Undirected Graphs

introduction
Graph APT

maze exploration
depth-first search

breadth-first search
connected components
challenges

References: Algorithms, Chapters 17-18
Infro to Java, Section 4.5
Intro to Algs and Data Structures, Section 5.1

Copyright © 2007 by Robert Sedgewick and Kevin Wayne.

introduction

Undirected Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
= Interesting and broadly useful abstraction.
* Challenging branch of computer science and discrete math.
* Hundreds of graph algorithms known.
* Thousands of practical applications.

Graph Applications

communication
circuits
mechanical
hydraulic
financial
transportation
scheduling
software systems
internet
games
social relationship
neural networks
protein networks

chemical compounds

telephones, computers
gates, registers, processors
Jjoints
reservoirs, pumping stations
stocks, currency
street intersections, airports
tasks
functions
web pages
board positions
people, actors
neurons
proteins

molecules

fiber optic cables
wires
rods, beams, springs
pipelines
transactions
highways, airway routes
precedence constraints
function calls
hyperlinks
legal moves
friendships, movie casts
synapses
protein-protein interactions
bonds

September 11 hijackers and associates

Jbu 2ubeids
Jean-Mare Grandvisic
Nizse Trabelsi

o waia
Djamal Beghsl

Ahmed Ressam
Kamel Dsoud Jerome Courtaillier
Haydar sbu Dona
Henai Khammous Bou oatads
Zacariss Mouzssoui Daid Courtailier
Essoussi Lasroussi
Mohamed Bensakhria — Tarsk Masrouti
Lssed Ben Heri st Eddin Barakat Yarkss

Sataiian ben Hazsine

ight UA 803 _Crashed in Per
Essid Sami Ben Khemsiz
Fania 3 shakni Mehammad Baltas

Adeighani veoudi oo

Madjid sahouns. Rous Budinman Mounir €1 Motsssadea
Fnmad Knsii Ibrshim Samic Al-Ani

Samir Kizhk
Muststs Anmed ai- Higawi Zakariya Essabar Marmduh Mahmud Salim
Mohs ned At Wamoun Darkazanii
Ssaeansi
Fayez Ahmed 7
Zisa sarrsn
Wil Alzhehri e e
Waiasd Aizhanr
bl Aziz ALD marit Lot Raiasi Bandar Athazmi
"
Sstam Suqami Rnmec Al Haznava ®
B A Hani Hanjour Rayed Mohammed Abdullsn
=
Saiam szt
Anmed Alghamg? y Fisal A1 Saimi
Majed Moqed
Nabil 3k Marabh~Ramzs Aighamdi g
Raad Hijszi Naviat Athaz i
Saced Aighamait Rhaiia Al-Mindhsr
"
Fhmed Ainami

Dzams Avadaiian
Abdussattar Shaikh
Monamed Abdi

Reference: Valdis Krebs
http://www.firstmonday.org/issues/issue7_4/krebs

Power transmission grid of Western US

Reference: Duncan Watts

Protein interaction network

The Internet

The Internet as mapped by The Opte Project
http://www.opte.org

Reference: Jeong et al, Nature Review | Genetics

Graph terminology

vertex —
Y

path—
spanning tree — Y
\

cycle —

tree —>

cliqueJ

Some graph-processing problems

Path. Is there a path between s to 1?
Shortest path. What is the shortest path between s and t?
Longest path. What is the longest simple path between s and +?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?
Connectivity. Is there away to connect all of the vertices?

MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Canh you draw the graph in the plane with no crossing edges?

First challenge: Which of these problems is easy? difficult? intractable?

Graph APT

Graph representation

Vertex representation.
* This lecture: use integers between 0 and v-1.

* Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

Graph APT

public class

Graph (graph data type)

void
Iterable<Integer>
int

String

Graph (int V)
Graph(int V, int E)
addEdge (int v, int w)
adj (int v)

vQ

toString ()

create an empty graph with V vertices

create a random graph with V vertices, E edges

add an edge v-w

return an iterator over the neighbors of v

return number of vertices

return a string representation

Graph G = new Graph(V, E);
System.out.println(G) ;
for (int v = 0; v < G.V(); v++)

for (int w

G.adj(v))

// process edge v-w

iterate through all edges (in each direction)

Set of edges representation

Store a list of the edges (linked list or array)

6
4
9 — 10
11 — 12

Adjacency matrix representation

Store a two-dimensional v x v boolean array.

For each edge v-w in graph: adj[v][w] = adj[w][v] = true.

