Clustering and the k-means Algorithm

David M. Blei
COS424
Princeton University

March 11, 2007

Clustering

- Goal: Automatically segment data into groups of similar points

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space
- Examples:

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space
- Examples:
- Customers according to purchase histories

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space
- Examples:
- Customers according to purchase histories
- Genes according to expression profile

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space
- Examples:
- Customers according to purchase histories
- Genes according to expression profile
- Search results according to topic

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space
- Examples:
- Customers according to purchase histories
- Genes according to expression profile
- Search results according to topic
- MySpace users according to interests

Clustering

- Goal: Automatically segment data into groups of similar points
- Question: When and why would we want to do this?
- Useful for:
- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a low-dimensional space
- Examples:
- Customers according to purchase histories
- Genes according to expression profile
- Search results according to topic
- MySpace users according to interests
- A museum catalog according to image similarity

Clustering set-up

- Our data are

$$
\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}
$$

Clustering set-up

- Our data are

$$
\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} .
$$

- Each data point is p-dimensional, i.e.,

$$
\mathbf{x}_{n}=\left\langle x_{n, 1}, \ldots, x_{n, p}\right\rangle
$$

Clustering set-up

- Our data are

$$
\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} .
$$

- Each data point is p-dimensional, i.e.,

$$
\mathbf{x}_{n}=\left\langle x_{n, 1}, \ldots, x_{n, p}\right\rangle
$$

- Define a distance function between data, $d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$.

Clustering set-up

- Our data are

$$
\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} .
$$

- Each data point is p-dimensional, i.e.,

$$
\mathbf{x}_{n}=\left\langle x_{n, 1}, \ldots, x_{n, p}\right\rangle .
$$

- Define a distance function between data, $d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$.
- Goal: segment the data into k groups

$$
\left\{z_{1}, \ldots, z_{N}\right\} \quad \text { where } \quad z_{i} \in\{1, \ldots, K\} .
$$

Example data

500 2-dimensional data points: $\mathbf{x}_{n}=\left\langle x_{n, 1}, x_{n, 2}\right\rangle$

Example data

- What is a good distance function here?

Example data

-What is a good distance function here?

- Squared Euclidean distance is reasonable

$$
d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\sum_{i=1}^{p}\left(x_{n, i}-x_{m, i}\right)^{2}=\left\|x_{n}-x_{m}\right\|^{2}
$$

Example data

- Goal: segment this data into k groups.

Example data

- Goal: segment this data into k groups.
- What should k be?

Example data

- Goal: segment this data into k groups.
- What should k be?
- Automatically choosing k is complicated; for now, 4.

k-means

- Different clustering algorithms use the data and distance measurements in different ways

k-means

- Different clustering algorithms use the data and distance measurements in different ways
- Begin with k-means, the simplest clustering algorithm

k-means

- Different clustering algorithms use the data and distance measurements in different ways
- Begin with k-means, the simplest clustering algorithm

k-means

- The basic idea is to describe each cluster by its mean value.

k-means

- The basic idea is to describe each cluster by its mean value.
- (Note: this works only for distances such that a mean is well-defined.)

k-means

- The basic idea is to describe each cluster by its mean value.
- (Note: this works only for distances such that a mean is well-defined.)
- The goal of k-means is to assign data to clusters and deine these clusters with their means.

k-means algorithm

(1) Initialization

k-means algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$

k-means algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster means $\boldsymbol{m}_{1: k}$ (same dimension as data).

k-means algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster means $\boldsymbol{m}_{1: k}$ (same dimension as data).
(2) Repeat

k-means algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster means $\boldsymbol{m}_{1: k}$ (same dimension as data).
(2) Repeat
(1) Assign each data point to its closest mean

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

k-means algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster means $\boldsymbol{m}_{1: k}$ (same dimension as data).
(2) Repeat
(1) Assign each data point to its closest mean

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

(2) Compute each cluster mean to be the coordinate-wise average over data points assigned to that cluster,

$$
\mathbf{m}_{k}=\frac{1}{N_{k}} \sum_{\left\{n: z_{n}=k\right\}} \mathbf{x}_{n}
$$

k-means algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster means $\boldsymbol{m}_{1: k}$ (same dimension as data).
(2) Repeat
(1) Assign each data point to its closest mean

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

(2) Compute each cluster mean to be the coordinate-wise average over data points assigned to that cluster,

$$
\mathbf{m}_{k}=\frac{1}{N_{k}} \sum_{\left\{n: z_{n}=k\right\}} \mathbf{x}_{n}
$$

(3) Until assignments $\mathbf{z}_{1: N}$ do not change

k-means example

Objective function

- How can we measure how well our algorithm is doing?

