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Writing Portable Programs

COS 217
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Goals of Today’s Class
• Writing portable programs in C

– Sources of heterogeneity
– Data types, evaluation order, byte order, char set, …

• Reading period and final exam
– Important dates
– Practice exams

• Lessons from COS 217
– Course wrap-up
– Have a great summer!



3

The Real World is Heterogeneous
• Multiple kinds of hardware

– 32-bit Intel Architecture
– 64-bit IA, PowerPC, Sparc, MIPS, Arms, …

• Multiple operating systems
– Linux
– Windows, Mac, Sun, AIX, …

• Multiple character sets
– ASCII
– Latin-1, unicode, …

• Multiple byte orderings
– Little endian
– Big endian
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Portability
• Goal: run program on any other system

– Do not require any modifications to the program at all
Simply recompile the program, and run

– Program should continue to perform correctly
Ideally, the program should perform well, too.

• Portability is hard to achieve
– Wide variation in computing platforms
– Patches and releases are frequent operations

• Normally, portability is difficult to achieve
– Still, good to make programs as portable as possible 
– This requires extra care in writing and testing code
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Programming Language
• Stick to the standard

– Program in a high-level language and stay within the 
language standard

– However, the standard may be incomplete
E.g., char type in C and C++ may be signed or unsigned

• Program in the mainstream
– Mainstream implies the established style and use 

Program enough to know what compilers commonly do
Difficult for large languages such as C++

• Beware of language trouble spots
– Some features are intentionally undefined to give 

compiler implementers flexibility
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Size of Data Types
• What are the sizes of char, short, int, 
long, float and double in C and C++?
–char has at least 8 bits, short and int at least 16 bits
–sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤
sizeof(long)

–sizeof(float) ≤ sizeof(double)
• In Java, sizes are defined

–byte: 8 bits
–char: 16 bits
–short: 16 bits
–int: 32 bits
–long: 64 bits

• Our advice: always use sizeof() to be safe



7

Order of Evaluation
• Order of evaluation may be ambiguous

–strings[i] = names[++i];
i can be incremented before or after indexing strings!

–printf(“%c %c\n”, getchar(), getchar());
The second character in stdin can be printed first!

• What are the rules in C and C++?
– Side effects and function calls must be completed at “;”
– && and || execute left to right, only as far as necessary

• What about Java?
– Expressions including side effects evaluated left to right

• Our advice: do not depend on the order of 
evaluation in an expression
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Characters Signed or Unsigned?
• Char type may be signed or unsigned

– Either a 7-bit or an 8-bit character

• Code that is not portable
int i;
char s[MAX+1];
for (i = 0; i < MAX; i++) 

if ((s[i] = getchar()) == ‘\n’) || 
(s[i] == EOF))

break;
s[i] = ‘\0’;

• If char is unsigned
–s[i] is 255, but EOF is -1
– Hence, the program will hang!
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Portable Version Using Integers
• Solution

– Use an integer to store the output of getchar()

• Portable C code
int c, i;
char s[MAX+1];
for (i = 0; i < MAX; i++) {

if ((c = getchar()) == ‘\n’) || 
(c == EOF))

break;
s[i] = c;

}
s[i] = ‘\0’;
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Other C Language Issues
• Arithmetic or logical shift

– C: signed quantities with >> may be arithmetic or logical
What is “-3 >> 1”?
Does it shift-in a sign bit (i.e., a 1) or a 0?

– Java: >> for arithmetic right shift, and >>> for logical

• Byte order
– Byte order within short, int, and long is not defined
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Alignment of Structures and Unions
• Structure consisting of multiple elements

struct foo {
char x;
int y;

}

• Items are laid out in the order of declaration

• But, the alignment is undefined
– There might be holes between the elements
– E.g., y may be 2, 4, or 8 bytes from x
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Use Standard Libraries
• Pre-ANSI C may have calls not supported in ANSI 

C
– Program will break if you continue use them
– Header files can pollute the name space

• Consider the signals defined
– ANSI C defines 6 signals
– POSIX defines 19 signals
– Most UNIX defines 32 or more

• Take a look at /usr/include/*.h to see the 
conditional definitions
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Avoid Conditional Compilation
• Writing platform-specific code is possible

…
some common code
#ifdef MAC
…
#else
#ifdef WINDOWSXP
…
#endif
#endif

• But, #ifdef code is difficult to manage
– Platform-specific code may be all over the place
– Plus, each part requires separate testing
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Isolation
• Common feature may not always work: Life is hard

• Localize system dependencies in separate files
– Separate file to wrap the interface calls for each system
– Example: unix.c, windows.c, mac.c, …

• Hide system dependencies behind interfaces
– Abstraction can serve as the boundary between portable 

and non-portable components

• Java goes one big step further
– Virtual machine which abstracts the entire machine
– Independent of operating systems and the hardware
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Data Exchange
• Use ASCII text

– Binary is often not portable

• Still need to be careful
– But, even with text, not all systems are the same

Windows systems use ‘\r’ or ‘\n’ to terminate a line
UNIX uses only ‘\n’

– Example
Use Microsoft Word and Emacs to edit files
CVS assumes all lines have been changed and will merge 
incorrectly

– Use standard interfaces which will deal CRLF (carriage-
return and line feed) and newline in a consistent manner
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Byte Order: Big and Little Endian
• Example interaction between two machines

– One process writes a short to outbound socket:
unsigned short x;
x = 0x1000;
...
write(sockOut, &x, sizeof(x));

– Later, another process reads it from inbound socket:
unsigned short x;
...
read(sockIn, &x, sizeof(x));

• What is the value of x after reading?
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Byte Order Solutions
• Fix the byte order for data exchange

– Sender:
unsigned short x; 
putchar(x >> 8); /* high-order byte */
putchar(x & 0xFF); /* low-order byte */

– Receiver:
unsigned short x;
x = getchar() << 8;     /* high-order */
x |= getchar() & 0xFF;  /* low-order */

• Extremely important for network protocols
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More on Byte Order
• Language solution

– Java has a serializable interface that defines how data 
items are packed

– C and C++ require programmers to deal with the byte 
order

• Binary files vs. text files
– Binary mode for text files

No problem on UNIX
Windows will terminate reading once it sees Ctrl-Z as input
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Internationalization
• