COS 522 Complexity — Homework 6.

Boaz Barak

Total of 110 points. Due May 8th, 2006.

Exercise 1 (20 points). Let $f, g : \{\pm 1\}^n \to \mathbb{R}$ be two functions. We define the *convolution* of f and $g, h : \{\pm 1\}^n \to \mathbb{R}$ in the following function: $h(x) = \mathbb{E}_{y \leftarrow_{\mathbb{R}}\{\pm 1\}^n}[f(x)g(x \oplus y)]$ (recall that we use \oplus to denote componentwise multiplication).

- 1. Compute the Fourier expansion of h in terms of the Fourier expansions of f, g.
- 2. For a function $f : \{\pm 1\}^n \to \mathbb{R}$ and number $\epsilon < 1/2$ define $f'(x) = \mathbb{E}_{z \leftarrow_{\mathbb{R}} M_{\epsilon}}[f(x \oplus z)]$ where $z \leftarrow_{\mathbb{R}} M_{\epsilon}$ is chosen in the following way: for each *i* independently choose $z_i = +1$ with probability 1ϵ and $z_i = -1$ with probability ϵ . Compute the Fourier expansion of f' in terms of the Fourier expansion of f.
- 3. Write a function g such that the convolution of f and g yields f'.

Exercise 2 (20 points + 10 points bonus). Let $f : \{\pm 1\}^n \to \mathbb{R}$ and let $I \subseteq [n]$. Let M_I be the following distribution: we choose $z \leftarrow_{\mathbb{R}} M_I$ by for $i \in I$, choose z_i to be +1 with probability 1/2 and -1 with probability 1/2 (independently of other choices), for $i \notin I$ choose $z_i = +1$. We define the variation of f on I to be $\Pr_{x \leftarrow_{\mathbb{R}} \{\pm 1\}^n, z \leftarrow_{\mathbb{R}} M_I}[f(x) \neq f(x \oplus y)]$.

Suppose that the variation of f on I is less than ϵ . Prove that there exists a function g: $\{\pm 1\}^n \to \mathbb{R}$ such that (1) g does not depend on the coordinates in I and (2) g is 10 ϵ -close to f (i.e., $\Pr_{x \leftarrow_{\mathbb{R}} \{\pm 1\}^n} [f(x) \neq g(x)] < 10\epsilon$). Can you come up with such a g that outputs values in $\{\pm 1\}$ only? (Bonus 10 points).

Exercise 3 (20 points). For $f : \{\pm 1\}^n \to \{\pm 1\}$ and $x \in \{\pm 1\}^n$ we define $N_f(x)$ to be the number of coordinates *i* such that if we let *y* to be *x* flipped at the *i*th coordinate (i.e., $y = x \oplus e^i$ where e^i has -1 in the *i*th coordinate and +1 everywhere else) then $f(x) \neq f(y)$. We define the *average sensitivity* of *f*, denoted by as(f) to be the expectation of $N_f(x)$ for $x \leftarrow_{\mathbb{R}} \{0,1\}^n$.

- 1. Prove that for every balanced function $f : \{\pm 1\}^n \to \{\pm 1\}$ (i.e., $\Pr[f(x) = +1] = 1/2$), $as(f) \ge 1$.
- 2. Let f be balanced function from $\{\pm 1\}^n$ to $\{\pm 1\}$ with as(f) = 1. Prove that f is a dictatorship or its complement. (i.e., $f(x) = x_i$ or $f(x) = -x_i$)

Exercise 4 (20 points). The *depth* of a directed acyclic graph G is the length of the longest path in the graph. Prove that for every constants c > 1 and $\epsilon > 0$, for sufficiently large n and G be an n-vertex graph with depth $c \log n$, and each vertex having in-degree and out-degree at most two, there exists a set B of edges such that:

• $|B| \leq \epsilon n$.

• The depth of the graph $G \setminus B$ (i.e., G with all edges in B removed) is at most $\epsilon \log n$.

Exercise 5 (20 points). An $n \times n$ -matrix A over $\mathsf{GF}(2)$ is called ϵ -rigid if there do not exist two $n \times n$ matrices B and C such that (1) the rank of B is at most ϵn (2) each row of C contains at most n^{ϵ} nonzero entries and (3) A = B + C. Prove that:

- 1. For every fixed ϵ , a random $n \times n$ matrix A is ϵ -rigid with probability 1 o(1) (i.e., probability tending to 1 as n grows to infinity).
- 2. Define a *linear* circuit over GF(2) to be a circuit whose gates consist only of the operation \oplus . Let $\epsilon > 0$ be a constant and let $\{A_n\}$ be a sequence of ϵ -rigid matrices. Then there do *not* exist constants c, d and a sequence of linear circuits $\{C_n\}$ such that (1) C_n computes the linear function $\vec{v} \mapsto A_n \vec{v}$ and (2) the size of C_n is at most cn and (3) the depth of C_n (the length of longest input to output path) is at most $d \log n$.

Note that this means that an explicit construction of a sequence of rigid matrices would give an explicit linear function that cannot be computed by linear circuits of linear sized and logarithmic depth.¹

¹Note that the term "linear" was used in two different senses in the last sentence.