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The problem of multilocus linkage analysis is expressed as a graphical model, making explicit a
previously implicit connection, and recent developments in the field are described in this context.
A novel application of blocked Gibbs sampling for Bayesian networks is developed to generate
inheritance matrices from an irreducible Markov chain. This is used as the basis for reconstruction of
historical meiotic states and approximate calculation of the likelihood function for the location of an
unmapped genetic trait. We believe this to be the only approach that currently makes fully informative
multilocus linkage analysis possible on large extended pedigrees.
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1. Introduction

Human gene mapping is based on observing correlations be-
tween disease segregation and transmission of alleles at genetic
markers. Allele transmissions, however, are not directly observ-
able and have to be inferred from the genotypes of individuals
involved. In animal genetics, where the matings can be appropri-
ately arranged, the transmissions can be inferred completely, but
in human studies inferences are incomplete and leave a large pos-
sible state space. Analysis of several proximal genetic markers
in large extended families can yield powerful statistical methods
to address the problem and is essential in inferring the positions
of meiotic recombination events and hence in fine scale gene
localization.

The problem can be referred to as the haplotyping problem,
in which the unordered pair of alleles that make up a person’s
observable genotypes for a set of close markers are assigned
to the paternally or maternally inherited chromosome. This is
also known as determining the phase of the alleles at each
locus. The information at each locus can be summarised as
an inheritance vector (Lander and Green 1987), also called a
genetic descent graph (Sobel and Lange 1996), in which a vec-
tor of binary variables indicates for each transmission whether
the parent’s maternal or paternal allele was inherited by the child.

The collection of inheritance vectors, one for each locus, is, in
the formal statistical sense, sufficient for the problem. We shall
call this the inheritance matrix.

The genetic distance between two genetic loci is usually
parameterised by the probability that a genetic recombination
event occurs between them. For the problem we consider, we
assume that the markers we analyse are at known positions, and
that only the position of the disease, parameterised by the prob-
ability θ , has to be estimated. The likelihood framework for this
problem was developed by Morton (1955) where the likelihood
function, L(θ ) is usually reported in the form of a Lod function,
defined as

Lod(θ ) = log10
L(θ )

L
(

1
2

) (1)

Frequently, only the Lod score or maximum of this function over
θ is reported.

In principle, the likelihood function could be calculated
by summing the contribution from each inheritance matrix,
weighted by its probability given the observed marker pheno-
types. Letting D be the vector of observed phenotypes for the
trait being linked, I the inheritance vector for the hypothesised
underlying trait locus, M the matrix of observed marker data,
H the inheritance matrix for the markers, and φ the vector of
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known recombination fractions between the marker loci,

L(θ ) = P(D,M | θ )

∝
∑
all H

∑
all I

P(DI | Hθ )P(H |Mφ) (2)

The state space of all inheritance vectors grows exponen-
tially with the number of individuals in the family and with the
number of genetic loci considered. Despite this, methods have
been developed to implement calculation (2) in a surprisingly
large number of cases by exploiting conditional independence.
Elston and Stewart (1971) introduced a method which allowed
such calculations to be made in unlooped pedigrees by suc-
cessively collapsing information from offspring into probability
distributions on parents. This uses the conditional independence
of a child’s genotype and a grandparent’s genotype given the
genotype of the intervening parent. The method was extended
to other pedigree structures by Lange and Elston (1975) and to
fully general pedigrees by Cannings, Thompson and Skolnick
(1978). Cannings et al. (1978) called the method peeling. While
the peeling method is now entirely general, computational re-
quirements grow as an exponent of the complexity of a pedi-
gree, or how looped it is. Programs such as LINKAGE (Lathrop
et al. 1984) and FASTLINK (Cottingham, Idury and Schaffer
1993) are based on the Lange and Elston (1975) approach, and
most applications involve unlooped pedigrees. For these cases
computations grow linearly in the number of people in the pedi-
gree, but exponentially in the number of loci considered. In prac-
tice, using the VITESSE program (O’Connell and Weeks 1995),
simultaneous consideration of about 5 loci is the limit of current
feasibility.

A far more recent, and orthogonal, development has
been that of Lander and Green (1987) implemented by the
GENEHUNTER program (Kruglyak et al. 1996). This exploits
the common assumption that recombination events occur as a
Poisson process along a chromosome during meiosis, usually
termed no interference in genetics. The result of this is that the
inheritance vector at a particular locus is independent of those at
other loci, conditional on the vectors for the two adjacent loci.
In other words, the columns of the inheritance matrix have a first
order Markov property, provided the ordering of the columns
corresponds to the physical order of the marker loci. This allows
the required computation to grow linearly with the number of
loci, but exponentially in the number of people in the pedigree.
In the current implementation pedigrees of more than around 25
people are infeasible.

