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1 Lower Bound on Sample Complexity

Last time in class, we began to look at the lower bound on sample complexity. We discussed
the intuition why lower bounds must be in terms of the target concept class C, rather than
the hypothesis class H. We stated the theorem of lower bound and gave a wrong proof.
Let’s restate the theorem first and we are going to prove it this time:

Theorem 1 Let d =VC-dim(C). Y algorithm A, 3¢ € C and 3D such that if A gets
m < d/2 examples from D labeled by c, then
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Note here the hypothesis h4 is not required to be consistent with the examples. Later
in this class we will discuss why we don’t require consistency model and how to deal with
it.

The outline of the proof is: In order to prove there exists such a concept ¢ and a dis-
tribution D, we are going to construct a fixed distribution D but we don’t know the exact
target concept c. If we get an expected probability of error over ¢, we know there must
exist some c to satisfy some criteria and there is no need to construct the c explicitly.

Proof:

As d =VC-dim(C), we can have T1,...,T4 shattered by C.

Let C' C C with one representative from C for every dichotomy of Zi,...,T4. Then,
IC'| = 2.

Let ¢ € C' be chosen uniformly.

Let distribution D be uniform over z1,...,T4.

Let’s look at two experiments:

FExperimentl:

¢ is chosen at random.

S is chosen at random and labeled by c.

(c and S are chosen independent of each other.)
h4 is computed from S.

x is the test point chosen.

Consider: what is the probability of ha(z) # c(z)?

FExperiment2:

S is chosen at random (without labels).
Random labels ¢(x;) assigned to z; € S.
h 4 is computed from S.

x is the test point chosen.



If z ¢ S, then label ¢(x) at random.
Consider: what is the probability of ha(z) # c(x)?

It is not difficult to see after some consideration that these two experiments produce
the same probability of ha(x) # ¢(x). This probability is over the randomness of concept
¢, the examples S and the test point z. We denote it as Pr. g [ha(x) # c(x)].

JFrom the definition of experiment 2, we have:

Pregglha(z) #c(x)] > Prlz ¢ SAha(x) # c(x)]
= Prlz ¢ S|Prlha(z) # c(x)|z ¢ S]
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The last inequality comes from the fact that Pr(z ¢ S] > 1 since there are only m < d/2
examples in set S and the distribution of z is uniform over d points; and the fact that
Priha(z) # c(z)|z ¢ S] = 1 since we label c(z) by random guess.

If we write the probability in the form of expected value over ¢, we have:

1
71 S Presalha(z) # c(@)] = Ec[Prsglha(e) # c(z)|d].

JFrom the fact that E[x] > k implies 3z such that x > k, we know 3¢ € C' C C such
that:

Prgzlha(z) # c(z)] > i
We also know that:
Prgalha(z) # c(z)] = Es[Pra[ha(z) # c(2)[S])
err(ha)
= Prlerr > 1/8|Elerr|err > 1/8] + Prlerr < 1/8] E[err|err < 1/8]
<1 <1 <1/8

< Prlerr >1/8/+1/8.

Thus, combining with equation above, we have proved the result:
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2 Introduction to Inconsistent Hypothesis Model

In the last section, we have seen a hypothesis h4 which is not required to be consistent
with the training data. In fact, the inconsistent hypotheses are commonly seen in machine
learning problems. In practice, we cannot generally require hypotheses to be consistent
because of the following reasons:

e concept ¢ ¢ H
e there might not exist the target concept

e concept ¢ € H but intractable to find



When target concept c is not in the hypothesis space, Vh € H, there exists at least one
x € X such that ¢(z) # h(z). In case of the training set including all points of the possible
instance space, there will be no consistent hypothesis for this training set.

There also might not exist a target concept related with some set of data in the case
that there are both (“4”) and (“—x”) labels for the same example because of noise. In this
case, there will be no consistent model.

Even if there exists such a consistent model, sometimes it may be too difficult to find.
Instead of bothering to look for the complex consistent model, we try to find an inconsistent
but simple one.

Now, we are going to state the problem in a more rigorous way.

