
Computer Science 345
The Efficient Universe

Homework 5
Due Wednesday, March 29, 2006

You may collaborate with other students,
but you should write up the solutions entirely on your own.

1 NP-Completeness

Definition 1 A language L ⊂ {0, 1}∗ is NP-complete if

• L ∈ NP;

• Every language L′ in NP is Karp-reducible to L:

L′ ≤K L.

Denote by NPC ⊆ NP the set of all NP-complete languages.

Problem 1 Let L be an NP-complete language. Prove that

1. If L ∈ P , then P = NP = NPC;

2. If L 6∈ P , then P ∩NPC = ∅.

2 Circuits

Problem 2 For every f : {0, 1}n → {0, 1}, let s(f) be the smallest (in terms of the number
of gates) Boolean circuit computing f . Show that for most function f , s(f) > 2n/3.

Hint: Prove that the number of circuits of size s is at most 2s2
. Count the number of functions and

compare.

3 Probability

In this section we remind some basic theorems of probability theory.

Theorem 2 (Linearity of Expectation) For every random variables (not necessarily in-
dependent) ξ1, ξ2, . . . , ξn:

E [ξ1 + ξ2 + . . . + ξn] = E [ξ1] + E [ξ2] + . . . + E [ξn] .

1



Theorem 3 For every independent random variables ξ1, ξ2, . . . , ξn:

1.

E

[
n∏

i=1

ξi

]
=

n∏
i=1

E [ξi] .

2.
Var [ξ1 + ξ2 + . . . + ξn] = Var [ξ1] + Var [ξ2] + . . . + Var [ξn] .

Theorem 4 (Markov’s Inequality) Let ξ be a random variable taking nonnegative real
values. Then for every positive t

Pr (ξ ≥ t) ≤ E [ξ]

t
.

Theorem 5 (Chebyshev’s Inequality) For every random variable ξ and every positive t

Pr (|ξ − E [ξ] | ≥ t) ≤ Var [ξ]

t2
.

Theorem 6 (Bernstein’s Inequality or the Chernoff Bound) Let ξ1, ξ2, . . . , ξn be in-
dependent identically distributed Bernoulli random variables with mean p. In other words
each ξi takes 1 with probability p and 0 with probability q = 1− p. Then for any positive ε

Pr

(∣∣∣∣ξ1 + ξ2 + · · ·+ ξn

n
− p

∣∣∣∣ ≥ ε

)
≤ 2e−ε2n/4

Remark: This inequality is usually known as Bernstein’s Inequality in Mathematics and as the Chernoff
Bound in Theoretical Computer Science.

3.1 Problems

Problem 3 In this problem we shall see how the XOR of many flips of a biased coin reduces
the bias quickly. Define the bias of a Bernoulli random variable ξ as follows:

Bias(ξ) = |Pr (ξ = 1)− Pr (ξ = 0)| .

Now consider n independent identically distributed Bernoulli random variables ξ1, ξ2, . . . , ξn

with mean p. Let ξ be the parity of the sum ξ1 + ξ2 + · · ·+ ξn. In other words

ξ =

{
0, the number of 1’s among ξ1, ξ2, . . . , ξn is even;

1, the number of 1’s among ξ1, ξ2, . . . , ξn is odd.

Show that
Bias(ξ) = (Bias(ξ1))

n.

2



What is the limit of Bias(ξ) as n tends to infinity?
Bonus: Compute the bias of a coin defined to be the majority vote on the outcome of 3
independent tosses. This improvement of bias can also be iterated. Compare using this
method to using the parity when the total number n of independent coins is large.

In the next exercise we will see that randomness may drastically improve communication
complexity.

Problem 4 Two friends Alice and Bob are connected via a slow Internet connection. Alice
has a long binary string (or file) A = a1 . . . an of length n; and Bob has a string B = b1 . . . bn.
They suspect that A = B and want to check whether this is indeed the case.

If the Internet connection was fast, Alice could send here string A to Bob. Then Bob
would compare A and B and tell the result to Alice. Unfortunately this protocol requires
transmitting n bits (and we assume that n is large). Can we hope to reduce the communi-
cation complexity?

1. Show that any deterministic, errorless protocol that checks whether A = B requires
transmitting at least n bits.

Hint: Show that if less than n bits were exchanged, there must be a pair of inputs A,B on which Alice
and Bob will make a mistake.

It turns out that if Alice and Bob can toss coins and are allowed to make errors (with
small probability), then they can do much better.

First Alice picks a (uniform) random prime number between 1 and n2. Then instead
of transmitting the whole string A to Bob, she sends a fingerprint (or a hash value) of her
string mA = M(A, p) (M defined below), which is much shorter than the string itself! She
then transmits mA, and the selected prime number p to Bob. Bob computes a fingerprint
of his string mB = M(B, p) and compares mA with mB. If mA = mB, then he decides that
A = B, otherwise A 6= B. The function M(S, p) is simply the reduction of S modulo p,
when S is considered an integer. Formally, M is defined as by:

M(S, p) =
n∑

i=1

2i−1 · si mod p.

See page 5, for the step-by-step description of the algorithm.

3. Prove that if A = B, then Alice and Bob always decide that A = B.

4. If A 6= B, then the probability that Alice and Bob decide that A = B is at most O(1/n).
Hint: You may find the following theorem useful. First you may show that this probability is O(log n/n).

Theorem 7 (Prime number theorem [Chebyshev, Hadamard and Vallée Poussin]) The number of
prime numbers between 1 and n is Θ(n/ log n).

5. How many bits do Alice and Bob send to each other, as a function of n?

6. Show that Alice and Bob can reduce the error probability by repeating the algorithm
many times. What is the tradeoff between communication and error?

3



7. Assume that the size of their files is 100MB (roughly 800 million bits) and the connection
speed is 50,000 bits per second. Estimate the running time of the first (deterministic) and
second (probabilistic) protocol.

8. Recall that in class we saw a different method of “fingerprinting” a string S - simply
computing its inner product (modulo 2) with a random Boolean vector v. Namely, H(S, v) =∑

i sivi mod 2. The fingerprint in this case is just 1 bit, and we proved in class (please verify)
that if A 6= B, then Pr[H(A, v) = H(B, v)] ≤ 1/2. What is the disadvantage of using this
H here, as opposed to M?

Problem 5 A function f : {0, 1}n → {0, 1} is linear if for every two vectors x and y,
f(x + y) = f(x) + f(y) (where + is componentwise exclusive or). You are given a program
P which computes some unknown linear function f , but makes an error on an unknown set
of 1% of the inputs. Design a probabilistic program Q, which can use P as a subroutine,
that for EVERY input z will satisfy Pr (Q(z) = f(z)) ≥ 98%.

4



Algorithm 1 Algorithm M for computing a string fingerprint.

Input: a string S = s1 . . . sn, a prime number p.
Output: a number mS.

• Compute

mS =
n∑

i=1

2i−1 · si mod p.

• Return mS.

Algorithm 2 Protocol between Alice and Bob.

Alice’s Input: a binary string A.
Bob’s Input: a binary string B.
Output: Both programs return either “A = B” or “A 6= B”.

Protocol:

• Alice picks a random (uniform) prime number p between 1 and n2.

• Alice computes the fingerprint mA = M(A, p).

• Alice sends mA and p to Bob.

• Bob computes mB = M(B, p).

• If mA = mB, then Bob returns “A = B”; otherwise “A 6= B”.

• Alice returns the same message as Bob.

5