This problem can be expressed as a graphical model
(Lauritzen and Spiegelhalter 1988) and it is clear that likelihood
calculation by both peeling and the Lander and Green methods
are special cases of the information collecting and dispersing
phases of this methodology. The approaches differ in the vari-
ables modelled in the graph, and the triangulation of the graph
implicit in the order in which variables are summed out. Both
methods use distributional symmetries to speed up calculation

and GENEHUNTER also makes innovative use of Fourier
transforms for efficiency gains (Kruglyak and Lander 1998).
Despite this, calculations are still intractable for more than about
5 markers in pedigrees of more than about 25 people.

Various Markov chain Monte Carlo methods have been used
to address particular genetic problems (Sheehan 1990, Sheehan
and Thomas 1993, Sheehan 1992, Sobel and Lange 1996)
and more general graphical models (Gelfand and Smith 1990,
Thomas, Spiegelhalter and Gilks 1992, Gelman and Rubin 1992,
Geyer 1992, Smith and Roberts 1993). A recent development
has been that of efficient blocked Gibbs sampling for graphical
models (Jensen, Kong, and Kjaerulff 1995, Jensen and
Kong 1996, Jensen 1997) which allows updating of large sub-
graphs of the model simultaneously. We express the multilo-
cus linkage problem explicitly as a graphical model and apply
blocked Gibbs sampling as an efficient method of reconstruct-
ing inheritance matrices and approximate calculation of Lod
functions for arbitrarily large pedigrees and an arbitrarily large
number of loci. Blocking not only updates a large number of vari-
ables simultaneously but also, in the way we apply it, ensures
irreducibility of the induced Markov chain.

In Section 2 we review the aspects of graphical model methods
relevant to our problem including blocked Gibbs sampling. We
formulate the linkage problem as a graphical model, describe the
Markov chain Monte Carlo updates made, and specify how the
inheritance matrices generated are used for likelihood calcula-
tions. Subsection 2.3 also serves as a review of the development
of likelihood calculation for linkage genetics in terms of the
underlying graphical models. Section 3 illustrates the method
in an analysis of data from several chromosome 14 markers,
comparing our results with those from other methods. Finally,
in Section 4, we summarise our findings and describe areas of
future work.

Although the genetic problem and peeling predate the gen-
eral graphical model approach, we shall use the terminology of
the more general method indicating, where appropriate, corre-
sponding terms or methods used in genetics.

2. Materials and methods

2.1. Graphical models and efficient computation

Lauritzen and Spiegelhalter (1988) describe a methodology for
efficient propagation of information on Gaussian random vari-
ables and discrete random variables with finite range when the
joint probability of any state x = (x1, x2, . . . , xn) can be fac-
torised as

P(x ) =
n∏

i=1

P(xi |C(xi )). (3)

C(xi ) is a relatively small set of variables, called the parent vari-
ables of xi . The directed graph which joins parent variables to
offspring variables must be acyclic. Information is input in the
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form of constraints on some or all of the variables. For compu-
tational purposes, however, the relevant graph is the so called
moral graph, an undirected graph in which offspring variables
are joined to their parents, and parents of the same offspring
are joined to each other. Efficient computations are determined
by triangulating the moral graph, finding the cliques and clique
intersections of the triangulated graph, and deriving a junction
tree (Jensen 1988). The junction tree is a maximal spanning tree
of the graph that has cliques as nodes which share an edge if they
intersect, the weight of the edge being the size of the intersection.
The most efficient order in which to make computations of joint
probability distributions on subsets of variables can then be read
from the junction tree. While Lauritzen and Spiegelhalter (1988)
formulate the problem in a Bayesian framework, it is equally ap-
plicable for computation of likelihoods in other contexts. Further
reading about graphical models and Bayesian networks can be
found in Jensen (1996) and Lauritzen (1996).

Several operations can now be performed efficiently. The first
step is to collect evidence. This operation collects all the infor-
mation in the graph towards a single clique, successively sum-
ming out the variables in an order derived from the junction
tree. Summing over all the terms of the distribution on the final
clique gives the probability of the subspace determined by the
input constraints. When the probabilities depend on the value of
a parameter the result is the likelihood for that parameter given
the observed data, and this operation is exactly equivalent to the
peeling method as developed by Cannings et al. (1978). As this
operation is performed, the intermediate conditional probability
functions on the cliques and clique intersections are stored to
prepare for subsequent operations.

The next step is usually to distribute evidence. This operation
reverses the order of the collect evidence step and successively
calculates the marginal distribution for each clique and clique
intersection, given the input constraints. This method is not usu-
ally necessary for likelihood computations which can be made
in a single pass.

The distribute evidence step may be replaced by random prop-
agation (Dawid 1992) where instead of calculating marginal dis-
tributions, we successively generate random realizations from
them. This results in a random realization from the distribution
of states given the input constraints. An analogous method was
used by Ploughman and Boehnke (1989) in assessing the power
of pedigrees for linkage analysis.

It is also possible, as described by Dawid (1992), to replace
summation over states with maximisation and hence find the
most likely configuration in the graph, essentially generalised
dynamic programming.