Let (z,y) denote one example and its label. x € X where X is the instance space and
y € {0,1}.

(z,y) is random according to some joint distribution D on X x {0,1}. (Unlike our earlier
model, the label y is also random.)

According to definition of conditional probability:

Pr(z,y] = Pr[x]Prly|z].

Thus, we can think of = being generated according to its marginal distribution Pr|z]
and then y being generated according to its conditional distribution Pr[y|z]. This form is
like the PAC model where the example is random with some distribution and its label is
deterministic, i.e. Prly|z] is either 0 or 1. In this inconsistency model, we can generate z
according to its marginal distribution and then generate y according to 0 < Prly|z] < 1.

The m examples from distribution D are denoted as: S = ((x1,Y1), -y (Tims Ym))-

The hypothesis h : X — {0,1}. Then the error is defined to be:

eer(h) = Pr(m,y)wD[h(x) # y] :

Note the error definition is different from the one of consistency model. In consistency
model, the error is defined to be:

errp(h) = Prp[h(z) # c(x)].

The distribution D here is only over z instead of over (x,y) and there is a true label ¢(x)
related with = which is deterministic.

If we have known the distribution D, it is easy to construct an optimal hypothesis with
minimal error, i.e.

1 if Pry,ly =1|z] > 1/2
B* _ ylz
() { 0 else

This hypothesis is called the Bayes Optimal Classifier and the error is called the Bayes
error. But in real life, we usually don’t know the conditional distribution and actually it
is the goal of machine learning to approximate the true conditional distribution. How to
find a best hypothesis that generates minimal error is the topic to be discussed in the next
section.

3 Empirical Error and Expected Error

Given m examples S = ((1,91), .-, (Tm, Ym)), the empirical error of h € H is defined as:
1
rr(h) = —|{i: h 7 4 .
eir(h) = |{i h(r) # i} |
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The empirical error is also called empirical risk or training error. The expected error is just
the true error of h: err(h).

There is a nice theorem of the relation between empirical error and expected error. We
state it here and will prove it in the next lecture.

Theorem 2 Given m examples, assume H is finite, with probability > 1 — 6,
In|H| +In+
Vh lerr(h) —err(h)| <e if m= O(%)

€

The statement of the relation between empirical error and expected error is true Vh € H.
Therefore, we call this theorem a “uniform convergence” theorem. X
This theorem implies a nice property of empirical error. To be more precise, let h =
arg ming ey err(h), then:
err(h) < efr(h)+e
< err(h) +e
< err(h) + 2 Vh e H

The inequality says: choose a hypothesis h with minimal empirical error, then the true
error of this hypothesis will be no bigger than the true error of any hypothesis (including
Bayes Optimal Classifier) plus 2e. Therefore, the minimal empirical error can be very close
to the true minimal error.

Before we prove Theorem 2, we prove another theorem which will help to prove Theorem
2. This theorem is called Hoeffding’s Inequality.

Theorem 3 Assume random variables Xi, ..., X, are i.i.d. (independent identically dis-
tributed). Let

N
p=EX; X;€[0,1] p:E;XZ-.
1=

Then,

’m

Pr(p>p+ ¢ < em2m Prip<p—e <e*
We will prove it in the next lecture but here are two notes for this theorem:

1. From Hoeffding’s Inequality, we can derive an error ¢, with probability > 1 — 6,
Ip—p| <e

N _22 o _ 1H2/6
Prllp—p|>¢€ <2e ™= = €=/ 5 -

2. For all h € H, if we draw m examples (x,y) independently from D, and denote

Xi _ { 1 if h(l‘z) 75 Yi

0 else



I.e. we get m i.i.d. random variables X1, ..., X,,, and:
EX; = err(h) =~ f:X ir(h)
= i — err = — 4 = .
P e p=_ 2 err

Now we can see the intuition of using Theorem 3 to prove Theorem 2.

We can also think of the process like flipping a coin, i.e. X is a random variable with

distribution:
¥ _ 1 w/ prob err(h)
| 0 w/ prob 1 —err(h)

In the next lecture, we are going to prove the above two Theorems.



