Union-Find Algorithms

® network connectivity
| quick union

® quick find
& weighted
& gpplications

Subtext of today's lecture (and this course) ik aion’
it

Steps to developing an usable algorithm. + cpplcations

* Define the problem.

* Find an algorithm to solve it.

* Fast enough?

* If not, figure out why.

* Find a way to address the problem.

= Iterate until satisfied.
The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

.. e connectivity
Nefwor‘k ConneCTlVITy © quick union
e quick find
* gfwpc v
Basic abstractions * cpplications
* set of objects
* union command: connect two objects

* find query: is there a paTh connecting one object to another?

.r “

1H

Objects * ik aion”
: Z?S:Cfind
Union-find applications involve manipulating objects of all types. ~ * PPt
= Computers in a network.
= Web pages on the Internet.
* Transistors in a computer chip.
* Variable name aliases.
. . L. stay tuned
* Pixels in a digital photo. 7
* Metallic sites in a composite system.
When programming, convenient to name them O fo N-1. _
* Details not relevant to union-find. / use as array index
* Integers allow quick access to object-related info.

* Could use symbol table to translate from object names

Union-find abstractions

Simple model captures the essential nature of connectivity.

e connectivity
® quick union

® quick find

e gfwpc

o applications

* Objects.
0 1 2 3 4 5 6 7 8 9 grid points
= Disjoint sets of objects.
0 1 {239} {561} 7 {48} subsets of connected grid points

= Find query: are objects 2 and s in the same set?

0 1 {239} {5-6} 7 { 4-8}

are two grid points connected?

= Union command: merge sets containing 3 and s.

0 1 {23489} 7

Network connectivity example

Input: sequence of object pairs

* do find query for each pair

= if connected, ignore

= otherwise, do union command (and print)

"8
=]

out evidence

add a connection between
two grid points

e connectivity
® quick union

® quick find

e gfwpc

o applications

®

N O oW
0O W o v s

(2-3-4-9)
9
48
(5-6)
(2-3-4-8-0)

OO U J NN o B W
H N oy o W w w o wo v s
(&)
©o

Connected components

Connected component: set of mutually connected vertices

e connectivity
® quick union

® quick find

e gfwpc

o applications

Each union command reduces by 1 the number of components

in out
34 34
49 4 9
80 80
23 23
56 56
29
59
73 3
N
Network Connectivity

®
3 = 10-7 components —> l

7 union commands

@ ® ® 5

e connectivity
® quick union

® quick find

e gfwpc

o applications

. . . e connectivih
Union-find abstractions + itk umion
® quick find
e gfwpc
o applications

* Objects.
= Disjoint sets of objects.
* Find queries: are two objects in the same set?

* Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

* Find queries and union commands may be intermixed.
* Number of operations M can be huge.

* Number of objects N can be huge.

. . e connectivit
Quick-Find [eager approach] « quick anion
® quick find

e gfwpc

o applications

Data structure.
= Integer array id[] of size n.
= Interpretation: p and qare connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected
id[ij] 0 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected

. . . tivit
Quick-Find [eager approach] « quick urion
® quick find
e gfwpc v
Data structure. * cpplications
* Integer array id[] of size w.

= Interpretation: p and q are connected if they have the same id.

5 and 6 are connected
8 9 2,3,4,and 9 are connected

H
o
=
N
w

0 s

o U

o o0

~N 3
-]
©

Find. Check if p and q have the same id.
id[3]=9; id[6] = 6
3 and 6 not connected

Union. To merge components containing p and q,
change all entries with id(p] to id[q].

i 01 2 3 4 5 6 7 8 9 union of 3 and 6
id[i] 0 1 6 6 6 6 6 7 8 6 2,3,4,5,6,and 9 are connected
problem: many values can change
1
. . . e connectivity

QUICk'Flnd- EXample o quick union
® quick find
e gfwpc

o applications
@0 8 lORGRUNOXO)

®®®@®
®@®

(D@@@%
2-3 01999567009 @®

@ Q& ®000®
5-6 01999667029 @ ®
_ @ @ @
5-9 01999997009 0990 &
7-3 01999999009 (0] () @ ®

e«)’e‘ee
4-8 0100000000 @

problem: many values can change

. . . e connectivit
Quick-Find: Java Implementation « quick anion
® quick find
e gfwpc
o applications

public class QuickFind
{

private int[] id;

public QuickFind(int N)
{
id = new int[N];
for (int i = 0; i < N; i++)
id[i] = i;

set id of each
object to itself

}

public boolean find(int p, int q)
{

return id[p] == id[ql; 1 operation
}

public void unite(int p, int q)
{
int pid = id[p];
for (int i = 0; i < id.length; i++) N operations
if (id[i] == pid) id[i] = id[q];

. . . e connectivih
Quick-find is too slow + itk umion.
® quick find

e gfwpc

o applications

Quick-find algorithm may take ~MN steps
to process M union commands on N objects

Rough standard (for now).
= 10° operations per second.
= 10° words of main memory.
* Touch all words in approximately 1 second.

a truism (roughly) since 1950 |

Ex. Huge problem for quick-find.
= 10'° edges connecting 10° nodes.
* Quick-find takes more than 10'® operations.
= 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
* New computer may be 10x as fast.
* But, has 10x as much memory so problem may be 10x bigger.
= With quadratic algorithm, takes 10x as long!