OHOHOOOOOOOOOoO

0 01 2 3 45 6 7 8 9 101112
\\ o/011001100000
1/1000000000O00O0
1 2 6 2100000000000
/ 3/000011000000
4 4000101100000
5100110000000
// s/[100010000000
5 7/000000001000
9 — 10 5/000000010000
9/000000000011
7 — I 10/000000000100
11 12 11/000000000100
12/{000000000101
Adjacency-matrix graph representation: Java implementation
public class Graph
{
private int V;)
i 1 i ; adjacency
private boolean[][] adj; «— —— e
public Graph (int V)
{
this.V = V; create empty
adj = new boolean[V] [V]; V-vertex graph
}
public void addEdge(int v, int w)
{
adj[v] [w] = true; add edge v-w
adj[w] [v] = true; (no parallel edges)
}
public Iterable<Integer> adj(int v)
{)
return new AdjIterator(v); <« feratorfor
} V's neighbors

Adjacency matrix: iterator for vertex neighbors

private class AdjIterator implements Iterator<Integer>,

{

Iterable<Integer>

int v, w = 0;
AdjIterator(int v)
{ this.v =v; }

public boolean hasNext ()

{
while (w < V)
{ if (adj[v][w++]) return true; }
return false;

}

public int next()

{
if ('hasNext()) throw new NoSuchElementException() ;
return w++;

}

public Iterator<Integer> iterator()
{ return this; }

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Note: two representations of each undirected edge.

0: 5 2 1 6 o
0 1 0 .
\\ 2] 0 o
1 2 6 S - K 4
/ 4 6 e—5 e—- 3 e
3 4 5: [0 e -2 ——H -
// G £ C © O
5 7 8 o
9 — 10 8: (7 e
5E 10 e »11 —— 12 o
7 — 8
HIOE 9 e
11 — 12

11: 9 e——12 o

12: (9 e >11 e

Adjacency-list graph representation: Java implementation

public class Graph
{

private int V;

private SET<Integer>[] adj; «—— —— adjacency

public Graph (int V)
{
this.V = V;
adj = (SET<Integer>[]) new SET[V];
for (int v = 0; v < V; v++)
adj[v] = new SET<Integer>();

public void addEdge (int v, int w)
{
adj[v].add (w) ;

lists

<« Create empty

V-vertex graph

add edge v-w

adj[w] .add(v) ;
}

public Iterable<Integer> adj(int v)
{

(parallel edges allowed)

iterable SET for

return adj[v];

}

Graph Representations

Graphs are abstract mathematical objects.

V's neighbors

= ADT implementation requires specific representation.
= Efficiency depends on matching algorithms to representations.

List of edges E E
Adjacency matrix V2 1
Adjacency list E+V degree(v)

In practice: Use adjacency list representation
= Bottleneck is iterating over edges incident to v.
* Real world graphs tend to be sparse.

E is proportional to V

degree(v)

20

maze exploration

Maze Exploration

Maze graphs.
* Vertex = infersections.
* Edge = passage.

Goal. Explore every passage in the maze.

Trémaux Maze Exploration

Trémaux maze exploration.
= Unroll a ball of string behind you.
= Mark each visited intersection by turning on a light.
* Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

23

»’y »Iy »Iy »{} »Iyﬂ

22 24

Maze Exploration Flood fill

Photoshop “magic wand”

o oo

eeeee eo

25 27

Graph-processing challenge 1:

Problem: Flood fill
Assumptions: picture has millions to billions of pixels

How difficult?
1) any €S126 student could do it
2) need to be a typical diligent €S5226 student
3) hire an expert
4) intractable
5) no one knows

depth-first search

28

Depth-first search
Goal. Systematically search through a graph.
Idea. Mimic maze exploration.
Typical applications.

= find all vertices connected to a given s
= find a path from s to t

DFS (to visit a vertex s)

Mark s as visited.

Visit all unmarked vertices v adjacent o s.
4

recursive

Running time.
* O(E) since each edge examined at most twice
= usually less than V to find paths in real graphs

Design pattern for graph processing

Typical client program.
* Create a Graph.

* Pass the Graph fo a graph-processing routine, e.g., DFSearcher.

* Query the graph-processing routine for information.

public static void main(String[] args)
{
In in = new In(args[0]);
Graph G = new Graph(in);
int s = 0;
DFSearcher dfs = new DFSearcher (G, s);
for (int v = 0; v < G.V(); v++)
if (dfs.isConnected(v))
System.out.println(v) ;

find and print all vertices connected to (reachable from) s

Decouple graph from graph processing.

