
Princeton University
COS 217: Introduction to Programming Systems

Gdb Tutorial

This tutorial describes how to use a minimal subset of the gdb debugger. See the
summary sheet distributed in precept for more information. Also see Chapter 6 of our
Programming with GNU Software (Loukides & Oram) textbook.

The tutorial assumes that you have created a file named testintmath.c in your working
directory, containing the program recently discussed in precepts. That file is available
through the course "Schedule" Web page.

Introduction

Suppose you are developing the testintmath (version 1) program. Further suppose that
the program preprocesses, compiles, assembles, and links cleanly, but is producing
incorrect results at runtime. What can you do to debug the program?

One approach is temporarily to insert calls to printf(...) or fprintf(stderr, ...) throughout
the code to get a sense of the flow of control and the values of variables at critical points.
That's fine, but often is inconvenient.

An alternative is to use gdb. gdb is a powerful debugger. It allows you to set breakpoints
in your code, step through your executing program one line at a time, examine the values
of variables at breakpoints, examine the function call stack, etc.

Building for gdb

To prepare to use gdb, build your program with the -g option:

$ gcc -Wall -ansi -pedantic -g testintmath.c -o testintmath

Doing so places extra information into the testintmath file that gdb uses.

Running gdb

The next step is to run gdb. You can run gdb directly from the shell, but it's much
handier to run it from within xemacs. So launch xemacs, with no command-line
arguments:

$ xemacs

Now call the xemacs "gdb" function via these keystrokes:

<Esc key> x gdb <Enter key> testintmath <Enter key>

Page 1 of 4

At this point you are executing gdb from within xemacs. gdb is displaying its (gdb)
prompt.

Running your Program

Issue the "run" command to run the program:

(gdb) run

Enter 8 as the first integer, and 12 as the second integer. gdb runs the program to
completion, indicating that the "Program exited normally." Incidentally, file redirection
is specified as part of the "run" command. For example, the command "run < somefile"
runs the program, redirecting standard input to somefile.

Using Breakpoints

Set a breakpoint at the beginnings of some functions using the "break" command:

(gdb) break main
(gdb) break gcd

Run the program:

(gdb) run

gdb pauses execution near the beginning of main(). It opens a second window in which it
displays your source code, with the about-to-be-executed line of code highlighted.

Issue the "continue" command to tell command gdb to continue execution past the
breakpoint:

(gdb) continue

gdb continues past the breakpoint at the beginning of main(), and execution is paused at a
scanf(). Enter 8 as the first number. Execution is paused at the second scanf(). Enter 12
as the second number. Gdb is paused at the beginning of gcd().

Then issue another "continue" command:

(gdb) continue

Note that gdb is paused, again, at the beginning of gcd(). (Recall the gcd() is called
twice: once by main(), and once by lcm().)

While paused at a breakpoint, issue the "kill" command to stop execution:

(gdb) kill

Page 2 of 4

Type "y" to confirm that you want gdb to stop execution.

Issue the "clear" command to get rid of a breakpoint:

(gdb) clear gcd

At this point only one breakpoint remains: the one at the beginning of main().

Stepping through the Program

Run the program again:

(gdb) run

Execution pauses at the beginning of main(). Issue the "next" command to execute the
next line of your program:

(gdb) next

Continue issuing the "next" command repeatedly until the program ends.

Run the program again:

(gdb) run

Execution pauses at the beginning of main(). Issue the "step" command to execute the
next line of your program:

(gdb) step

Continue issuing the "step" command repeatedly until the program ends. Is the
difference between "next" and "step" clear? The "next" command tells gdb to execute the
next line, while staying at the same function call level. In contrast, the "step" command
tells gdb to step into a called function.

Examining Variables

Set a breakpoint at the beginning of gcd():

(gdb) break gcd

Run the program until execution reaches that breakpoint:

(gdb) run
(gdb) continue

Now issue the "print" command to examine the values of the parameters of gcd():

(gdb) print iFirst
(gdb) print iSecond

Page 3 of 4

In general, when paused at a breakpoint you can issue the "print" command to examine
the value of any expression containing variables that are in scope.

Examining the Call Stack

While paused at gcd(), issue the "where" command:

(gdb) where

In response, gdb displays a call stack trace. Reading the output from bottom to top gives
you a trace from a specific line of the main() function, through specific lines of
intermediate functions, to the about-to-be-executed line.

The "where" command is particularly useful when your program is crashing via a
"segmentation fault" error at runtime. When that occurs, try to make the error occur
within gdb. Then, after the program has crashed, issue the "where" command. Doing so
will give you a good idea of which line of your code is causing the error.

Quitting gdb

Issue the "quit" command to quit gdb:

(gdb) quit

Then, as usual, type:

<Ctrl-x> <Ctrl-c>

to exit xemacs.

Command Abbreviations

The most commonly used gdb commands have one-letter abbreviations (r, b, c, n, s, p).
Also, pressing the Enter key without typing a command tells gdb to reissue the previous
command.

Copyright © 2007 by Robert M. Dondero, Jr.

Page 4 of 4

