbf4

Cdc7: “switch” that starts 
replication (activated by Dbf4)
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Hsp90 – DNA replication genetic 
interactions
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30°C
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Cdc7-Cdc37 
interaction

cdc7

dbf4

hsp82

hsc82

sti1

cdc37

cpr7

DNA 
replication

Hsp90 & co-
chaperones

aggravating
integration

W
ild
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Specific to DNA replication (sensitive 
to HU, not MMS)
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A (possible) bigger picture

Ras/cAMP

DNA
Replication

initiation

Hsp82

Hsp90 conclusions:
We confirm several genetic interactions between 

yeast Hsp90 proteins and Cdc7/Dbf4
Hsp90’s plays specific role in DNA replication 

(HU sensitivity)
Possible new link between glucose signaling, 

stress, and DNA replication from expression data

So what?
Analysis of integrated genomic data 

can direct generation of testable, non-
trivial hypotheses
Important to integrate data and to 

take into account biological process