The computational resources required for all of these opera-
tions are determined by the size of clique state spaces, and are
dominated by the largest clique state space. When peeling a sin-
gle locus trait on an unlooped pedigree, the cliques are formed
by the parent/offspring genotype triplets. Hence, the time re-
quired is of order ng3 where n is the number of individuals in
the pedigree and g is the number of genotypes for the trait.

2.2. Blocked Gibbs sampling

Markov chain Monte Carlo sampling methods, and particularly
the Gibbs sampler (Geman and Geman 1984), have been used
extensively for graphical models in many areas of interest includ-
ing genetics. Sheehan (1990) first developed the Gibbs sampler
for the case of single biallelic loci, Sheehan and Thomas (1993)
developed irreducible schemes for sampling from arbitrary
genetic loci and Thomas (1994) applied this to the two locus
linkage problem.

In a graphical model with n variables N ={1, 2, . . . , n}, the
Gibbs sampler proceeds by updating the state of each variable
in turn by simulating from p(xi | x−i ), the conditional distri-
bution of the i th variable given the current state of all other
variables. Jensen (1997) extended this to simulating efficiently
from p(xI | xĪ ) the conditional distribution of a set of variables
indexed by I ⊆ N given the current state of all other variables,
the set Ī , in complex graphical models. Updates are made by
considering only the subgraph of the moral graph induced by
the variables I , the rest of the graph being unnecessary since its
state is fixed by conditioning. Collect information and random
propagation steps are then performed on the induced subgraph.
By choosing I such that the induced subgraph is loosely con-
nected, a simulation from a state space whose size is exponential
in |I | can be made using time and storage requirements which
are linear, or approaching linear, in |I |. Moreover, it should be
possible to choose a sequence of update sets each of which con-
tains a large proportion of the graph. There typically will be a
trade off between the proportion of the graph included in any
update and the time and storage required to make the update. Of
course, the union of the chosen sets must be N .

2.3. The linkage problem as a graphical model

Figure 1 shows an example of a simple nuclear family with
two children in the usual format. For a single locus problem
this would usually be parameterised in terms of genotypes, the
unordered pair of alleles present for an individual at the locus
in question, and phenotypes, the observable trait dependent on
the genotype. For most genetic markers there is a one to one
correspondence between genotype and phenotype, that is they
are co-dominant, but this is not necessary for our method. As-
suming independent segregation of genotypes from parents to
offspring, and that the observed phenotypes depend only on the
underlying genotype, not on any shared environmental factors,
the probability of any state for the variables can be factorised as

P(M,G) = P(M1. .Mn,G1. .Gn)

=
∏
i∈F

P(Gi )
∏
j∈F̄

P
(
G j

∣∣G f j ,Gm j

)∏
k∈N

P(Mk |Gk)

(4)

where N is the set of indices {1 . . n} corresponding to the n indi-
viduals in the pedigree, F is the set of indices for the f founders
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Fig. 1. A nuclear family with two children

of the pedigree, Gi is the genotype of the i th individual, f j

and m j are the parents of the j th individual, and Mk represents
the observed marker data, or phenotype, for the kth individual.
P(Gi ) typically would be genotype frequencies based on Hardy-
Weinberg equilibrium, and P(G j |G f j ,Gm j ) would encode
Mendelian inheritance probabilities. P(Mk |Gk) is usually a one
to one function, but it might also reflect mistyping error proba-
bilities, or partial observations and is usually referred to as the
penetrance function. In many cases the markers for many people
will not have been observed, making this function uniform on
all genotypes. It is then simply omitted in efficient implementa-
tions. Figure 2 illustrates the corresponding moral graph for the
example family.

The above parameterisation does not express all available
conditional independences, in particular, the transmission of an
allele from one parent to an offspring is independent of the trans-
mission from the other parent. Harbron and Thomas (1994) ex-
amined alternative parameterisations in terms of the ordered
alleles for individuals at a locus that express this additional
independence. This parameterisation was previously used by

Fig. 2. The moral graph for a single locus parameterised with genotypes

(Kong 1991). Letting A2i−1 and A2i respectively be the pater-
nally and maternally inherited alleles for the i th individual we
then get the following factorisation

P(M, A) =
∏
i∈F

P(A2i−1)P(A2i )

×
∏
j∈F̄

P
(

A2 j−1

∣∣ A2 f2 j−1−1, A2 f2 j−1

)
× P

(
A2 j

∣∣ A2m2 j−1, A2m2 j

)
×
∏
k∈N

P(Mk | A2k−1, A2k) (5)

or more simply

P(M, A) =
∏
i∈E

P(Ai )
∏
j∈Ē

P
(

A j

∣∣ A f j , Am j

)
×
∏
k∈N

P(Mk | A2k−1, A2k) (6)

where E is the set of e= 2 f founding alleles of the founders F .
We now use f j and m j to index the parental alleles from which
the j th allele is drawn. P(A) is the frequency of the allele A in
the population that the founders are drawn from and

P
(

A j

∣∣ A f j , Am j

) =


1 if A j = A f j = Am j

1

2
if A j = A fi or A j = Am j , A f j 6= Am j

0 otherwise

(7)

If P(Mk | A2k−1, A2k)= P(Mk | A2k, A2k−1) as is the case un-
less genetic imprinting is assumed in the model, then the two
parameterisations (4) and (6) are equivalent. The moral graph
for this is given in Fig. 3. Using this parameterisation, Harbron
and Thomas (1994) showed that all the steps required for the
graphical model operations needed to deal with a single locus
with a alleles on an unlooped pedigree of n individuals can be
done in time proportional to na4(a+ 1). For a≥ 6 this compares
favourably with the genotype parameterisation which takes time
proportional to n( a(a+ 1)

2 )3.