. . e connectivity
Quick-Union [lazy approach] « quick union
® quick find
e gfwpc v
Data structure. * cpplications
= Integer array id[] of size w.
* Interpretation: id[i] is parent of i. L keep going until it doesn't change

* Root of i is id[id[id[...id[i]...1]].

i 0 1 2 3 4 5 6 7 8 9 @@ i@
1 9 6 6 7 8 9
® ®

3

3'sroot is 9; 5's root is 6

. . e connectivity
Quick-Union [lazy approach] « quick union
® quick find
e gfwpc v
Data structure. * cpplications
* Integer array id[] of size n.
. In-‘-erppefqﬁon: id[i] is parent of i. / keep going until it doesn't change

* Root of i iS id[id[id[...id[i]...]]].

i 0 1 2 3 4 5 6 7 8 9 @@ i@
id[i] 0 1 9 4 9 6 6 7 8 9
® ®

3

Find. Check if p and q have the same root.

3's root is 9; 5's root is 6
3 and 5 are not connected

Union. Set the id of q's root to the id of p's root.

QXONO ONO)
® ® O

©oN
- w
o s
o u
w
©w

~ 3

—> O o0

only one value changes

Quick-Union: Example

@@@8@@@@@

@@@@@@@
@
®

@@3@@@2
® ®
®
@q@@@
@® @®
@®
@ @
£8°8
®
®®
5-9 01949697009 go® @
(OO ®
oi{%i@g
[©XO]
@ @
4-8 0194969900 o3
® ©@
®6

O]
©

O ®
TE OO \
®6

Quick-Union: Java Implementation

public class QuickUnion
private int[] id;
public QuickUnion (int N)

id = new int[N];
for (int i = 0; i < N; i++) id[i] = i;

}

private int root(int i)

{
while (i !'= id[i]) i = id[i];
return i;

}

public boolean find(int p, int q)
{

return root(p) == root(q);

}

public void unite(int p, int q)

int i = root(p);
int j = root(q);
id[i] = j;

e connectivity
® quick union

® quick find

e gfwpc

o applications

e connectivity
® quick union

® quick find

e gfwpc

o applications

time proportional
to depth of i

time proportional
to depth of pand q

time proportional
to depth of pand q

N problem: trees can get tall

Quick union is also too slow

Quick-find defect.
= Union too expensive (N steps).
* Trees are flat, but too expensive to keep them flat.

Quick-union defect.
= Trees can get tall.
* Find too expensive (could be N steps)

Data Structure
Quick-find N 1

Quick-union 1 N <—— worst case

T

assumes find
already done

Weighted Quick-Union

Weighted quick-union.
* Modify quick-union to avoid tall trees.
* Keep track of size of each component.
= Balance by linking small tree below large one.

Ex. Union of 5 and 3.
* Quick union: link 9 to 6.
* Weighted quick union: link 6 to 9.

size 1 1 4
©@ ©® @
® ©®

e connectivity
® quick union

® quick find

e gfwpc

o applications

e connectivity
® quick union

® quick find

e gfwpc

o applications

20

Weighted quick-union example

®®®8®@®®

@@@@@@

®®©©®

®©©®

5-6 8133355783
@0 690
5 0865
5-9 8133335783 ®6 & ®
5 agofONc)
®

@0 &)
eTOBE
®

Weighted Quick-Union: Java Implementation

Java implementation.
= Almost identical to quick-union.
* Maintain extra array sz[] to count number of elements
in the tree rooted at i.

Find. Identical fo quick-union.

Union. Modify quick-union to
* merge smaller tree into larger tree
= update the sz[] array.

if (sz[i] < sz[j]) { id[i]
else { id[3]

j; sz[j] += sz[i]; }
i; sz[i] += sz[jl; }

e connectivity
® quick union

® quick find

e gfwpc

o applications

21

e connectivity
® quick union

® quick find

e gfwpc

o applications

22

e connectivity

Weighted quick-union analysis e
® quick find
e gfwpc
Analysis applications

* Find: takes time proportional to depth of p and q.
= Union: takes constant time, given roots.
* Fact: depth is at most Ig N. [needs proof]

Data Structure Union Find

Quick-find N 1
Quick-union 1 N
Weighted QU Ig N IgN

Stop at guaranteed acceptable performance? No, easy to improve further.

