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Hierarchical clustering

• Hierarchical clustering is a widely used data analysis tool.

• The idea is to build a binary tree of the data that successively
merges similar groups of points

• Visualizing this tree provides a useful summary of the data
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Hierarchical clusering vs. k-means

• Recall that k-means or k-medoids requires

• A number of clusters k
• An initial assignment of data to clusters
• A distance measure between data d(xn, xm)

• Hierarchical clustering only requires a measure of similarity between
groups of data points.
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Agglomerative clustering

• We will talk about agglomerative clustering.

• Algorithm:

1 Place each data point into its own singleton group
2 Repeat: iteratively merge the two closest groups
3 Until: all the data are merged into a single cluster
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Agglomerative clustering

• Each level of the resulting tree is a segmentation of the data

• The algorithm results in a sequence of groupings

• It is up to the user to choose a ”natural” clustering from this
sequence

D. Blei Clustering 02 6 / 21



Agglomerative clustering

• Each level of the resulting tree is a segmentation of the data

• The algorithm results in a sequence of groupings

• It is up to the user to choose a ”natural” clustering from this
sequence

D. Blei Clustering 02 6 / 21



Agglomerative clustering

• Each level of the resulting tree is a segmentation of the data

• The algorithm results in a sequence of groupings

• It is up to the user to choose a ”natural” clustering from this
sequence

D. Blei Clustering 02 6 / 21



Dendrogram

• Agglomerative clustering is monotonic

• The similarity between merged clusters is monotone decreasing
with the level of the merge.

• Dendrogram: Plot each merge at the (negative) similarity between
the two merged groups

• Provides an interpretable visualization of the algorithm and data

• Useful summarization tool, part of why hierarchical clustering is
popular
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Dendrogram of example data
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Groups that merge at high values relative to the merger values of their
subgroups are candidates for natural clusters. (Tibshirani et al., 2001)
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Group similarity

• Given a distance measure between points, the user has many choices
for how to define intergroup similarity.

• Three most popular choices

• Single-linkage: the similarity of the closest pair

dSL(G ,H) = min
i∈G ,j∈H

di ,j

• Complete linkage: the similarity of the furthest pair

dCL(G ,H) = max
i∈G ,j∈H

di ,j

• Group average: the average similarity between groups

dGA =
1

NGNH

∑
i∈G

∑
j∈H

di ,j
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Properties of intergroup similarity

• Single linkage can produce “chaining,” where a sequence of close
observations in different groups cause early merges of those groups

• Complete linkage has the opposite problem. It might not merge
close groups because of outlier members that are far apart.

• Group average represents a natural compromise, but depends on the
scale of the similarities. Applying a monotone transformation to the
similarities can change the results.
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Caveats

• Hierarchical clustering should be treated with caution.

• Different decisions about group similarities can lead to vastly
different dendrograms.

• The algorithm imposes a hierarchical structure on the data, even
data for which such structure is not appropriate.
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Examples

• “Repeated Observation of Breast Tumor Subtypes in Independent
Gene Expression Data Sets” (Sorlie et al., 2003)

• Hierarchical clustering of gene expression data lead to new theories

• Later, theories tested in the lab.
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Examples

• “The Balance of Roger de Piles” (Studdert-Kennedy and Davenport,
1974)

• Roger de Piles rated 57 paintings along different dimensions.

• These authors cluster them using different methods, including
hierarchical clustering

• They discuss the different clusters. (They are art critics.)
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Good: They are cautious. “The value of this analysis...will depend on
any interesting speculation it may provoke.”
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Examples

• “Similarity Grouping of Australian Universities” (Stanley and
Reynlds, 1994)

• Use hierarchical clustering on Austrailian universities

• Use features such as

• # of staff in different departments
• entry scores
• funding
• evaluations
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One dendrogram
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Another dendrogram—notice that it’s different
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• Split values: They notice that there’s no kink and conclude that
there is no cluster structure in Austrailian universities.

• Good: Cautious interpretation of clustering, analysis of clustering
based on multiple subsets of the features.

• Bad: Their conclusions—we can’t cluster Australian
universities—ignores all the algorithmic choices that were made.
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Examples

• “Comovement of International Equity Markets: A Taxonomic
Approach” (Panton et al., 1976)

• Data: weekly rates of return for stocks in twelve countries

• Run agglometerative clustering year by year

• Interpret the structure and examine stability over different time
periods
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Examples

Good: Cautious. “This study is only descriptive...A logical subsequent
research area is to explain observed structural properties and the causes
of structural change.”
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