
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #4
Scribe: Jordan Boyd-Graber February 16, 2006

1 Loose Ends

Before we address new material, some loose ends remain to be addressed from the last
lecture.

1.1 Equivalence of PAC Learning Models

First, we’ll address the issue of whether a learner with an expected error α, which we’ll call
an EC (expected correct) model, is equivalent to the PAC model that is defined in terms of
a confidence δ and an accuracy ε.

ε δ

m(ε,δ)
examples

Alg
A

h

α

m(α)
examples

Alg
A

h

We can imagine both of these learning models as black boxes that take as their input
learning parameters (either α or ε and δ) and m examples (where m is a function of the
learning parameters). Thus, we can form the question of equivalence as creating one learner
using the inputs of the other.

In the first direction, given a PAC algorithm A, could an EC model use A as a subroutine
to create a new learner that fulfills the EC constraints? Let’s examine the expected error
of A.

E[error] = Pr[error > ε]E[error|error > ε] + P [error ≤ ε]E[error|error ≤ ε]. (1)

By the definition of the PAC learning model, P [error > ε] for a PAC learner is less than
or equal to δ, and the expected value for the error if the error is known to be less than ε is
less than ε. The other terms are no larger than one, so the expected value of the error is:

E[error] ≤ δ + ε. (2)

Thus, given some EC parameter of α, we run PAC using ε = δ = α
2 .

Going the other way, can we create a PAC learner with a given ε and δ given an EC
algorithm? Again, let’s look at the expected error. But this time we’ll want to lower bound
the error so that we can derive an expression for the probability of the error being greater
than ε.

E[error] = Pr[error > ε]E[error|error > ε] + Pr[error ≤ ε]E[error|error ≤ ε]. (3)

We know that the error can be no lower than zero and that it’s greater than ε for the
first part of the sum; thus, the expected error is greater than Pr[error > ε]ε. Rearranging,
this gives us:

Pr[error ≥ ε] ≤ E[error]
ε

≤ α

ε
≤ δ. (4)

(The first inequality holds for any non-negative random variable and is known as Markov’s
inequality.) So we want to run the EC algorithm with α set to εδ.

1.2 Must the target concept class be in the hypothesis space?

In general, it need not be the case that the target concept class C is contained in the
hypothesis class H, at least when the domain X is infinite. For instance, consider the case
when X = R, and the target class C consists of all positive half-lines. If the hypothesis
space H were only those positive half-lines that began on rational numbers, then although
we have only a measure-zero fraction of the possible concepts, we can come arbitrarily close
to any concept. In terms of learning, we have already seen that any consistent hypothesis
will be PAC, and in particular, we can choose an algorithm which, given a finite sample,
selects a rational separating point (and thus, a member of H) that falls between the sampled
points.

On the other hand, when X is finite, it can be argued that C must be in H. Suppose
k = |X|, and pick any c ∈ C. Because the PAC learner must work for all distributions D,
error ε, and confidence δ, we choose D such that it is uniform over X, ε = 1

2k , and δ = 1
2 .

The PAC criterion tells us that it is possible to find a hypothesis h whose error is less than
or equal to 1

2k , which is less than 1
k , the probability of a single point under distribution D.

So when we run A (on a possibly very large data set), it gives us an h that agrees with c
on all points in X. In other words, c and h must be identical functions. Thus, c ∈ H, and
therefore C ⊆ H.

1.3 Bogosity of rectangle argument

The proof technique discussed in the last lecture for PAC learnability of points in R2 only
applies to the smallest consistent rectangle.

2 A generalized argument for PAC learnability

Theorem 1 If A finds hA ∈ H consistent with m examples where m ≥ 1
ε (ln |H| + ln 1

δ),
then Pr[hA ε-bad] ≤ δ.

This is a very general bound on the sample complexity, and has a fairly simple proof.
We want to bound the probability of hA being consistent and being ε-bad.

But all we know is that hA ∈ H; we know nothing about how it was chosen or its
properties. We want to form a bound based on the probability of some hypothesis that
both consistent and ε-bad.

2

Because we don’t know anything about how h is chosen, we can merely make a statement
about the probability of such an h existing.

Let’s now define a set B that contains all hypotheses that are ε-bad. This allows us to
write the expression in terms of a conjunction over the elements of B.

Pr[hA cons ∧ hA ε-bad] ≤ Pr[∃h ∈ H : h cons ∧ ε-bad]
= Pr[∃h ∈ B : h cons]

= Pr

 ∨
h∈B

h cons

 .