Fig. 3. The moral graph for a single locus parameterised with alleles
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In order to generalise the allelic model for several loci we
follow Jensen (1997) first adding an indicator variable Hj for
each meiosis to get

P(M, A, H ) = P(M, A | H )
∏
j∈Ē

P(Hj ) (8)

where

P(M, A | H ) =
∏
i∈E

P(Ai )
∏
j∈Ē

P
(

A j

∣∣ A f j , Am j , Hj

)
×
∏
k∈N

P(Mk | A2k−1, A2k) (9)

P(Hj ) =


1

2
if Hj ∈ {0, 1}

0 otherwise
(10)

and

P
(

A j

∣∣ A f j , Am j , Hj

) =


1 if A j = A f j and Hj = 1

1 if A j = Am j and Hj = 0

0 otherwise

(11)

The moral graph for this case is given in Fig. 4, from which
it is clear that summing over the {Hi } returns us to the previous
allelic parameterisation (6). Moreover, it also shows that the
additional computational burden due to the extra variables is of
order 2na3, which is negligible compared with the o(na5) time
required to deal with an unlooped pedigree.

In order to describe the multilocus case we extend our nota-
tion so that the matrix A={Ai, j }, where Ai, j , is the i th allelic
variable for the j th locus, and A j is the j th column of A, with
similar interpretations for M and H . Then, under the usual as-
sumption that recombinations occur as a Poisson process along
the chromosome, we get the following.

P(M, A, H ) =
m∏

j=1

P(M j , A j | H j )P(H 1)
m∏

k=2

P(H k | H k−1)

(12)

Fig. 4. The moral graph for a single locus parameterised with alleles
and meiotic states

where P(M j , A j | H j ) is given by equation (9),

P(H 1) = 1

22(n− f )
for all values of H 1, (13)

P(H k | H k−1) =
∏
i∈Ē

P(Hi,k | Hi,k−1), (14)

and

P(Hi,k | Hi,k−1) =


φk−1,k if Hi,k 6= Hi,k−1

1− φk−1,k if Hi,k = Hi,k−1

for 0 < φk−1,k ≤ 1
2

(15)

Figure 5 gives the corresponding moral graph. This is the
structure implicit in Sobel and Lange (1996) and Lander and
Green (1987). Sobel and Lange (1996) define a set of tran-
sition rules on the graphical model in which subsets of the
H j are changed using a sequence of smaller changes which
may pass through states of zero probability. For the Lander and
Green (1987) method,

P(M j | H j ) =
∑
all A j

P(M j , A j | H j ) (16)

is calculated and stored for each locus. These values are
then combined using the locus to locus transition probabilities
P(H k | H k−1), Fourier transforms can be used to make the tran-
sition calculations efficient (Kruglyak and Lander 1998). By
exploiting symmetries in the state space of H j , the storage and
time requirements to calculate the P(M j | H j ) grow as 22(n− f )− f

rather than as 22(n− f ). However, this still limits application of the
method to pedigrees of around 25 individuals. Viewed as oper-
ations on vectors of variables, the moral graph corresponding to
this is given by Fig. 6. The original application of this method
was for the situation when the order of the loci was known but
the genetic distances between them not. In that case, iterations
of the EM-algorithm (Dempster, Laird, and Rubin 1977) were
used to derive maximum likelihood distance estimates.

2.4. The block updating scheme

Conditional on the inheritance vectors H j−1 and H j+1, and the
observed marker data M j , a collect information and random
propagation step for H j and A j reduces to a simple single locus
operation. In genetic terms we peel the locus and hence generate
a new realisation. For an unlooped pedigree this operation can
be performed in time linear in the size of the pedigree. The same
method can, of course, be used on pedigrees with an arbitrary
number of loops but computational requirements will grow ex-
ponentially with the complexity of the pedigree as measured by
the size of the largest clique in the triangulated moral graph.

This is the basis of our block updating scheme, the blocks con-
sist of the allele and inheritance variables relevant to each locus.
In essence we treat the columns of H as single variables, but in
such a way that the exponentially large state space for each col-
umn variable is sampled in linear time. The corresponding moral
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Fig. 5. Part of the moral graph for the multilocus problem parameterised with alleles and meiotic states

Fig. 6. Part of the moral graph for the multilocus problem parame-
terised as vectors

graph is given in Fig. 6. This vectorisation of the inheritance
matrix by column is implicit in the Lander and Green (1987)
method, but since the probability for every state is stored, the
storage requirement is exponential in the column length. Peel-
ing conversely, as it is applied to linkage analysis, can be viewed
as a vectorisation of H by rows.

