
COS 522 Complexity — Homework 5.

Boaz Barak

Total of 110 points. Due April 24th, 2006.

In this sequence of exercises you are going to show an alternative proof for the alphabet reduction
lemma:

Lemma 1 (Alphabet reduction). Recall that in a CSP problem p, the size (i.e., number of clauses)
of p is denoted by |p|, the number of queries (i.e., the size of each clause) by q = q(p), the alphabet
size is denoted by σ = σ(p), and the maximum fraction of satisfied clauses by µ = µ(p).

There exists a polynomial-time function alph-red and absolute constant q0 such that for every
2-query CSP p we have:

Linear blowup alph-red(p) is a q0-query CSP with alphabet {0, 1}, and size less than C|p| for
some C = C(σ(p)).

Completeness If µ(p) = 1 then µ(alph-red(p)) = 1.

Limited loss There’s an absolute constant D (not depending on p or σ) such that if µ(p) ≤ 1− ε
then µ(alph-red(p)) ≤ 1− ε/D.

Exercise 1 (22 points). For a set S define the long-code of S to be the following function LC :
S → {0, 1}2|S|

: for every s ∈ S and a function f : S → {0, 1} (note that we think of f also as a
string of length |S| and a number in [2|S|]), the f th position of LC(s) (denoted by LC(s)f) is f(s).

1. For every s ∈ S, one can think of the output of the long-code on s as itself a function from
{0, 1}|S| to {0, 1}. That is, we think of LC(s) as the function that maps f : {0, 1}|S| → {0, 1}
to {0, 1} in the following way LC(s)(f) = f(s). Prove that for every s, LC(s) is a linear
function.

2. Prove that for any s, the fraction of f ’s such that f(s) = 1 is half. (Hint, this is equivalent
to proving that Prf [f(s) = 1] = 1/2 for a random function f : S → {0, 1}).

3. Prove that LC is an error-correcting code with distance half. That is, for every s 6= s′ ∈ S,
the hamming distance of LC(s) and LC(s′) is half.

4. Prove that for any s ∈ S, LC(s) is equal to H(es) where H is the Hadamard code from
{0, 1}|S| to {0, 1}2|S|

(i.e., H(x)y = 〈x, y〉 (mod 2)) and es ∈ {0, 1}S is the standard basis
vector corresponding to s. That is, the ith position of es is 0 for i 6= s and 1 for i = s.

1

Exercise 2 (22 points). Prove that LC is self-correctible. That is, show an algorithm A and
constants C,D such that given oracle access to a string L that is within fractional distance ε to
LC(s), and a function f : S → {0, 1}, AL(f) should output LC(s)f with probability 1 − Cε while
making at most D queries to L. Note that AL(f) should output LC(s)f with high probability even
if L(f) 6= LC(s)f .

Note that here (in the rest of the exercises) we don’t care about the running time of the algorithm
but only that it makes at most a constant number of queries to its oracle.

Exercise 3. In this exercise you’ll prove in stages that LC is locally testable.

1. Given an oracle to a function L : {0, 1}|S| → {0, 1}, consider the following test: choose f at
random from {0, 1}|S| and if L(f) = 1 accept. Otherwise, (if L(f) = 0), choose g to be a
random subset of f . That is, for every s such that f(s) = 0 choose g(s) = 0 and for every
s with f(s) = 1 choose g(s) = 1 with probability 1/2 (otherwise choose g(s) = 0. Accept iff
L(g) = 0. Prove that if L is a longcode codeword (i.e., L = LC(s) for some s) then it passes
this test with probability 1.

2. Prove that if L is a long-code codeword, then for every f : {0, 1}|S|, L(f) 6= L(f) where f is
the negation of f (i.e. , f(s) = 1− f(s) for every s ∈ S).

3. Let L : {0, 1}|S| → {0, 1} be a non-zero linear function. That is, there exists some non-zero
string ` ∈ {0, 1}|S| such that for every f ∈ {0, 1}|S|, L(f) = 〈`, f〉 (mod 2). We say that L is
a longcode codeword if L = LC(s) for some s ∈ S, or equivalently, ` = es for some s. Prove
that if L is not a longcode code word then it will fail the test from 1 with probability at least
1/100.

4. Prove that LC is locally testable. That is, show that there exist constants C,D and an
algorithm T such that for any ε ≥ 0 given oracle access to an oracle L that of distance at
least ε from LC(s) for every s, TL will reject with probability at least ε/C and will make
at most D queries. The test should be complete in the sense that TL should accept with
probability one for every L that is a longcode codeword. You can use without proof the result
stated in class on linearity testing.

5. Show that this implies that there is such an algorithm with C = 1/100.

Exercise 4 (22 points). Let c : S ×S → {0, 1} be some function. Show an algorithm T that given
oracle access to L1, L2, L3 where L1, L2 are functions from {0, 1}|S| → {0, 1} and L3 is a function
from {0, 1}|S|2 → {0, 1} makes at most a constant number of queries to its oracles and satisfies the
following properties:

1. If L1 = LC(s) , L2 = LC(s′), and L3 = LC(s ◦ s′) for s, s′ that satisfy c(s, s′) = 1 then T will
accept with probability 1.

2. If L1 = LC(s), L2 = LC(s′) and L3 = LC(s′′) with s′′ 6= s ◦ s′ then T will reject with
probability at least 0.99.

3. If L1 = LC(s) , L2 = LC(s′), and L3 = LC(s ◦ s′) for s, s′ that satisfy c(s, s′) = 0 then T will
reject with probability at least 0.99.

Exercise 5 (22 points). Prove Lemma 1 using the above exercises. See footnote for hint1

1Hint: if we let S denote the alphabet of the original problem p then in the new problems we’ll have n2|S| new Boolean variables that are

supposed to be longcode encodings of each variable in the original formula and m2|S|2 new Boolean variables that for every 2-query constraint
c(xi, xj) are supposed to be longcode encoding of xi ◦ xj .

2

