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Clustering

e Goal: Automatically segment data into groups of similar points
Question: When and why would we want to do this?
Useful for:

e Automatically organizing data
e Understanding hidden structure in some data
e Representing high-dimensional data in a low-dimensional space

Examples:

o Customers according to purchase histories

e Genes according to expression profile

Search results according to topic

MySpace users according to interests

A museum catalog according to image similarity
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e Each data point is p-dimensional, i.e.,
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Clustering set-up

Our data are

D:{Xl,...,XN}.

Each data point is p-dimensional, i.e.,

Xp = (Xp1,---sXnp)-

Define a distance function between data, d(x,Xm).

Goal: segment the data into k groups

{z1,...,zny} where z e€{l,... K}
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Example data

500 2-dimensional data points: X, = (Xp 1, Xn2)
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Example data

e What is a good distance function here?
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Example data

e What is a good distance function here?
e Squared Euclidean distance is reasonable

d(Xp, Xm) = Z?:l(xn,i - Xm,i)2 = ||xn — Xm”2
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Example data

e Goal: segment this data into k groups.
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Example data

e Goal: segment this data into k groups.
e What should k be?

e Automatically choosing k is complicated; for now, 4.
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k-means

e Different clustering algorithms use the data and distance
measurements in different ways
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k-means

e The basic idea is to describe each cluster by its mean value.

e (Note: this works only for distances such that a mean is
well-defined.)

e The goal of k-means is to assign data to clusters and deine these
clusters with their means.
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k-means algorithm
@ Initialization

e Data are x3.p
e Choose initial cluster means my., (same dimension as data).
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k-means algorithm

@ Initialization
e Data are x3.p
e Choose initial cluster means my.x (same dimension as data).

® Repeat
@ Assign each data point to its closest mean

Z, = ar min  d(x,, m;
n gl_e{lmk} (xn, m;)

® Compute each cluster mean to be the coordinate-wise average
over data points assigned to that cluster,
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k-means algorithm

@ Initialization
e Data are x3.p
e Choose initial cluster means my.x (same dimension as data).

® Repeat

@ Assign each data point to its closest mean

Z, = ar min  d(x,, m;
n gie{l,...,k} (xn, m;)

® Compute each cluster mean to be the coordinate-wise average
over data points assigned to that cluster,

rr'k:Ni Z Xn

k {n:z,=k}

© Until assignments z;.y do not change
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k-means example
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k-means example
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Objective function

e How can we measure how well our algorithm is doing?
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Objective function

e How can we measure how well our algorithm is doing?

e The k-means objective function is the sum of the squared distances
of each point to each assigned mean

F(z1:n, m1:k) ZHXn m,, |
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k-means example (look at the objective)
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Coordinate descent

F(Z].N7m1k ZHXH mzn|’2

e Holding the means fixed, assigning each point to its closest mean
minimizes F with respect to z.y.
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Coordinate descent

F(Z].N7m1k ZHXH mzn|’2

e Holding the means fixed, assigning each point to its closest mean
minimizes F with respect to zy.p.

e Holding the assignments fixed, computing the centroids of each
cluster minimizes F with respect to myq..

e Thus, k-means is a coordinate descent algorithm.
e It finds a local minimum. (Multiple restarts are often necessary.)
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Objective for the example data
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Compressing images

e Each pixel is associated with a red, green, and blue value
e A 1024 x 1024 image is a collection of 1048576 values (x1, x2, X3),
which requires 3M of storage

e How can we use k-means to compress this image?
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Vector quantization

e Replace each pixel x, with its assignment m_, (“paint by numbers").
e The k means are called the codebook.
e With k = 100, we need 7 bits per pixel plus 100 x 3 bits ~ 897K.
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Charlie Brown and Linus VQ

256 means



Measure of distortion

Charlie Brown and Linus VQ Objective
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k-means objective

e The objective gives a measure of how distorted the compressed
picture is relative to the original picture
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Charlie Brown and Linus VQ Objective
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k-means objective

e The objective gives a measure of how distorted the compressed
picture is relative to the original picture

e For more clusters, the picture is less distorted.
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k-medoids

e In many practical settings, Euclidean distance is not appropriate.
When?

e For example,
e Discrete multivariate data, such as purchase histories
e Positive data, such as time spent on a web-page
e k-medoids is an algorithm that only requires knowing distances
between data points, dp m = d(Xn, Xm, )
e No need to define the mean.

e Each of the clusters is associated with its most typical example
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k-medoids algorithm