From equations (12) to (15) it is clear that the state space
for the inheritance matrix given all marker data is the prod-
uct of the state spaces for the inheritance vectors at each locus
given only the marker data at the corresponding locus. That is,
P(M, A, H )> 0 if and only if P(M j , A j , H j )> 0 for all j .
Thus, our block updating scheme which visits all loci, updat-
ing all elements of the vectors A j and H j simultaneously, must
define an irreducible Markov Chain and so has the appropriate
ergodic distribution. This guarantee of theoretical irreducibility
makes our method fundamentally different to existing methods
which change individual variables, or small blocks of variables,
in each update.

A starting configuration for our scheme can be generated in
several ways. By the above observation, simply performing an

unconditional collect evidence and random propagation at each
locus, using only information at that locus, will give us a multilo-
cus configuration with positive probability. Alternatively, we can
perform an unconditional collect evidence and random propaga-
tion step on some locus, then, incorporating loci in an arbitrary
order, make a similar step for each locus conditioning only on
loci for which states have already been generated, essentially,
using the method of sequential imputation (Kong et al. 1993) as
a starting point for Monte Carlo Markov chain simulation.
Either way we can generate a starting configuration using the
same program steps as the main simulation scheme and avoid
special treatment of this case by methods such as those of
Heath (1998), Jensen (1998) or Sheehan and Thomas (1993).

2.5. Additional block updates

While our block updating scheme ensures theoretical ergodicity,
in practice certain transitions may have probability too small to
occur even in a long simulation run. Therefore, in order to have
better mixing properties, we have introduced extra transitions
which update the inheritance states of all loci simultaneously
for a small set of meioses. That is, simultaneous updates of rows
of H .

At any particular locus, as Lander and Green (1987) show,
we can find the posterior distribution of 2(n− f ) inheritance
variables in time proportional to 22(n− f ) . Extending this idea we
can also find the posterior distribution of a subset of k inheri-
tance variables, conditional on particular values for the remain-
ing 2(n− f )− k in time proportional to 2k . This can be done by
a collect evidence step in which the k variables of interest are
not summed out but, once encountered in the calculations, kept
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in as arguments to all subsequent functions including the output
function. This is similar to the use of peeling to obtain like-
lihoods for ancestral genotypes. Combining information from
locus to locus for this subset of k meioses can be done in time
proportional to k2k+1 using the recurrence relation

P(M j . .Mm | H j )

= P(M j | H j )
∑
H j+1

P(H j+1 | H j )P(M j+1 . .Mm | H j+1)

= P(M j | H j )
∑

H1, j+1

· · ·
∑

Hk, j+1

k∏
i=1

P(Hi, j+1 | Hi, j )

× P(M j+1 . .Mm | H j+1)

= P(M j | H j )
∑

H1, j+1

P(H 1, j+1 | H 1, j )

×
∑

H2, j+1

P(H 2, j+1 | H 2, j ) · · ·
∑

Hk, j+1

P(H k, j+1 | H k, j )

× P(M j+1 . .Mm | H j+1) (17)

In this way we perform a collect evidence step on a block
containing all the variables in the allele matrix A and a subset of k
rows of the inheritance matrix H conditioning only on the values
of the remaining 2(n− f )− k rows of H , in time proportional to
mk2k+1 requiring storage of mk2k terms. A random propagation
can be performed in similar time for an efficient blocked Gibbs
update.

As a further refinement which allows more variables to be
updated at each step we impose constraints to limit the number
of new states possible. So, if changes on a group of s inheritance
variables are controlled by a smaller number, t say, of binary
variables we have 2t possibilities at each locus rather than 2s .

Note that in both column and row types of updates we condi-
tion only on subsets of H , and not on any of the allelic states A,
which are always updated. To use the terminology and distinc-
tion of Sobel and Lange (1996), this is a method which updates
genetic descent graphs not genetic descent states. This allows
us freedom to traverse the state space of H unconstrained by
particular simulated values of A.

The specific multilocus blocks that we update are defined by
the following.

2.5.1. Individuals

Take in turn each individual who is not a founder. Update their
maternal and paternal inheritances jointly. This has 22 possibil-
ities at each locus.

2.5.2. Nuclear families

Take in turn each nuclear family in the pedigree. Define two
binary variables at each locus, X j and Y j say. If X j is true
the inheritances at the j th locus from the father to each of the
children are flipped. If Y j is true the inheritances at the j th locus
from the mother to each of the children are flipped. This update is

also controlled by 22 possibilities at each locus. It has the effect of
swapping the father’s maternally and paternally inherited alleles
and/or the mother’s maternally and paternally inherited alleles
in a joint step.

2.5.3. Three generation families

Take in turn each three generational family of grandparents, their
children and their grandchildren. Define a single binary variable,
X j at each locus. If X j is true the inheritances from all of the
children to all of the grandchildren at the j th locus are flipped,
and the maternal and paternal inheritances of the children are
swapped. This update is controlled by only 2 possibilities at each
locus. It has the effect of swapping the alleles of the grandfather
and grandmother.