Objective function

- How can we measure how well our algorithm is doing?
- The k-means objective function is the sum of the squared distances of each point to each assigned mean

$$
F\left(z_{1: N}, \mathbf{m}_{1: k}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\mathbf{m}_{z_{n}}\right\|^{2}
$$

k-means example (look at the objective)

Coordinate descent

$$
F\left(z_{1: N}, \mathbf{m}_{1: k}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\mathbf{m}_{z_{n}}\right\|^{2}
$$

- Holding the means fixed, assigning each point to its closest mean minimizes F with respect to $z_{1: N}$.

Coordinate descent

$$
F\left(z_{1: N}, \mathbf{m}_{1: k}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\mathbf{m}_{z_{n}}\right\|^{2}
$$

- Holding the means fixed, assigning each point to its closest mean minimizes F with respect to $z_{1: N}$.
- Holding the assignments fixed, computing the centroids of each cluster minimizes F with respect to $\mathbf{m}_{1: k}$.

Coordinate descent

$$
F\left(z_{1: N}, \mathbf{m}_{1: k}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\mathbf{m}_{z_{n}}\right\|^{2}
$$

- Holding the means fixed, assigning each point to its closest mean minimizes F with respect to $z_{1: N}$.
- Holding the assignments fixed, computing the centroids of each cluster minimizes F with respect to $\mathbf{m}_{1: k}$.
- Thus, k-means is a coordinate descent algorithm.

Coordinate descent

$$
F\left(z_{1: N}, \mathbf{m}_{1: k}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\mathbf{m}_{z_{n}}\right\|^{2}
$$

- Holding the means fixed, assigning each point to its closest mean minimizes F with respect to $z_{1: N}$.
- Holding the assignments fixed, computing the centroids of each cluster minimizes F with respect to $\mathbf{m}_{1: k}$.
- Thus, k-means is a coordinate descent algorithm.
- It finds a local minimum. (Multiple restarts are often necessary.)

Objective for the example data

Compressing images

- Each pixel is associated with a red, green, and blue value

Compressing images

- Each pixel is associated with a red, green, and blue value
- A 1024×1024 image is a collection of 1048576 values $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, which requires 3 M of storage

Compressing images

- Each pixel is associated with a red, green, and blue value
- A 1024×1024 image is a collection of 1048576 values $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, which requires 3 M of storage
- How can we use k-means to compress this image?

Vector quantization

\square

- Replace each pixel \mathbf{x}_{n} with its assignment $\mathbf{m}_{z_{n}}$ ("paint by numbers").

Vector quantization

\square

- Replace each pixel \mathbf{x}_{n} with its assignment $\mathbf{m}_{z_{n}}$ ("paint by numbers").
- The k means are called the codebook.

Vector quantization

\square

- Replace each pixel \mathbf{x}_{n} with its assignment $\mathbf{m}_{z_{n}}$ ("paint by numbers").
- The k means are called the codebook.
- With $k=100$, we need 7 bits per pixel plus 100×3 bits $\approx 897 \mathrm{~K}$.

Charlie Brown and Linus VQ

2 means

Charlie Brown and Linus VQ

4 means

Charlie Brown and Linus VQ

8 means

Charlie Brown and Linus VQ

16 means

Charlie Brown and Linus VQ

32 means

Charlie Brown and Linus VQ

64 means

Charlie Brown and Linus VQ

128 means

Charlie Brown and Linus VQ

256 means

Measure of distortion

Charlie Brown and Linus VQ Objective

- The objective gives a measure of how distorted the compressed picture is relative to the original picture

Measure of distortion

Charlie Brown and Linus VQ Objective

- The objective gives a measure of how distorted the compressed picture is relative to the original picture
- For more clusters, the picture is less distorted.