30

Depth-first-search (connectivity)

public class DFSearcher
{

private boolean[] marked; « — frueif
connected fo s

public DFSearcher (Graph G, int s)
{

marked = new boolean[G.V()1; mf]gﬂ?:g::i"c;s
dfs (G, s); connected to s

}

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v)) «—
if ('marked[w]) dfs (G, w);

recursive DFS
does the work

}

public boolean isReachable (int v)

{ client can ask whether
return marked[v];, «— ———— any vertex is
} connected fo's

Connectivity Application: Flood Fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph
= vertex: pixel.
* edge: between two adjacent lime pixels.
* blob: all pixels connected to given pixel.

recolor red blob to blue ”

Connectivity Application: Flood Fill Graph-processing challenge 3:

Change color of entire blob of neighboring red pixels to blue. Problem: Find a path from s to t.
Assumptions: any path will do

Build a grid graph

= vertex: pixel.

* edge: between two adjacent red pixels.

= blob: all pixels connected to given pixel. How difficult?
1) any €S126 student could do it
2) need to be a typical diligent 5226 student
3) hire an expert
4) intractable

5) no one knows

recolor red blob to blue »

Graph-processing challenge 2: Paths in graphs
Problem: Is there a path from s to t ? Is there a path from s to t? If so, find one.
0

\\ O=d,

0-6

How difficult? S 2:§

1) any €S126 student could do it 3—u 5-3

2) need to be a typical diligent CS226 student 5 // 5

3) hire an expert
4) intractable
5) no one knows

34

Paths in graphs

Is there a path from s to t? If so, find one.

Paths in graphs

Is there a path from s to t?

Union Find V+E log* vV log* v T
DFs E+V 1
1 amortized

If so, find one.
= Union-Find: no help (use DFS on connected subgraph)
* DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions.

37

DFS advantage. Can recover path itself in time proportional to its length.

38

Keeping track of paths with DFS

DFS free. Upon visiting a vertex v for the first time, remember that
you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred back from v.

5
]
5]

O] O} (2 ® (D) ®
® ® o) ® © ®
® ® Q=0 ® =0 @
5 o - ooo & Ooﬂ
® ® 7N
3 F—W & T o)
Depth-first-search (pathfinding)
public class DFSearcher
{
c 00 add instance variable for
private int[] pred; parent-link representation
public DFSearcher (Graph G, int s) of DFS free

{

pred = new int[G.V ()]’ -
for (int v = 0; v < G.V(); v++) «— initidlize it in the
pred[v] = -1; constructor

}
private void dfs(Graph G, int v)

marked[v] = true;

for (int w : G.adj(v))
if (!'marked[w])
{

pred[w] = v; set parent link
dfs (G, w);
}
}
public Iterable<Integer> path(int v) add method for client

{ // next slide } to iterate through path

39

40

Depth-first-search (pathfinding iterator)

public Iterable<Integer> path(int v)
{
Stack<Integer> path = new Stack<Integer>();
while (v '= -1 && marked[v])
{
list.push(v);
v = pred[v];
}

return path;

41

DFS summary

Enables direct solution of simple graph problems.
* Find path from s to t.

* Conhnected components.

* Euler tour.

* Cycle detection.

= Bipartiteness checking.

Basis for solving more difficult graph problems.

* Biconnected components.
* Planarity testing.

42

breadth-first search

Breadth First Search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty:
* remove the least recently added vertex v
* add each of v's unvisited neighbors to the queue,
and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

44

Breadth-first search scaffolding

public class BFSearcher

{
private int[] dist; distances from s
public BFSearcher (Graph G, int s)
{
dist = new int[G.V()];
for (int v = 0; v < G.V(); vi+) <—— initialize distances
dist[v] = G.V() + 1;
dist[s] = 0;
. compute
bfs (G, s); distances
}
public int distance(int v)
{ return dist[v]; } answer client
query
private void bfs(Graph G, int s)
{ // See next slide. }
}

45

Breadth-first search (compute shortest-path distances)

private void bfs(Graph G, int s)

{
Queue<Integer> q = new Queue<Integer>();
gq.enqueue (s) ;
while (!q.isEmpty())

int v = g.dequeue();
for (int w : G.adj(v))

if (dist[w] > G.V())
{
gq.enqueue (W) ;
dist[w] = dist[v] + 1;

46

BFS Application

* Facebook.
= Kevin Bacon numbers.
* Fewest number of hops in a communication network.