For each of the last two types of update most individuals will
appear in multiple overlapping family blocks. Although these are
very restrictive, and hence efficient, updates they have proved
important in making a chain with good mixing properties.

2.6. Implementational considerations

Our implementation updates loci in random order, subject to the
constraint that no locus is updated twice in immediate succes-
sion. After a number of updates equal to the number of loci a
realisation is output, although not every block will necessarily
have been updated since the last realisation used. Other schemes
are obviously possible, such as updating the loci in some fixed
order, or generating a random permutation of loci for each round
of updates, but we would not expect the behaviour to differ ap-
preciably.

The observation that the state space for the inheritance matrix
is the product of the column state spaces allows us to signifi-
cantly reduce the computational burden. A collect evidence and
distribute evidence step performed on each locus in turn, using
only the observations at the appropriate locus, can be performed
at start up. This will allow us to identify the set of allelic states
possible for each individual at each locus. Thus, by restricting
future computations to only those states, we can reduce the com-
putational requirement for an iteration on the j th locus from

na4
j (a j + 1) (18)

where a j is the number of alleles at the j th locus to∑
i∈N

a4
i, j (ai, j + 1) (19)

where ai, j is the number of states possible for the i th allele at
the j th locus. In a pedigree with dense genotyping information,
this can increase speed considerably.

In fact, further refinements are possible. Conditional on the
alleles of a parent, the allele that the child inherits can take
only one of the two parental values. So by arranging the order
of summation appropriately, we can replace a factor of ai, j in
equation (19) by a factor of 2 for many steps.

It is also possible to find the feasible state space for a set of
variables jointly, and when this is smaller than the product of the
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individual state spaces it may be better to store these states and
step through them in subsequent updates. This is usually true
for the four alleles for each pair of mated individuals, and so we
implement the saving in this case.

For unlooped pedigrees, the triangulation of the moral graph
needed to determine the order of summation for the graphical
model operations can be generated following the rules developed
by Harbron and Thomas (1994). For looped pedigrees, some
search and optimisation scheme may be necessary. Greedy al-
gorithm methods have been shown to give adequate solutions but
simulated annealing may do better and could be tried on more
complex pedigrees (Thomas 1986). In any case, finding optimal
triangulations needs to be done only once, the same solution then
being used for all updates. If the number of alleles differ greatly
it might be best to use different triangulations at each locus, but
if they are about the same using the same suboptimal but good
solution at all the loci will probably suffice.

All our calculations for computational requirements repre-
sent the worst case. In cases when information is available to
exactly determine the value of a variable, that variable needs no
further updating and any distributions conditional on it can be
calculated at start up. This is expressed graphically by deleting
the corresponding node and all adjacent edges from the moral
graph, a structural change that can help produce more efficient
triangulations for some loci.

2.7. From inheritance matrix to Lod scores

Given a sequence of s inheritance matrices H 1 . . H s simulated
from P(H |Mφ), we can make an approximate calculation of
(2) as

L(θ ) =
∑
all H

∑
all I

P(D, I | H, θ )P(H |M, φ)

≈ 1

s

s∑
t=1

∑
all I

P(D, I | H t , θ ) (20)

We calculate the inner sum exactly for each H t and for a range
of values of θ containing the whole genetic region spanned by
the markers, summing over each possible inheritance state at
the trait locus rather than simulating a subset of them. More
explicitly, letting B be the vector of alleles at the trait locus, we
have that∑

all I

P(D, I | H t , θ )

=
∑
all I

∑
all B

P(D | B)P(B | I )P(I | H t , θ ) (21)

=
∑
all I

∑
all B

∏
i∈E

P(Bi )
∏
j∈Ē

P
(
B j

∣∣ B f j , Bm j , I j

)
×
∏
k∈N

P(Dk | B2k−1, B2k)
∏
l∈Ē

P(Il | H t , θ ) (22)

where the first three products are analogous to those in equa-
tion (9). Under the Poisson assumption of no interference, the
inheritance at the disease locus for the lth segregation depends

on H t only through the inheritances for that segregation at the
two loci adjacent to the putative position defined by θ . Call these
loci q(θ ) and q(θ )+ 1, and note that the recombination fraction
between them is given by φq(θ ),q(θ )+ 1. Index any putative trait
location between these loci by λ(θ ), the recombination fraction
between the trait locus and marker locus q(θ ). Then, again by
assuming no interference, the recombination fraction between
the trait locus and the marker locus q(θ )+ 1 is given by

λ′(θ ) = φq(θ ),q(θ )+1 − λ(θ )

1− 2λ(θ )
(23)

Hence, leaving out some notational references to θ for clarity

P(Il | H t , θ ) = P
(
Il

∣∣ H t
l,q(θ ), H t

l,q(θ )+1, λ(θ )
)

(24)

= λ1−δ(Il ,H t
l,q )(1− λ)δ(Il ,H t

l,q )

× λ′1−δ(Il ,H t
l,q+1)(1− λ′)δ(Il ,H t

l,q+1) (25)

where δ(i, j)= 1 if i = j , and 0 otherwise.
Since this is simply a single locus collect evidence step, or

single locus peeling, it again is a quick operation.
An added incentive to separate simulating inheritance states

at the marker loci from evaluating the linkage of a particular
trait is that the same simulations can be used for multiple trait
models.