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?
- For example,

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?
- For example,
- Discrete multivariate data, such as purchase histories

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?
- For example,
- Discrete multivariate data, such as purchase histories
- Positive data, such as time spent on a web-page

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?
- For example,
- Discrete multivariate data, such as purchase histories
- Positive data, such as time spent on a web-page
- k-medoids is an algorithm that only requires knowing distances between data points, $d_{n, m}=d\left(x_{n}, x_{m_{k}}\right)$.

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?
- For example,
- Discrete multivariate data, such as purchase histories
- Positive data, such as time spent on a web-page
- k-medoids is an algorithm that only requires knowing distances between data points, $d_{n, m}=d\left(x_{n}, x_{m_{k}}\right)$.
- No need to define the mean.

k-medoids

- In many practical settings, Euclidean distance is not appropriate. When?
- For example,
- Discrete multivariate data, such as purchase histories
- Positive data, such as time spent on a web-page
- k-medoids is an algorithm that only requires knowing distances between data points, $d_{n, m}=d\left(x_{n}, x_{m_{k}}\right)$.
- No need to define the mean.
- Each of the clusters is associated with its most typical example

k-medoids algorithm

(1) Initialization

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster identities $\boldsymbol{m}_{1: k}$

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster identities $\boldsymbol{m}_{1: k}$
(2) Repeat

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster identities $\boldsymbol{m}_{1: k}$
(2) Repeat
(1) Assign each data point to its closest center

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster identities $\boldsymbol{m}_{1: k}$
(2) Repeat
(1) Assign each data point to its closest center

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

(2) For each cluster, find the data point in that cluster that is closest to the other points in that cluster

$$
i_{k}=\arg \min _{\left\{n: z_{n}=k\right\}} \sum_{\left\{m: z_{m}=k\right\}} d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster identities $\mathbf{m}_{1: k}$
(2) Repeat
(1) Assign each data point to its closest center

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

(2) For each cluster, find the data point in that cluster that is closest to the other points in that cluster

$$
i_{k}=\arg \min _{\left\{n: z_{n}=k\right\}} \sum_{\left\{m: z_{m}=k\right\}} d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

(3) Set each cluster center equal to their closest data points

$$
m_{k}=\mathbf{x}_{i_{k}}
$$

k-medoids algorithm

(1) Initialization

- Data are $\mathbf{x}_{1: N}$
- Choose initial cluster identities $\mathbf{m}_{1: k}$
(2) Repeat
(1) Assign each data point to its closest center

$$
z_{n}=\arg \min _{i \in\{1, \ldots, k\}} d\left(\mathbf{x}_{n}, \mathbf{m}_{i}\right)
$$

2 For each cluster, find the data point in that cluster that is closest to the other points in that cluster

$$
i_{k}=\arg \min _{\left\{n: z_{n}=k\right\}} \sum_{\left\{m: z_{m}=k\right\}} d\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

(3) Set each cluster center equal to their closest data points

$$
m_{k}=\mathbf{x}_{i_{k}}
$$

(3) Until assignments $\mathbf{z}_{1: N}$ do not change

Choosing k

- Choosing k is a nagging problem in cluster analysis

Choosing k

- Choosing k is a nagging problem in cluster analysis
- Sometimes, the problem determines k

Choosing k

- Choosing k is a nagging problem in cluster analysis
- Sometimes, the problem determines k
- A certain required compression in VQ

Choosing k

- Choosing k is a nagging problem in cluster analysis
- Sometimes, the problem determines k
- A certain required compression in VQ
- Clustering customers for k salespeople in a business

Choosing k

- Choosing k is a nagging problem in cluster analysis
- Sometimes, the problem determines k
- A certain required compression in VQ
- Clustering customers for k salespeople in a business
- Usually, we seek the "natural" clustering, but what does this mean?

Choosing k

- Choosing k is a nagging problem in cluster analysis
- Sometimes, the problem determines k
- A certain required compression in VQ
- Clustering customers for k salespeople in a business
- Usually, we seek the "natural" clustering, but what does this mean?
- It is not well-defined.

