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1 Modeling Probability Distributions

Until now, we have mainly considered the problem of, given a set of examples of the form
(x, y) ∼ D, finding a function that maps a new example x to a correct label y. We will
now consider the problem of estimating the actual distribution P from which a set of
examples X ∼ P was drawn. Solving this problem has applications to areas such as language
modeling, and can also be used to perform classification.

As an aside, two basic approaches to using conditional density estimation (the problem
of finding D given a series of examples of the form (x, y) ∼ D) are:

• The Discriminative Approach: here we estimate Pr[y|x] directly. The best choice for
y can be selected by simply choosing the most likely y given x, but the probabilities
themselves may also be useful if we wish to model the uncertainty in a process (e.g.
for weather prediction, medical diagnoses...).

• The Generative Approach: here we instead estimate Pr[x|y] for each y. We can then

use Bayes’s Rule (Pr[y|x] = Pr[x|y]Pr[y]
Pr[x] ) to find Pr[y|x].

2 Maximum Likelihood

We are given a set of examples x1, x2, ..., xm ∼ P and a class Q of probability distributions.
Our goal is to find the q ∈ Q that best estimates P . A natural approach is to choose the q

under which we would be most likely to see the examples x1, x2, ..., xm. Under each q,

Pr[x1, ..., xm] = q(x1)...q((xm)) =
m∏

i=1

q(xi)

since the examples are independent. The product on the right is referred to as the “likelihood

of the data under q,” and it is this quantity we would like to maximize.
More formally:

goal: choose q to get max
∏

i q(xi) ≡ max
∑

i log(q(xi)) ≡ min
∑

i −log(q(xi))
︸ ︷︷ ︸

log loss

where ≡ is used to imply that the same q will maximize both expressions.
Why use the log loss instead of the regular loss? Well,

Ex∼P [log loss under q] =
∑

x

P (x)(−log(q(x))) = −
∑

x

P (x)(log(q(x)))

︸ ︷︷ ︸

sometimes called cross entropy

which, as shown in the homework, is minimized when q = P . Furthermore:

−
∑

x

P (x)log(q(x)) = −
∑

x

P (x)log(q(x)) +
∑

x

P (x)log(P (x)) −
∑

x

P (x)log(P (x))



=
∑

x

P (x)log

(
P (x)

q(x)

)

−
∑

x

P (x)log(P (x)) = RE(P ||q) − H(P )
︸ ︷︷ ︸

entropy of P

So, E[log loss] is a function of the relative entropy of P and q and of the inherent variability
of P (as measured by its entropy H(P )).

An example:

Say

x =

{

1 with probability p

0 with probability 1 − p

and Q = [0, 1]. We observe examples x1, x2, ..., xm. Let h =
∑

i xi.

The likelihood under q =
∏

i

q(xi) = qh(1 − q)m−h is maximized when q =
h

m

3 Application: Modeling Animal/Plant Habitats

Say we are given a small (around 20-100) set of points on an effectively two-dimensional
map at which biologists have spotted individuals belonging to some species. Additionally,
we are given information such as altitude, rainfall, average temperature, etc. at all points
on the map. We assume there is some distribution generating the points we have been given
which corresponds to the population distribution of the species being studied. Given only
these positive examples, we will try to arrive at an approximation to the actual distribution
of the population. More formally:

• Our locations x come from a prediscretized, finite space of possible points X. |X| < ∞,
but potentially quite large.

• We observe examples x1, x2, ..., xm ∈ X, which we assume are i.i.d. according to the
underlying distribution D. Our goal is to estimate D.

• Our features are the environmental variables at each point. So essentially, feature
fj : X → R

4 Maximum Entropy

The seemingly simplest option would be to estimate D by the empirical distribution, i.e.,
the probability of each example point is 1

m
, and the probability at any other point is 0.

Unsurprisingly, this estimate will perform terribly since it is concentrated on just a tiny
fraction of points in a potentially huge space. However, it is worth noting that by Chernoff
bounds,

The expectation with respect to the empirical distribution Ê[fj ] =
1

m

∑

i

fj(xi) ≈ ED[fj]

so our goal should be to find a distribution P s.t. ∀j Ep[fj ] = Ê[fj]. Many choices of
P , including the empirical distribution, satisfy this requirement. Since arguably the most
“natural” distribution in the absence of any assumptions is the uniform distribution, let’s
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see what happens when we attempt to find a distribution P s.t. ∀j Ep[fj] = Ê[fj] and P is
as close as possible to uniform (i.e. RE(P ||uniform) is minimized).

RE(P ||unif.) =
∑

x

P (x)log
P (x)

1
N

=
∑

x

P (x)logP (x) +
∑

x

P (x)logN

=
∑

x

P (x)logP (x)

︸ ︷︷ ︸

−H(P )

+logN

So the idea is to define P = {p : Ep[fj ] = Ê[fj ] and
∑

x P (x) = 1}, and try to find the
distribution p ∈ P of maximum entropy, i.e. maxp∈P H(p)

5 Maximum Likelihood Revisited

Consider distributions that are linear combinations of features: q(x) =
∑

j λjfj(x). (Note
that fj need not be in [0, 1].) To turn this into a proper probability distribution, we need
to ensure that it be positive and normalized to the range [0, 1]. We do this by making the
distribution look like so:

q(x) =
to make positive: exp(

∑

j λjfj(x))

to normalize: Z

Probability distributions of this form are called Gibbs Distributions. Now the problem
is to compute the unconstrained λjs with maximum likelihood: max

∏

i qλ(xi)

Q = {q : q is a Gibbs distribution}, so choose max
q∈Q̄

∑

i

log(q(xi))

Q̄ represents the closure of Q, the precise meaning of which is unimportant except insofar
as it guarantees that a maximum always exists.

6 Duality theorem

As it turns out, maximum likelihood and maximum entropy are convex duals, and P ∩ Q̄

contains only a single point, which will miraculously solve both problems.
Theorem: The following are equivalent:

• q∗ = argmaxp∈PH(p) (which solves maximum entropy)

• q∗ = argmaxq∈Q̄

∑

i log(q(xi)) (which solves maximum likelihood)

• q∗ ∈ P ∩ Q̄

And furthermore, any one of these properties uniquely defines q∗.

Not quite a proof: We can solve the maximum entropy problem using Lagrange multipliers:

L =
∑

x

q(x) log(q(x)) +
∑

j

λj[Ê[fj] −
∑

x

q(x)fj(x)] + γ(
∑

x

q(x) − 1)
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0 =
∂L

∂q(x)
= 1 + log(q(x)) −

∑

j

λjfj(x) + γ

q(x) = exp




∑

j

λjfj(x) − γ − 1



 =
exp(

∑

j λjfj(x))

Z = eγ+1

Now we plug this q(x) selectively into L.

L =
∑

x

q(x)[
∑

j

λjfj(x) − log Z] −
∑

j

λj

∑

x

q(x)fj(x) +
∑

j

λjÊ[fj] +

=0
︷ ︸︸ ︷

γ(
∑

x

q(x)fj(x))

= − log Z +
1

m

∑

j

λj

∑

i

fj(xi) =
1

m

∑

i

[
∑

j

λjfj(xi) − log Z

︸ ︷︷ ︸

=log(qλ(xi))

]

Thus, the solution of the maximum entropy problem occurs when q is a Gibbs distribution
maximizing the (log) likelihood. In other words, the maximum entropy and maximum
likelihood problems are duals of each other.

Of course, this may look like a proof, but there are a bunch of cases that haven’t been
dealt with.
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