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1 Vapnik-Chervonenkis Dimension

1.1 Occam’s Razor with the VC Dimension

Last time, we proved: with probability > 1 — §, Vh € ‘H, if h is consistent with a sample of
size m, then

errp(h) < = <1og (Thx(2m)) + log <%> + 1> .

The size of IIy(2m) is a property of the class of functions H, thereby reducing the
probabilistic problem to just a combinatorial problem.

1.2 Today’s Goals

Today, we will look at how big II3(2m). There are only two possible cases:

Ty (2m) = 2m if VC-dim d = o0
" ~ 1 O(m?%) if VC-dim d < oo

S is shattered by H if

[y (S)] = 2

VC-dim(H) is the cardinality of the largest shattered set. A VC-dim of infinity means
that an arbitrarily large set can be shattered by the class. For a finite class, the VC-dim is
no greater than the log of the cardinality of the hypothesis class.

The VC-dim could be much smaller than this limit, though. For example, the VC-dim
of positive half-lines is 1 (a set of two points cannot be shattered in the case of + /- labeling
of the points). If the half-lines are defined by a large, but finite, number of points, then
VC-dim(H) < log |H].

1.3 Sauer’s Lemma
Lemma: VH, let d = VC-dim(H), then
d m
Ily(m) < Z% <Z> = ®4(m) = O(m?).

In other words, the sum of the binomial is just the number of different ways of choosing
at most d items from a set of size m.

<m> m-(m—1)-...-(m—i+1)

i)~ il
So, the sum Z?:o (") when multiplied out becomes O(m?). This has implications back
with the use of the VC-dim in the PAC learning error limits: log (IIy;(2m)) = log (O(m%)) =
O(d - log(m)).



1.3.1 Example - Intervals

In our examination of intervals, we found that the equation for the number of dichotomies
possible was of the form: Iy (m) =14+m+ (Tg) Or, now with Sauer’s Lemma, we see that
this is the exact same form as ®o(m).

1.3.2 Proof of Sauer’s Lemma

First, a few facts and conventions will be used in the proof:
=0 1) + (rg__ll) This comes from Pascal’s Triangle
m=o {3

ESom This convention is consistent with Pascal’s Triangle

We will prove Sauer’s Lemma by induction on m + d.
Our 2 base cases (for our 2 variables) are:

m =0 IIy(m)=1 degenerate labeling of the empty set
d=0 TIIx(m)=1 you cannot shatter 1 point even, so it’s a single function

Induction step, m > 1 d > 1: assumes lemma holds for all m’ d’ for which m/+d’ < m-+d.

We are given or already know H, |S| =m, S = (x1,x2,...,Zm), and d = VC-dim(H).
We would like to show that [IIj(S)| < ®4(m).

The main step of the proof is the construction of two new hypothesis spaces Hi and Hsa
to which we can apply our induction hypothesis.

H Ha Ho
X1y.+-,Xm X1y.-- 3 Xm—1 X715+ Xm—1
ht 0 1.1 0 0O - h1 01 1 0 — hl 0 1 1 0
h2 0 1.1 0 1
h3 0 1.1 1 0 — h3 0 1 1 1
h4 1 0 0 1 0 - h4 1 0 01 — h4 1 0 0 1
h5 1.0 0 1 1
h6 1 1 0 0 1 — h6 1 1 0 O

Figure 1: Example Datasets for Proof of Sauer’s Lemma

H;1 as shown in Figure 1 is defined to be H restricted to the domain of the first m — 1
points in the set S. There are as many different functions as there are possible behaviors.
In other words:

X1 = {l’l, e ,:Em_l} = Sl
[, (S1)| = [Ha
The claim is then that the VC-dim of H; is no greater than the VC-dim of the original
H (VC-dim(H;) < d). This is because all sets shattered by H; will also be shattered by H.
By induction, then, |IIy, (S1)| < ®4(m —1).
Hypotheses where the dichotomies of H collapse into H; are placed in Hs as shown in

Figure 1. In the example, we see that both z,, = 0 and z,,, = 1 are possible for z1,...,Zmy_1
given in hl and h4, but not for h3 and h6 in H;, so we only repeat hl and h4. As for Hq,
the hypotheses in Hy are restricted to the domain {x1,...,2,;,-1}. So:



X1 =X2=81=8,
|3, (S2)| = [Ho

The claim here is that the VC-dim of Hs is no greater than one less than the VC-dim
of the original H (VC-dim(H2) < d —1). This is because when we add x,, back, we will get
a set that H can still shatter. In other words, if T is shattered by Hs, then T U {x,,} will
be shattered by H. By induction, then, |[IIy, (S2)| < ®4-1(m — 1).

n(S)] = [Ha| + [H2]
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1.4 Upper Bound on Sample Complexity

Claim: ®4(m) < (22)? for m >d > 1
Proof:

wam) = 3
won- () = 2 () ()
() ()

oam: (2)
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So, now from our earlier limit, log (IT3(2m)) becomes roughly d - log(242).

1.5 Lower Bound on Sample Complexity

Now, to get errp(h) < e, we need m = O(% - (log % +d-log %)) number of examples, which
grows linearly with the VC-dim d. This also provides the sufficient conditions for learning.
We can also now give a minimum number of examples to describe a class of hypotheses,
which is not true when the bound used log |H|, where no lower bound would be possible.

So, now we will prove the lower bound in terms of the VC-dim to be able to PAC learn.
The lower bounds must be in terms of the target concept class C, not the hypothesis class
H (so the limit will be in terms of VC-dim(C)).

To gain some intuition on this, we can look at if 477, ..., %4 shattered by C,
and if we have d — 1 points, then we cannot say what the next point d will be because both
outcomes are possible.

Theorem Let d = VC-dim(C). Then V algorithms A, 3¢ € C and 3 D such that if A
gets m < %l examples from D labeled by ¢, then

1 1
P h | > =,
r [eer( A) > 8] 23

In other words, this theorem says that you can’t make € and ¢ arbitrarily small. If € < %
and 6 < %, then you need at least % examples to PAC learn. The textbook expands on this
to say you need more than Q(g) examples.

1.5.1 (Bad) Argument on Lower Bound

We let D be uniform over a shattered set T = (Z7,...,Tq), and then run the algorithm A
on % of the examples from D to form S, then we will label them arbitrarily so that the
algorithm will then output h4. Now, we let ¢ € C be any concept consistent with the labels
in S and such that cg(x) # ha(z) Vo ¢ S. Then, by this argument, errp(ha) > 1.

But, this is not a valid argument because we cannot choose target concept ¢ after we
choose hy. We need to choose ¢ before we choose S. So, in this argument, we are making ¢
a function of h4, which is in turn a function of .S, so that c is a function of S. This is wrong
because we need to choose ¢ before S. We want to be able to argue that we can choose ¢
ahead of time and still give a lower bound on the error.

Next class, we will look at having D again be random over all T, but then choose ¢ at
random uniformly over the space of all possible dichotomies. Then, we’ll finish the valid
form of this argument to prove the above theorem.