3. Results

As an illustration a family of 84 individuals spanning 5 gener-
ations was analysed. Fifty individuals for whom blood samples
were available were genotyped at 26 markers spanning chromo-
some 14. We removed a marker near the centre of the map from
the marker set and used it to simulate a disease trait. The marker
has 4 alleles of which the most common has a frequency of about
50%. Individuals who carry a copy of this common allele, either
homozygously or heterozygously, were randomly designated as
affected with probability 90%. Non-carriers were designated
affected with probability 5% to simulate sporadic incidence of
the disease. We then attempted to map this pseudo-disease us-
ing only the affectedness status of the typed individuals and the
observed genotypes at the remaining 25 markers.

To validate our Markov chain Monte Carlo method we ran
an implementation of it, which we call MCLINK, on subsets of
the data for which exact computations by GENEHUNTER and
VITESSE were possible. A single iteration of MCLINK is de-
fined by randomly updating first single locus blocks, the number
of such updates being equal to the number of loci as described
in 2.4, and then multilocus blocks for sets of individuals, as de-
scribed in 2.5. For the GENEHUNTER comparison we used all
25 markers, but broke the family up into 11 informative nuclear
families consisting of a total of 59 people. For the VITESSE
comparison we used the whole pedigree but only 4 markers, the
closest 2 on each side of the true location of the dropped out
marker. We then ran MCLINK on the full pedigree with all 25
markers. The resulting Lod functions are displayed in Fig. 7.
In each case the model assumed in calculation corresponded to
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Fig. 7. A comparison of MCLINK with GENEHUNTER and VITESSE.
The solid line marked GENEHUNTER gives the resulting Lod function
from running the program on nuclear families in the pedigree as if they
were independent. The solid line marked VITESSE gives the resulting
Lod function from running the entire pedigree but only for the 4 markers
nearest the true gene location. Near each of the solid lines are dots rep-
resenting the result of running MCLINK on the corresponding subsets
of the data. The dashed line gives the Lod function calculated as an
average of 5 MCLINK runs.

the model used to simulate the data. This is an unrealistic best
case, but is still valid for method comparison. For each calcula-
tion the simulation method was run for 2000 iterations for each
of 5 independent seeds. As the starting configuration is chosen
randomly, using a different seed determines a different start-
ing point. Of the 2000 iterations, the first 1000 were discarded
and the next 1000 were used for computation. All runs led to
similar distributions of Lods across the region with very little
variation. Although running simulations from different starting
points can identify situations where there may be problems of
near reducibility it cannot guarantee that none exist and other
diagnostics would be helpful.

The simulation method approximates both the GENE-
HUNTER and VITESSE methods closely when the relevant
partial data sets are used. For the full dataset, the Lod score
reaches a peak very near the true location of the pseudo-disease
locus. A 1-unit-down support interval, roughly equivalent to a
90% confidence interval (Ott 1989), extends from 44cM to 60cM
a region that contains the true location. By comparison the cor-
responding support interval derived from the 11 informative
nuclear families considered disconnected extends from around
35cM to 90cM reflecting a substantial loss of precision. The
fully informative Lod score at the true location of the pseudo
disease is about 0.5 higher than that obtained by considering
only 4 markers and about 1.2 higher than that obtained by split-
ting the family. Since all the statistics have the same distribution
under the hypothesis of no linkage, 2 log(10) times the Lod score
is approximately a χ2

1 , the type 1 errors corresponding to these
maxima are 0.0003, 0.001 and 0.005. Clearly, there is a consid-
erable disadvantage to either splitting up a single large pedigree
or using only a subset of the markers available particularly with
the multiple testing problem inherent in a whole genome search.

The computations were made on a SUN Ultra 60 workstation
with a 300 MHz CPU. The VITESSE run required 24 seconds,
the matching MCLINK run on 84 individuals by 4 markers took
1129 seconds. The GENEHUNTER run required 19 seconds,
the matching MCLINK run on 59 individuals by 25 markers
took 4938 seconds. The MCLINK run on the full dataset, 84
individuals by 25 markers, took 8903 seconds. The respective
times for 10000 iterations for the three MCLINK runs are 3.36,
3.28 and 4.24 seconds per person per marker. The difference
between the third and first is explained by varying numbers of
alleles at the different markers. The difference between the third
and second is explained by different genotyping density; the 25
individuals excluded from the second run, but included in the
third are mostly ungenotyped ancestors who link up the three
generation subfamilies. Very few allelic exclusions are possible
for these individuals so they are not subject to the marginal gains
in speed described in 2.6.