Applying the union bound, we get that the probability is:

Pr[∃h ∈ B : h cons] ≤
∑
h∈B

Pr[h cons]. (5)

Now the question turns to determing the probability that h is consistent given that it
is ε-bad for some ε. Remember, for our sample S = 〈(x1, c(x1)), . . . (xm, c(xm))〉, h must
always agree with c. Thus, we use the independence of h agreeing on any given example to
get the following:

Pr[h cons] = Pr[h(x1) = c(x1) ∧ . . . ∧ h(xm) = c(xm)]

=
m∏

i=1

Pr[h(xi) = c(xi)].

But for any individual xi the probability of them matching up must be less than or equal
to (1 − ε) because h ∈ B. Thus, over m examples, the probability of h being consistent
is at most (1 − ε)m. So when we sum over all of the |B| hypotheses and use the fact that
B ⊆ H, we get the following:

Pr[∃h ∈ B : h cons] ≤
∑
h∈B

Pr[h cons] ≤ |B|(1 − ε)m ≤ |H|(1 − ε)m. (6)

Applying the inequality that (1−x) ≤ e−x and substituting in m as we defined it earlier,
we have:

Pr[∃h ∈ B : h cons] = |H|e−εm ≤ δ. (7)

Which is what we wanted to prove. Notice that ln |H| acts like a complexity term that
is proportional to lg |H|, the number of bits needed to represent a hypothesis in binary. For
example, monotone conjunctions require n bits over n variables (each term is either present
or not), so m grows as n ln 2.

Turning it around, the error of a hypothesis is less than 1
m(ln |H| + ln 1

δ).

3 An alternative approach to the error

Suppose that we want another bound on the error independent of the structure of H.
Suppose instead that we want to only compute the probability of one particular hA being
ε-bad (i.e. the hypothesis that was the result of our learning procedure). We now use the
fact that the denominator is 1 since we are only concerned with a consistent hypothesis:

3

Pr[hA ε-bad|hA cons] =
Pr[hA ε-bad ∧ hA cons]

Pr[hA cons]
= Pr[hA cons|hA ε-bad]Pr[hA ε-bad].

(8)
Now, at this point we might want to use our previous result that gave us:

Pr[hA cons|hA ε-bad] =
m∏

i=1

Pr[hA(xi) = c(xi)|hA ε-bad]. (9)

But hA depends on all of the elements of S, so this doesn’t hold because these events
are no longer independent and the individual probabilities are no longer less than 1 − ε. So
the moral of this lesson is that these arguments can be slippery. We especially need to be
careful, as we were in our earlier argument, to identify the hypothesis whose error we want
to analyze before the sample is selected.

4 Learnability of Infinite Hypothesis Spaces

The result above only holds for finite hypothesis spaces. There’s something, though, about
half-lines, rectangles, etc. that still allow us to learn how to classify them even though
they’re infinite. So let’s look at X = R and H = C = { positive half-lines }. In the
picture below, we have m examples and we form a number of hypotheses. Let’s see how
they categorize the points into positive (green) and negative (red).

h1

h2

h3

h4

h5

So even though h3 and h4 are different hypotheses, for the data that we have, they have
the same behavior for m points. In fact, there are only m + 1 “slots” where we can put
our positive half-lines, so there are only m + 1 behaviors or dichotomies for this class of
functions.

If we consider all possible dichotomies on m points, then there are 2m possible ways of
assigning a classification to m points. “Nice” cases will be polynomial in m, while the total
size of the possible dichotomies will be exponential. We can define the set of all dichotomies
for a sample S = 〈x1, . . . , xm〉 for a particular hypothesis space H:

ΠH(S) = {〈h(x1), . . . , h(xm)〉 : h ∈ H}. (10)

We can then define a growth function over m samples to capture how complex our
hypothesis space grows as we see more samples.

ΠH(m) = max|S|=m|ΠH(S)|. (11)

4

Intuitively, we want this measure to replace |H| term in our error bound so that the
complexity measure ln |H| becomes ln |ΠH(m)|. This means that if the growth function

grows as 2m, then we get a meaningless bound of m ≥ m+ln 1
δ

ε . In this case, and as we will
see, learning is impossible because we are working with something like all possible functions.

However, most of the interesting cases are O(md), where d is the VC-dimension. Next
time we’ll discuss the beautiful result that tells us:

Theorem 2 For any H, either ΠH(m) = 2m for all m or ΠH(m) = O(md).

5

