COS 522 Complexity — Homework 5.

Boaz Barak

Total of 110 points. Due April 24th, 2006.

In this sequence of exercises you are going to show an alternative proof for the alphabet reduction lemma:

Lemma 1 (Alphabet reduction). Recall that in a CSP problem p, the size (i.e., number of clauses) of p is denoted by |p|, the number of queries (i.e., the size of each clause) by q = q(p), the alphabet size is denoted by $\sigma = \sigma(p)$, and the maximum fraction of satisfied clauses by $\mu = \mu(p)$.

There exists a polynomial-time function alph-red and absolute constant q_0 such that for every 2-query CSP p we have:

Linear blowup alph-red(p) is a q₀-query CSP with alphabet $\{0,1\}$, and size less than C|p| for some $C = C(\sigma(p))$.

Completeness If $\mu(p) = 1$ then $\mu(\texttt{alph-red}(p)) = 1$.

Limited loss There's an absolute constant D (not depending on p or σ) such that if $\mu(p) \leq 1 - \epsilon$ then $\mu(\texttt{alph-red}(p)) \leq 1 - \epsilon/D$.

Exercise 1 (22 points). For a set S define the *long-code* of S to be the following function \mathcal{LC} : $S \to \{0,1\}^{2^{|S|}}$: for every $s \in S$ and a function $f: S \to \{0,1\}$ (note that we think of f also as a string of length |S| and a number in $[2^{|S|}]$), the f^{th} position of $\mathcal{LC}(s)$ (denoted by $\mathcal{LC}(s)_f$) is f(s).

- 1. For every $s \in S$, one can think of the output of the long-code on s as itself a function from $\{0,1\}^{|S|}$ to $\{0,1\}$. That is, we think of $\mathcal{LC}(s)$ as the function that maps $f: \{0,1\}^{|S|} \to \{0,1\}$ to $\{0,1\}$ in the following way $\mathcal{LC}(s)(f) = f(s)$. Prove that for every s, $\mathcal{LC}(s)$ is a linear function.
- 2. Prove that for any s, the fraction of f's such that f(s) = 1 is half. (Hint, this is equivalent to proving that $\Pr_f[f(s) = 1] = 1/2$ for a random function $f: S \to \{0, 1\}$).
- 3. Prove that \mathcal{LC} is an error-correcting code with distance half. That is, for every $s \neq s' \in S$, the hamming distance of $\mathcal{LC}(s)$ and $\mathcal{LC}(s')$ is half.
- 4. Prove that for any $s \in S$, $\mathcal{LC}(s)$ is equal to $\mathcal{H}(e^s)$ where \mathcal{H} is the Hadamard code from $\{0,1\}^{|S|}$ to $\{0,1\}^{2^{|S|}}$ (i.e., $\mathcal{H}(x)_y = \langle x, y \rangle \pmod{2}$) and $e^s \in \{0,1\}^S$ is the standard basis vector corresponding to s. That is, the i^{th} position of e^s is 0 for $i \neq s$ and 1 for i = s.

Exercise 2 (22 points). Prove that \mathcal{LC} is *self-correctible*. That is, show an algorithm A and constants C, D such that given oracle access to a string L that is within fractional distance ϵ to $\mathcal{LC}(s)$, and a function $f: S \to \{0, 1\}, A^L(f)$ should output $\mathcal{LC}(s)_f$ with probability $1 - C\epsilon$ while making at most D queries to L. Note that $A^L(f)$ should output $\mathcal{LC}(s)_f$ with high probability even if $L(f) \neq LC(s)_f$.

Note that here (in the rest of the exercises) we don't care about the running time of the algorithm but only that it makes at most a constant number of queries to its oracle.

Exercise 3. In this exercise you'll prove in stages that *LC* is *locally testable*.

- 1. Given an oracle to a function $L : \{0, 1\}^{|S|} \to \{0, 1\}$, consider the following test: choose f at random from $\{0, 1\}^{|S|}$ and if L(f) = 1 accept. Otherwise, (if L(f) = 0), choose g to be a random subset of f. That is, for every s such that f(s) = 0 choose g(s) = 0 and for every s with f(s) = 1 choose g(s) = 1 with probability 1/2 (otherwise choose g(s) = 0. Accept iff L(g) = 0. Prove that if L is a longcode codeword (i.e., $L = \mathcal{LC}(s)$ for some s) then it passes this test with probability 1.
- 2. Prove that if L is a long-code codeword, then for every $f : \{0,1\}^{|S|}, L(f) \neq L(\overline{f})$ where \overline{f} is the negation of f (i.e., $\overline{f}(s) = 1 f(s)$ for every $s \in S$).
- 3. Let $L : \{0,1\}^{|S|} \to \{0,1\}$ be a non-zero linear function. That is, there exists some non-zero string $\ell \in \{0,1\}^{|S|}$ such that for every $f \in \{0,1\}^{|S|}$, $L(f) = \langle \ell, f \rangle \pmod{2}$. We say that L is a *longcode codeword* if $L = \mathcal{LC}(s)$ for some $s \in S$, or equivalently, $\ell = e^s$ for some s. Prove that if L is not a longcode code word then it will fail the test from 1 with probability at least 1/100.
- 4. Prove that \mathcal{LC} is locally testable. That is, show that there exist constants C, D and an algorithm T such that for any $\epsilon \geq 0$ given oracle access to an oracle L that of distance at least ϵ from $\mathcal{LC}(s)$ for every s, T^L will reject with probability at least ϵ/C and will make at most D queries. The test should be *complete* in the sense that T^L should accept with probability one for every L that is a longcode codeword. You can use without proof the result stated in class on linearity testing.
- 5. Show that this implies that there is such an algorithm with C = 1/100.

Exercise 4 (22 points). Let $c: S \times S \to \{0, 1\}$ be some function. Show an algorithm T that given oracle access to L_1, L_2, L_3 where L_1, L_2 are functions from $\{0, 1\}^{|S|} \to \{0, 1\}$ and L_3 is a function from $\{0, 1\}^{|S|^2} \to \{0, 1\}$ makes at most a constant number of queries to its oracles and satisfies the following properties:

- 1. If $L_1 = \mathcal{LC}(s)$, $L_2 = \mathcal{LC}(s')$, and $L_3 = \mathcal{LC}(s \circ s')$ for s, s' that satisfy c(s, s') = 1 then T will accept with probability 1.
- 2. If $L_1 = \mathcal{LC}(s)$, $L_2 = \mathcal{LC}(s')$ and $L_3 = \mathcal{LC}(s'')$ with $s'' \neq s \circ s'$ then T will reject with probability at least 0.99.
- 3. If $L_1 = \mathcal{LC}(s)$, $L_2 = \mathcal{LC}(s')$, and $L_3 = \mathcal{LC}(s \circ s')$ for s, s' that satisfy c(s, s') = 0 then T will reject with probability at least 0.99.

Exercise 5 (22 points). Prove Lemma 1 using the above exercises. See footnote for hint¹

¹**Hint:** if we let S denote the alphabet of the original problem p then in the new problems we'll have $n2^{|S|}$ new Boolean variables that are supposed to be longcode encodings of each variable in the original formula and $m2^{|S|^2}$ new Boolean variables that for every 2-query constraint $c(x_i, x_j)$ are supposed to be longcode encoding of $x_i \circ x_j$.