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Who wants to scribe?
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Random variable

• Probability is about random variables.

• A random variable is any “probabilistic” outcome.

• For example,

• The flip of a coin
• The height of someone chosen randomly from a population

• We’ll see that it’s sometimes useful to think of quantities that are
not strictly probabilistic as random variables.

• The temperature on 11/12/2013
• The temperature on 03/04/1905
• The number of times “streetlight” appears in a document
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Random variable

• Random variables take on values in a sample space.

• They can be discrete or continuous:

• Coin flip: {H,T}
• Height: positive real values (0,∞)
• Temperature: real values (−∞,∞)
• Number of words in a document: Positive integers {1, 2, . . .}

• We call the values atoms.

• Denote the random variable with a capital letter; denote a
realization of the random variable with a lower case letter.

• E.g., X is a coin flip, x is the value (H or T ) of that coin flip.
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Discrete distribution

• A discrete distribution assigns a probability
to every atom in the sample space

• For example, if X is an (unfair) coin, then

P(X = H) = 0.7

P(X = T ) = 0.3

• The probabilities over the entire space must sum to one∑
x

P(X = x) = 1

• Probabilities of disjunctions are sums over part of the space. E.g.,
the probability that a die is bigger than 3:

P(D > 3) = P(D = 4) + P(D = 5) + P(D = 6)
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A useful picture

x

~x

• An atom is a point in the box

• An event is a subset of atoms (e.g., d > 3)

• The probability of an event is sum of probabilities of its atoms.
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Joint distribution

• Typically, we consider collections of random variables.

• The joint distribution is a distribution over the configuration of all
the random variables in the ensemble.

• For example, imagine flipping 4 coins. The joint distribution is over
the space of all possible outcomes of the four coins.

P(HHHH) = 0.0625

P(HHHT ) = 0.0625

P(HHTH) = 0.0625

. . .

• You can think of it as a single random variable with 16 values.
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Visualizing a joint distribution

x

~x

~x, y x, ~yx, y

~x, ~y
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Conditional distribution

• A conditional distribution is the distribution of a random variable
given some evidence.

• P(X = x |Y = y) is the probability that X = x when Y = y .

• For example,

P(I listen to Steely Dan) = 0.5

P(I listen to Steely Dan |Toni is home) = 0.1

P(I listen to Steely Dan |Toni is not home) = 0.7

• P(X = x |Y = y) is a different distribution for each value of y∑
x

P(X = x |Y = y) = 1∑
y

P(X = x |Y = y) 6= 1 (necessarily)
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Definition of conditional probability

~x, y x, ~yx, y

~x, ~y

• Conditional probability is defined as:

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
,

which holds when P(Y ) > 0.

• In the Venn diagram, this is the relative probability of X = x in the
space where Y = y .
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The chain rule

• The definition of conditional probability lets us derive the chain rule,
which let’s us define the joint distribution as a product of
conditionals:

P(X ,Y ) = P(X ,Y )
P(Y )

P(Y )

= P(X |Y )P(Y )

• For example, let Y be a disease and X be a symptom. We may
know P(X |Y ) and P(Y ) from data. Use the chain rule to obtain
the probability of having the disease and the symptom.

• In general, for any set of N variables

P(X1, . . . ,XN) =
N∏

n=1

P(Xn |X1, . . . ,Xn−1)
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Marginalization

• Given a collection of random variables, we are often only interested
in a subset of them.

• For example, compute P(X ) from a joint distribution P(X ,Y ,Z )

• Can do this with marginalization

P(X ) =
∑
y

∑
z

P(X , y , z)

• Derived from the chain rule:∑
y

∑
z

P(X , y , z) =
∑
y

∑
z

P(X )P(y , z |X )

= P(X )
∑
y

∑
z

P(y , z |X )

= P(X )
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Bayes rule

• From the chain rule and marginalization, we obtain Bayes rule.

P(Y |X ) =
P(X |Y )P(Y )∑

y P(X |Y = y)P(Y = y)

• Again, let Y be a disease and X be a symptom. From P(X |Y ) and
P(Y ), we can compute the (useful) quantity P(Y |X ).

• Bayes rule is important in Bayesian statistics, where Y is a
parameter that controls the distribution of X .
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Independence

• Random variables are independent if knowing about X tells us
nothing about Y .