What happens as k increases?

Heuristic: A kink in the objective

- Notice the "kink" in the objective between 3 and 5.

Heuristic: A kink in the objective

- Notice the "kink" in the objective between 3 and 5.
- This suggests that 4 is the right number of clusters.

Heuristic: A kink in the objective

- Notice the "kink" in the objective between 3 and 5.
- This suggests that 4 is the right number of clusters.
- Tibshirani (2001) presents a method for finding this kink.

Archeology

- Spatial and Statistical Inference of Late Bronze Age Polities in the Southern Levant (Savage and Falconer)

Archeology

- Spatial and Statistical Inference of Late Bronze Age Polities in the Southern Levant (Savage and Falconer)
- Cluster the location of archeological sites in Israel

Archeology

- Spatial and Statistical Inference of Late Bronze Age Polities in the Southern Levant (Savage and Falconer)
- Cluster the location of archeological sites in Israel
- Make inferences about political history based on the clusters

Archeology

- Spatial and Statistical Inference of Late Bronze Age Polities in the Southern Levant (Savage and Falconer)
- Cluster the location of archeological sites in Israel
- Make inferences about political history based on the clusters
- Choose k very carefully, with a complicated computational technique.

Computational Biology

- Coping with cold: An integrative, multitissue analysis of the transciptome of a poikilothermic vertebrate (Gracey et al., 2004)

Computational Biology

- Coping with cold: An integrative, multitissue analysis of the transciptome of a poikilothermic vertebrate (Gracey et al., 2004)
- Exposed carp to different levels of cold

Computational Biology

- Coping with cold: An integrative, multitissue analysis of the transciptome of a poikilothermic vertebrate (Gracey et al., 2004)
- Exposed carp to different levels of cold
- Clustered genes based on their response in different tissues

Computational Biology

- Coping with cold: An integrative, multitissue analysis of the transciptome of a poikilothermic vertebrate (Gracey et al., 2004)
- Exposed carp to different levels of cold
- Clustered genes based on their response in different tissues
- (No mention of how $k=23$ was chosen.)

D. Blei

Education

- Teachers as Sources of Middle School Students' Motivational Identity: Variable-Centered and Person-Centered Analytic Approaches (Murdock and Miller, 2003)

Education

- Teachers as Sources of Middle School Students' Motivational Identity: Variable-Centered and Person-Centered Analytic Approaches (Murdock and Miller, 2003)
- Clustered survey results of 206 students

Education

- Teachers as Sources of Middle School Students' Motivational Identity: Variable-Centered and Person-Centered Analytic Approaches (Murdock and Miller, 2003)
- Clustered survey results of 206 students
- Used the clusters to identify groups to buttress an analysis of what affects motivation.

Education

- Teachers as Sources of Middle School Students' Motivational Identity: Variable-Centered and Person-Centered Analytic Approaches (Murdock and Miller, 2003)
- Clustered survey results of 206 students
- Used the clusters to identify groups to buttress an analysis of what affects motivation.
- I.e., the levels of encouragement are corrected for

Education

- Teachers as Sources of Middle School Students' Motivational Identity: Variable-Centered and Person-Centered Analytic Approaches (Murdock and Miller, 2003)
- Clustered survey results of 206 students
- Used the clusters to identify groups to buttress an analysis of what affects motivation.
- I.e., the levels of encouragement are corrected for
- Chose the number of clusters to get nice results

Table 3. Five-Cluster Solution: Z scores on Each Clustering Variable

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Teacher caring	-.5	-.5 to .5	-.5 to .5	-.5	1.0
Peers' academic support	1.0	-.5	1.0	-.5	-.5 to .5
Parents' academic support	.5	-1.0	-.5 to .5	-.5 to .5	1.0

Table 4. Means and Standard Deviations for Each Cluster on Grade 8 Motivational Variables