ARPANET LOGICAL MAF, MARCH 1977

|/

| pawesss

i

)
ol i

T

THE HOS* POPULATION OF THE NE TWORK ACCOROING 70 THE DEST
ENAGE FOR 115 ACCURACY)

MANES SHOWN AZE 1M NAVES, NOT (HECESSARILE) HOST HAMES

ARPANET
47

connected components

Connectivity Queries

Def. Vertices vand w are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w?
in constant time

H Vertex Component
\\ J c

BPRGHIZORMBEOOQWEY
HOOHNONOOOHKHKO

Union-Find? not quite

49

Connected Components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS and identify all vertices
discovered as part of the same connected component.

E+V 1 v

50

Depth-first search for connected components

public class CCFinder
{
private int components;
private int[] cc; component labels
public CCFinder (Graph G)
{

cc = new int[G.V()];
for (int v = 0; v < G.V(); v++)

cclv] = -1;
for (int v = 0; v < G.V(); v++) <«—— DFSforeach
if (cc[v] == -1) component
{ dfs (G, v); components++; }
}
private void dfs(Graph G, int v)
{
cc[v] = components;
for (int w : G.adj(v)) <«——— standard DFS
if (cc[w] == -1) dfs(G, w);
}
public int connected(int v, int w) constant-time
- o
{ return cc[v] == cc[w]; } connectivity query

51

Connected Components

52

Connected components application: Image processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Input: scanned image
Output: number of red and blue states

53

Connected Components Application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels
that have the same color.

Efficient algorithm.
* Connect each pixel to neighboring pixel if same color.
* Find connected components in resulting graph.

54

Connected components application: Particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

= Vertex: pixel.

= Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels.

\
black = 0
white = 255

Particle tracking. Track moving particles over time.

challenges

55

Graph-processing challenge 4: Graph-processing challenge 6:

Problem: Find a path from s to t Problem: Find a path from s to t that uses every edge
Assumptions: any path will do Assumptions: need to use each edge exactly once
o g:é 0 0-1
\\ 0-2 \\ 056
o 1—2 6 473 e 1—2 6 44
Which is faster, DFS or BFS? / ::i How difficult? / 53
1) DFs 3—4 0-5 1) any €S126 student could do it 3—4 g:g
2) BFS 5 // f:; 2) need to be a typical diligent 5226 student 5 // 6-4
3) about the same 5-0 3) hire an expert ;:g
4) depends on the graph 4) intractable
5) depends on the graph representation 5) no one knows
57 59
Graph-processing challenge 5: Bridges of Kohigsberg
earliest application of
/ graph theory or topology
Problem: Find a path from s to t The Seven Bridges of Kanigsberg. [Leonhard Euler 1736]

Assumptions: any path will do
randomized iterators

0 8:2 "... in Kénigsberg in Prussia, there is an island A, called the Kneiphof;
\\ 2:§ the river which surrounds it is divided into two branches ... and these
Which is faster, DFS or BFS? 1—2 /6 5.3 branches are crossed by seven bridges. Concerning these bridges, it
5-4 was asked whether anyone could arrange a route in such a way that he
;) DFS / 3 g:i could cross each bridge once and only once..."
) BFS \ -
3) about the same 5-0

4) depends on the graph
5) depends on the graph representation

Euler tour. Is there a cyclic path that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
Tricky DFS-based algorithm to find path (see Algs in Java).

58 60

Graph-processing challenge 7:

Problem: Find a path from s to t that visits every vertex
Assumptions: need to visit each vertex exactly once

How difficult? I« _/6
1) any €S126 student could do it 3—24
2) need to be a typical diligent CS226 student 5 //

3) hire an expert
4) intractable
5) no one knows

Graph-processing challenge 8:

Problem: Are two graphs identical except for vertex names?
Assumptions: need to visit each vertex exactly once

How difficult? - < /6
1) any €S126 student could do it 3—24
2) need to be a typical diligent €S5226 student 5 //

3) hire an expert
4) intractable
5) no one knows 1
\ 0

NHFoaO UL OOO
1
OB WWNDNO R

[1
BB WWNoO

oo UL OOO
I

ONWUUAANNN
I
BwWwowWwuUuo s

62

Graph-processing challenge 9:

Problem: Can you lay out a graph in the plane without crossing edges?

\ -
2,
How difficult? . 7&‘6
1) any €S126 student could do it \ /
2) need fo be a typical diligent 5226 student 3

3) hire an expert
4) intractable
5) no one knows

ONWUUANNN
1
BwWwowWwuUuo e

63