@ Initialization
e Data are x1.y

D. Blei Clustering 01 20 / 32



k-medoids algorithm
@ Initialization

e Data are x1.y
e Choose initial cluster identities my.j
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@ Initialization
e Data are x1.y
e Choose initial cluster identities my.j
® Repeat
@ Assign each data point to its closest center

Z, = ar min  d(x,, m;
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k-medoids algorithm

@ Initialization
e Data are x1.y
e Choose initial cluster identities my.j
® Repeat
@ Assign each data point to its closest center
z, = arg ie{TT,k} d(xp, m;)

® For each cluster, find the data point in that cluster that is
closest to the other points in that cluster

ik = arg min{n:zn:k} E{m:zm:k} d(xna xm)
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k-medoids algorithm

@ Initialization
e Data are x1.y
e Choose initial cluster identities my.j
® Repeat
@ Assign each data point to its closest center

zp=arg min d(x,, m;
" gie{l,“.,k} (xn, m)

® For each cluster, find the data point in that cluster that is
closest to the other points in that cluster

ik = arg min{n:z,,:k} Z{m;zm:k} d(Xn, Xm)
© Set each cluster center equal to their closest data points

my = ka
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k-medoids algorithm

@ Initialization
e Data are x1.y
e Choose initial cluster identities my.j
® Repeat
@ Assign each data point to its closest center

zy=arg min d(x,,m;
" il 1y (%o, m;)

® For each cluster, find the data point in that cluster that is
closest to the other points in that cluster

ik = arg min{n:z,,:k} Z{m;zm:k} d(Xn, Xm)
© Set each cluster center equal to their closest data points

my = X,‘k

© Until assighments z;.y do not change
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Choosing k

Choosing k is a nagging problem in cluster analysis
e Sometimes, the problem determines k

e A certain required compression in VQ
e Clustering customers for k salespeople in a business

Usually, we seek the “natural” clustering, but what does this mean?
It is not well-defined.
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What happens as k increases?

1.0

0.8
|

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

D. Blei Clustering 01 22 /32



What happens as k increases?

6.60e+01

OBJ=

1.0

0.8

0.6

0.4

0.2

0.0

22 /32

Clustering 01

D. Blei



What happens as k increases?

3.39e+01

OBJ=

1.0

0.8

0.6

0.4

0.2

0.0

22 /32

Clustering 01

D. Blei



What happens as k increases?

9.97e+00

OBJ=

1.0

0.8

0.6

0.4

0.2

0.0

22 /32

Clustering 01

D. Blei



What happens as k increases?

8.81e+00

OBJ=

1.0

0.8

0.6

0.4

0.2

0.0

22 /32

Clustering 01

D. Blei



What happens as k increases?
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What happens as k increases?
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What happens as k increases?
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Heuristic: A kink in the objective

jective

Log obi

e Notice the "kink” in the objective between 3 and 5.
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Heuristic: A kink in the objective

Log objective

e Notice the "kink” in the objective between 3 and 5.
e This suggests that 4 is the right number of clusters.
e Tibshirani (2001) presents a method for finding this kink.
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Archeology

e Spatial and Statistical Inference of Late Bronze Age Polities in the
Southern Levant (Savage and Falconer)
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Archeology

Spatial and Statistical Inference of Late Bronze Age Polities in the
Southern Levant (Savage and Falconer)

Cluster the location of archeological sites in Israel

Make inferences about political history based on the clusters

Choose k very carefully, with a complicated computational
technique.
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Late Bronze polities
based on textual evidence. Lebanon

. Late Bronze "city-states”
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Computational Biology

e Coping with cold: An integrative, multitissue analysis of the
transciptome of a poikilothermic vertebrate (Gracey et al., 2004)
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Computational Biology

Coping with cold: An integrative, multitissue analysis of the
transciptome of a poikilothermic vertebrate (Gracey et al., 2004)

Exposed carp to different levels of cold

Clustered genes based on their response in different tissues

(No mention of how k = 23 was chosen.)
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Education

e Teachers as Sources of Middle School Students’ Motivational
Identity: Variable-Centered and Person-Centered Analytic
Approaches (Murdock and Miller, 2003)
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e Clustered survey results of 206 students

e Used the clusters to identify groups to buttress an analysis of what
affects motivation.
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Education

e Teachers as Sources of Middle School Students’ Motivational
Identity: Variable-Centered and Person-Centered Analytic
Approaches (Murdock and Miller, 2003)

e Clustered survey results of 206 students

e Used the clusters to identify groups to buttress an analysis of what
affects motivation.