4. Discussion

4.1. Mixing properties

The guarantee of theoretical irreducibility that simultaneously
changing all the variables for a locus in a single Gibbs update
provides makes the method we develop here fundamentally dif-
ferent to current Markov chain Monte Carlo methods for link-
age analysis. In practice, however, this theoretical property is
no more important than updating subsets of inheritance states
for some individuals across all the loci simultaneously. We be-
lieve that ours is the first method to use such multilocus updates.
We also believe that this combination of sweeping updates of
rows and columns of the inheritance matrix makes the mixing
properties of our method superior to any existing method.

Our experience in running this program has been that the
variance in Lod functions between different simulations for the
same problem is unaffected by the number of loci considered.
However, we still find examples of pedigrees in which we can,
by running simulations from several starting points, detect near
reducibility in the Markov chain. These pedigrees are usually
large, over 150 people, and usually have many ungenotyped or
partially genotyped individuals, making the state space that has
to be sampled large and nearly disconnected. In many cases we
have overcome the problems with new types of updates chang-
ing larger sets of rows of the inheritance matrix. The update
sets described in Section 2.5 were developed from such prob-
lem cases and we expect such developments to continue. The
density of marker loci is also a factor. Closely spaced markers
define the true underlying states more accurately and give better
convergence performance. Several of the large families which
diverged with sparse marker sets have yielded consistent results
when additional loci in the region were typed.

As is clearly shown in our example this is a case where approx-
imate computation of the exact function gives a more powerful
statistical method than exact computation of approximate func-
tions because large pedigrees can be analysed intact.
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4.2. Programs

The running times for the MCLINK program are considerably
longer than the times needed for exact computation when it is
possible. However, it should be noted that any one of the 5 in-
dividual simulation runs would, in each case, have given results
differing negligibly from the mean. MCLINK is fast enough to
use routinely in whole genome searches for linkage in large fam-
ilies. We have begun reviewing our programs and made several
improvements in speed since the results in Section 3 were pro-
duced. Our next version will run approximately 5 times faster.

Although the method we describe here applies to pedigrees
of arbitrary complexity, our implementation has been for the
particular family structures that we usually analyse—mostly un-
looped. As our programs rely on our underlying databases and
consistency checking programs they are not currently suitable
for distribution. The next step should be to implement the method
in full generality. One good starting point would be the addi-
tions that Clauss Skaanning (Jensen 1997) made to the HUGIN
(Andersen et al. 1989, Fischer 1990) programs. These imple-
ment block updating for general Bayesian networks and might
be amended to use the block structures we develop here and to
exploit the particular computational savings possible in genetic
application. Another starting point might be the BUGS (Thomas
et al. 1992) program.

4.3. Other possible updating schemes

In implementations on very complex pedigrees, updating all
the variables at a locus simultaneously may not be possible,
or desirable, if it takes too long. In such situations we could
substitute updates on several overlapping subsets of the variables
whose union is the set of all the variables at the locus. In much
the same way as Lange and Elston (1975) dealt with loops by
conditioning on one member of a loop, we can create several
blocks which leave out a different member of the loop each
time. While such schemes may no longer guarantee irreducible
Markov chains, block updating seems to have very good mixing
properties in practice (Jensen 1997).

Some more consideration should also be given to schemes that
update the rows of the inheritance matrix. It may well be possible,
by exploiting the pedigree structure, to choose particular subsets
that can be updated more quickly than the general cases we
outline above.

It might also be worth considering the original approach of
Jensen (1997), which seeks to maximise the number of vari-
ables updated in each iteration without inspection of the par-
ticular structure. As these updates can’t necessarily guarantee
irreducibility, they should be used in addition to, and not instead
of, our single locus updates.

4.4. Modelling issues

We have used simulations for parametric linkage analysis. They
could also be used for non-parametric statistics that rely on

identity by descent states determined by the inheritance vec-
tor. This involves simply substituting a sample of inheritance
vectors for a complete enumeration as a method of approxima-
tion. The statistics described by Kruglyak et al. (1996), based
on the scoring functions of Whittemore and Halpern (1994), are
suitable candidates for this application.

With simulation, a broader range of more complex models can
become feasible. For example, models that require two different
genes in two different genetic regions to determine disease sus-
ceptibility can be addressed. Conditioning on a particular sim-
ulated inheritance matrix, this is a two locus problem which is
tractable. While this is probably too intensive to apply to all pos-
sible pairs of genomic regions in an exhaustive genomic search,
it could be a valuable tool for disentangling interaction between
candidate genes.

4.5. Conclusion

We have described a Markov chain Monte Carlo method for
sampling historical inheritance data for which the computational
requirements for each iteration grow linearly both with the num-
ber of people and number of markers considered. This makes
whole chromosome multilocus linkage analysis possible on large
extended families for the first time. The method is widely appli-
cable in classical and Bayesian frameworks, with highly para-
meterised modelling and with non-parametric approaches which
depend on identity by descent states.

We have also tried to place the genetic problem more firmly in
the broader context of graphical modelling and feel strongly that
a more widespread understanding of this connection can yield
positive results for both the special and the general case.
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