P(Y |X ) = P(Y )

• This means that their joint distribution factorizes,

X ⊥⊥ Y ⇐⇒ P(X ,Y ) = P(X )P(Y ).

• Why? The chain rule

P(X ,Y ) = P(X )P(Y |X )

= P(X )P(Y )
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Independence examples

• Examples of independent random variables:

• Flipping a coin once / flipping the same coin a second time
• You use an electric toothbrush / blue is your favorite color

• Examples of not independent random variables:

• Registered as a Republican / voted for Bush in the last election
• The color of the sky / The time of day
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Are these independent?

• Two twenty-sided dice

• Rolling three dice and computing (D1 + D2,D2 + D3)

• # enrolled students and the temperature outside today

• # attending students and the temperature outside today
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Two coins

• Suppose we have two coins, one biased and one fair,

P(C1 = H) = 0.5 P(C2 = H) = 0.7.

• We choose one of the coins at random Z ∈ {1, 2}, flip CZ twice,
and record the outcome (X ,Y ).

• Question: Are X and Y independent?

• What if we knew which coin was flipped Z?
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Conditional independence

• X and Y are conditionally independent given Z .

P(Y |X ,Z = z) = P(Y |Z = z)

for all possible values of z .

• Again, this implies a factorization

X ⊥⊥ Y |Z ⇐⇒ P(X ,Y |Z = z) = P(X |Z = z)P(Y |Z = z),

for all possible values of z .
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Continuous random variables

• We’ve only used discrete random variables so far (e.g., dice)

• Random variables can be continuous.

• We need a density p(x), which integrates to one.
E.g., if x ∈ R then ∫ ∞

−∞
p(x)dx = 1

• Probabilities are integrals over smaller intervals. E.g.,

P(X ∈ (−2.4, 6.5)) =

∫ 6.5

−2.4
p(x)dx

• Notice when we use P, p, X , and x .
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The Gaussian distribution

• The Gaussian (or Normal) is a continuous distribution.

p(x |µ, σ) =
1√
2πσ

exp

{
−(x − µ)2

2σ2

}
• The density of a point x is proportional to the negative

exponentiated half distance to µ scaled by σ2.

• µ is called the mean; σ2 is called the variance.
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Gaussian density
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• The mean µ controls the location of the bump.

• The variance σ2 controls the spread of the bump.
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Notation

• For discrete RV’s, p denotes the probability mass function, which is
the same as the distribution on atoms.

• (I.e., we can use P and p interchangeably for atoms.)

• For continuous RV’s, p is the density and they are not
interchangeable.

• This is an unpleasant detail. Ask when you are confused.
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Expectation

• Consider a function of a random variable, f (X ).
(Notice: f (X ) is also a random variable.)

• The expectation is a weighted average of f ,
where the weighting is determined by p(x),

E[f (X )] =
∑
x

p(x)f (x)

• In the continuous case, the expectation is an integral

E[f (X )] =

∫
p(x)f (x)dx
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Conditional expectation

• The conditional expectation is defined similarly

E[f (X ) |Y = y ] =
∑
x

p(x | y)f (x)

• Question: What is E[f (X ) |Y = y ]? What is E[f (X ) |Y ]?

• E[f (X ) |Y = y ] is a scalar.

• E[f (X ) |Y ] is a (function of a) random variable.
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Iterated expectation

Let’s take the expectation of E[f (X ) |Y ].

E[E[f (X )] |Y ]] =
∑
y

p(y)E[f (X ) |Y = y ]

=
∑
y

p(y)
∑
x

p(x | y)f (x)

=
∑
y

∑
x

p(x , y)f (x)

=
∑
y

∑
x

p(x)p(y | x)f (x)

=
∑
x

p(x)f (x)
∑
y

p(y | x)

=
∑
x

p(x)f (x)

= E[f (X )]
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Flips to the first heads

• We flip a coin with probability π of heads until we see a heads.

• What is the expected waiting time for a heads?

E[N] = 1π + 2(1− π)π + 3(1− π)2π + . . .