23

. e connectivity
PGTh Compr‘GSSIon ® quick union
® quick find

e gfwpc

o applications

Path compression. Just after computing the root of i,
set the ia of each examined node to root(i).

root (9)

24

. ectivit
Weighted Quick-Union with Path Compression + itk umion
e quick find

e gfwpc

o applications

Path compression.
= Standard implementation: add second loop to root () to set
the id of each examined node to the root.
= Simpler one-pass variant: make every other node in path
point to its grandparent.

public int root(int i)
{
while (i !'= id[i])
{
id[i] = id[id[i]];/ only one extra line of code !
i = id[i];
}

return i;

In practice. No reason not to!l Keeps tree almost completely flat.

25

. ectivit
Weighted Quick-Union with Path Compression « quick wnian
e quick find
e gfwpc
o applications

®®®8@®®®
@@@@@@
%@@@@@
®,=@@®
8°eBe8”

1 odye’

4-8 8133335333 eo"oe

<
b
©
[
w
w
w
w
o
w
©
w

1)

@HEHD

1)

no problem: trees stay VERY flat ————> @ T 6 D0
©

26

WQUPC performance + cuick union’
: thi‘\;:Cflnd
Theorem. Starting from an empty data structure, any sequence ~ * """
of M union and find operations on N objects takes O(N + M Ig* N) time.
* Proof is very difficult. T
= But the algorithm is still simple! number/of times needed to take
the Ig of a number until reaching 1

. . N Ig* N
Linear algorithm? L .
* Cost within constant factor of reading in the data.))
* In theory, WQUPC is not quite linear. .)
* Inpractice, WQUPC is linear. | L6 s
T 65536 4
because Ig* N is a constant 265336 5
in this universe
Amazing fact: No algorithm can do better!
27
e connectivity
Summary ® quick union
® quick find
e gfwpc
ot
Algorithm Worst-case time * cpplications
Quick-find MN
Quick-union MN
Weighted QU N+ Mlog N
Path compression N+ M log N
Weighted + path (M+N)Ig* N

M union-find ops on a set of N objects

Ex. Huge practical problem.
= 10 edges connecting 10° nodes.
* WQUPC reduces time from 3,000 years to 1 minute.
- Super‘compufer‘ won't help much. WQUPC on Java cell phone beats QF on supercomputer!
* Good algorithm makes solution possible.

Bottom line.
WQUPC makes it possible to solve problems
that could not otherwise be addressed

28

e connectivity

. tivit
Union-find applications « quick union UF solution for percolation « quick anion
e quick find e quick find
e qfwpc e qfwpc
o applications o applications
¥ Network connectivity. = Initialize whole grid to be insulators
* Percolation. * Make top and bottom row conductors
* Image processing. * Make random sites conductors until £ind (top, bottom)
* Least common ancestor. = conductor percentage estimates p*

= Equivalence of finite state automata.

* Hinley-Milner polymorphic type inference.
* Kruskal's minimum spanning tree algorithm.
* Games (6o, Hex)

top
= Compiling equivalence statements in Fortran. gggggngggnnn

11 12

R R

28 29 30 31

39 4042 43
SO. 2 s

54 55 56 57 58

49
. - conductor

insulator

bottom

29 31

Percolation ik o Percolation - ik o
e quick find e quick find
e gfwpc e gfwpc
Percolation phase-transition. * applications Q. What is percolation threshold p* at which charge carriers * applications
= Two parallel conducting bars (top and bottom). can percolate from top to bottom?
* Electricity flows from a site to one of its 4 neighbors
if both are occupied by conductors. A. ~0.592746 for square lattices.

* Model: each site is a conductor with probability p. !

percolation constant known
only via simulation

Q. What is percolation threshold 2 3 4 5 n 8 9

p* at which charge carriers can 15 n 20
percolate from top to bottom? -
l-’l 28 29 30 31- 33 34

B @B
50 52 54 55 56
LT

45 46

- conductor

insulator

bottom

Why is UF solution better than solution in IntroProgramming 2.4?

30 32

e connectivity
Hex ® quick union
e quick find
e gfwpc
Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962] * cpplications
= Two players alternate in picking a cell in a hex grid.
* Black: make a black path from upper left fo lower right.

* White: make a white path from lower left to upper right.

Reference: http://mathworld.wolfram.com/GameofHex.html

Goal. Algorithm to detect when a player has won.

33

Subtext of today's lecture (and this course) cuick anion’
: gﬁx:cflnd

Steps to developing an usable algorithm. + cpplcations

* Define the problem.

* Find an algorithm to solve it.

* Fast enough?

* If not, figure out why.

* Find a way to address the problem.

= Iterate until satisfied.
The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

34