Cluster	Academic Self-Efficacy		Intrinsic Valuing of Education		Teacher-Rated Effort	
	M	SD	M	SD	M	SD
1. All positive	3.59	. $48{ }^{\text {a }}$	2.99	. $55^{\text {a }}$	3.74	. $6^{\text {a }}$
2. Peer negative, parents very negative	2.44	. $66^{\text {b }}$	2.16	. $51{ }^{\text {b }}$	3.05	. $61{ }^{\text {b }}$
3. Peer positive	3.01	.73 ${ }^{\text {c }}$	2.43	. $66^{\text {b }}$	3.26	. $66^{\text {b }}$
4. Negative teacher and peer	2.47	. $63{ }^{\text {b }}$	2.24	. $51{ }^{\text {b }}$	3.17	. $59{ }^{\text {b }}$
5. Positive teacher and parents	3.19	. $65{ }^{\text {c }}$	2.89	. $62^{\text {a }}$	3.54	. $47^{\text {a }}$

D. Blei Clustering 01

Sociology

- Implications of Racial and Gender Differences in Patterns of Adolescent Risk Behavior for HIV and other Sexually Transmitted Diseases (Halpert et al., 2004)

Sociology

- Implications of Racial and Gender Differences in Patterns of Adolescent Risk Behavior for HIV and other Sexually Transmitted Diseases (Halpert et al., 2004)
- Clustered survey results of 13,998 students to understand patterns of drug abuse and sexual activity

Sociology

- Implications of Racial and Gender Differences in Patterns of Adolescent Risk Behavior for HIV and other Sexually Transmitted Diseases (Halpert et al., 2004)
- Clustered survey results of 13,998 students to understand patterns of drug abuse and sexual activity
- K chosen for interpretability and "stability," which means that they could interpret multiple k-means runs on different data in the same way.

Sociology

- Implications of Racial and Gender Differences in Patterns of Adolescent Risk Behavior for HIV and other Sexually Transmitted Diseases (Halpert et al., 2004)
- Clustered survey results of 13,998 students to understand patterns of drug abuse and sexual activity
- K chosen for interpretability and "stability," which means that they could interpret multiple k-means runs on different data in the same way.
- Draw the conclusion that patterns exist. What's wrong with this?

Sociology

- Implications of Racial and Gender Differences in Patterns of Adolescent Risk Behavior for HIV and other Sexually Transmitted Diseases (Halpert et al., 2004)
- Clustered survey results of 13,998 students to understand patterns of drug abuse and sexual activity
- K chosen for interpretability and "stability," which means that they could interpret multiple k-means runs on different data in the same way.
- Draw the conclusion that patterns exist. What's wrong with this?
- k-means will find patterns everywhere!

TABLE 2. Percentage distribution of participants, by cluster, and behavioral patterns defining each cluster

Cluster type and behavioral patterns \%

Light substance dabblers-infrequent or no current use of substancest
None have had sex
Abstainers-none have ever used substancest or had sex
Sex dabblers-all have had sex
Median no. of partners=1
60\% used a condom at last sex
Infrequent use of substances \dagger
Drinkers-all consumed alcohol in past 12 mos.
49\% report binge drinking
Infrequent or no illicit drug use
None have had sex
Smokers-all smoke cigarettes daily
Infrequent use of alcohol/illicit drugs
62% have had sex
Alcohol-and-sex dabblers-all drink occasionally; all have had sex Infrequent tobaccorillicit drug use

Binge drinkers-all binge frequently Infrequent cigarette, marijuana and other drug use 60% binge ≥ 1 time/wk
45\% have had sex
Heavy dabblers-all smoke, drink and binge drink with moderate frequency

Combination sex and drug use-all have had sex; all used alcohol/ilicit drug at last sex

74\% have had sex

Multiple partners-all report ≥ 14 sexual partners

Sex for drugs or money-all have had sex for drugs or money
50% report low or moderate use of substancest
Median no. of partners=3
High marijuana use and sex-all use marijuana frequently; all have had sex
All used alcohol/other drug at last se
82% have had >1 partner (median $=6$)
Marijuana and other drug users-95\% report heavy marijuana use; all use other illicit drugs 68% have had sex
28% used alcohol/other drug at last sex
Injection-drug users-all have injected drugs
82% have had sex
Median no. of partners=4
Males who have sex with males-all are males who have had sex with another male 0.3
78% have had multiple partners (median=5)
40% used marijuana in past 30 days
50% use alcohol ≥ 1 time/mo.
17% have had sex for drugs or money

Summary