e |.e., the levels of encouragement are corrected for

e Chose the number of clusters to get nice results
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TaBLE 3. Five-Cluster Solution: Z scores on Each Clustering Variable

Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5
Teacher caring -5 —5t0.5 -5t .5 -5 1.0
Peers’ academic support 1.0 -5 1.0 -5 -5t .5
Parents” academic support 5 -1.0 —-5t0.5 -5t0.5 1.0

TABLE 4. Means and Standard Deviations for Each Cluster on Grade 8 Motivational Variables

Intrinsic
Academic Valuing of Teacher-Rated
Self-Efficacy Education Effort
Cluster M SD M SD M SD
1. All positive 3.59 48 299 55 3.74 26
2. Peer negative, parents very negative 2.44 .66° 2.16 510 3.05 61°
3. Peer positive 3.01 73¢ 243 .66° 3.26 .66°
4. Negative teacher and peer 247 .63° 224 510 3.17 590
5. Positive teacher and parents 3.19 .65 2.89 .62 3.54 472
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Sociology

e Implications of Racial and Gender Differences in Patterns of
Adolescent Risk Behavior for HIV and other Sexually Transmitted
Diseases (Halpert et al., 2004)

D. Blei Clustering 01 30 /32



Sociology

e Implications of Racial and Gender Differences in Patterns of
Adolescent Risk Behavior for HIV and other Sexually Transmitted
Diseases (Halpert et al., 2004)

e Clustered survey results of 13,998 students to understand patterns
of drug abuse and sexual activity

D. Blei Clustering 01 30 /32



Sociology

e Implications of Racial and Gender Differences in Patterns of
Adolescent Risk Behavior for HIV and other Sexually Transmitted
Diseases (Halpert et al., 2004)

e Clustered survey results of 13,998 students to understand patterns
of drug abuse and sexual activity

e K chosen for interpretability and “stability,” which means that they
could interpret multiple k-means runs on different data in the same
way.

D. Blei Clustering 01 30 /32



Sociology

e Implications of Racial and Gender Differences in Patterns of
Adolescent Risk Behavior for HIV and other Sexually Transmitted
Diseases (Halpert et al., 2004)

e Clustered survey results of 13,998 students to understand patterns
of drug abuse and sexual activity

e K chosen for interpretability and “stability,” which means that they
could interpret multiple k-means runs on different data in the same
way.

e Draw the conclusion that patterns exist. What's wrong with this?

D. Blei Clustering 01 30 /32



Sociology

e Implications of Racial and Gender Differences in Patterns of
Adolescent Risk Behavior for HIV and other Sexually Transmitted
Diseases (Halpert et al., 2004)

e Clustered survey results of 13,998 students to understand patterns
of drug abuse and sexual activity

e K chosen for interpretability and “stability,” which means that they
could interpret multiple k-means runs on different data in the same
way.

e Draw the conclusion that patterns exist. What's wrong with this?

e k-means will find patterns everywhere!
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| TABLE2. by cluster,

| defining each cluster
| cluster type and behavioral patterns. %
i 244
| None havehadsex
| |
| 27|
| |
\s.:u-numuhmhmm 145 |
| Medion no.of partners=
60%used acondomatastsex
Infrequentuseof substancest |
| Drinkers—allconsumed aicoholin past 12 mos. 74
| 49%report binge drinking |
| nfrequentornoilicitdrug use |
| None have had sex
1 Smokers—all smoke cigaretes daiy 73|
| Infrequent use ofalcohollicit drugs |
| mohivebadsex |
| 54 J‘
| nfequenttobacoflc dug e
Binge drinkers—all binge frequently i
Infrequent cigarette, mariliana and other drug use
60%binge 1 time/wk. |
5% have had sex
| 36|
| 45%use mariuanasfewusectherlicitcrugs |
| 91%have hadsex |
‘ 34
| 9 7 ‘
| 94%usealcohol
mssmokmgams |
| 74%have hadise ‘
| Muliple partners—silreport>14sexual partners 13
| 75%reportlow or moderate use of substancest |
|
ey 12
| S0 reportiowormoderte o subsancest
‘ Median o, of prtners= |
‘ n
| Allusedalcoholother drugat lastsex
| 82% have had >1 partner (median=6)
| " sitdngs 06
68%have had sex |
28%used alcohol other drug atastsex [
| Injection-drug users—all have injected drugs 06 |
| 82% have had sex ‘
| Median no.of partners=4
|
03 ‘

| 78% have had mulile prtners (median=5)
0% used marijuana in past 30 days

S09%use alcohol>1 time/mo. |
| 7% have had sex orcrugs or money
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