=
∞∑

n=1

n(1− π)(n−1)π
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Let’s use iterated expectation

E[N] = E[E[N |X1]]

= π · E[N |X1 = H] + (1− π)E[N |X1 = T ]

= π · 1 + (1− π)(E[N] + 1)]

= π + 1− π + (1− π)E[N]

= 1/π
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Probability models

• Probability distributions are used as models of data that we observe.

• Pretend that data is drawn from an unknown distribution.

• Infer the properties of that distribution from the data

• For example

• the bias of a coin
• the average height of a student
• the chance that someone will vote for H. Clinton
• the chance that someone from Vermont will vote for H. Clinton
• the proportion of gold in a mountain
• the number of bacteria in our body
• the evolutionary rate at which genes mutate

• We will see many models in this class.

D. Blei ProbStat 01 28 / 42



Independent and identically distributed random variables

• Independent and identically distributed (IID) variables are:

1 Independent
2 Identically distributed

• If we repeatedly flip the same coin N times and record the outcome,
then X1, . . . ,XN are IID.

• The IID assumption can be useful in data analysis.
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What is a parameter?

• Parameters are values that index a distribution.

• A coin flip is a Bernoulli. Its parameter is the probability of heads.

p(x |π) = π1[x=H](1− π)1[x=T ],

where 1[·] is called an indicator function. It is 1 when its argument
is true and 0 otherwise.

• Changing π leads to different Bernoulli distributions.

• A Gaussian has two parameters, the mean and variance.

p(x |µ, σ) =
1√
2πσ

exp

{
−(x − µ)2

2σ2

}
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The likelihood function

• Again, suppose we flip a coin N times and record the outcomes.

• Further suppose that we think that the probability of heads is π.
(This is distinct from whatever the probability of heads “really” is.)

• Given π, the probability of an observed sequence is

p(x1, . . . , xN |π) =
N∏

n=1

π1[xn=H](1− π)1[xn=T ]
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The log likelihood

• As a function of π, the probability of a set of observations is called
the likelihood function.

p(x1, . . . , xN |π) =
N∏

n=1

π1[xn=H](1− π)1[xn=T ]

• Taking logs, this is the log likelihood function.

L(π) =
N∑

n=1

1[xn = H] log π + 1[xn = T ] log(1− π)
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Bernoulli log likelihood
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• We observe HHTHTHHTHHTHHTH.

• The value of π that maximizes the log likelihood is 2/3.
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The maximum likelihood estimate

• The maximum likelihood estimate is the value of the parameter that
maximizes the log likelihood (equivalently, the likelihood).

• In the Bernoulli example, it is the proportion of heads.

π̂ =
1

N

N∑
n=1

1[xn = H]

• In a sense, this is the value that best explains our observations.
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Why is the MLE good?

• The MLE is consistent.

• Flip a coin N times with true bias π∗.

• Estimate the parameter from x1, . . . xN with the MLE π̂.

• Then,
lim

N→∞
π̂ = π∗

• This is a good thing. It lets us sleep at night.
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5000 coin flips

1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1
0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0
1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1
1 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0
1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1
1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0
0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0
1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1
1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1...
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Consistency of the MLE example
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Gaussian log likelihood

• Suppose we observe x1, . . . , xN continuous.

• We choose to model them with a Gaussian

p(x1, . . . , xN |µ, σ2) =
N∏

n=1

1√
2πσ

exp

{
−(xn − µ)2

2σ2

}
• The log likelihood is

L(µ, σ) = −1

2
N log(2πσ2)−

N∑
n=1

(xn − µ)2

2σ2
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Gaussian MLE

• The MLE of the mean is the sample mean

µ̂ =
1

N

N∑
n=1

xn

• The MLE of the variance is the sample variance

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2

• E.g., approval ratings of the presidents from 1945 to 1975.
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Gaussian analysis of approval ratings
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Model pitfalls

• What’s wrong with this analysis?

• Assigns positive probability to numbers < 0 and > 100
• Ignores the sequential nature of the data
• Assumes that approval ratings are IID!

• “All models are wrong. Some models are useful.”
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Future probability concepts in this class

• Naive Bayes classification

• Linear regression and logistic regression

• Hidden variables, mixture models, and the EM algorithm

• Graphical models

• Factor analysis

• Sequential models

• And if there is time...

• Generalized linear models
• Bayesian models

D. Blei ProbStat 01 42 / 42


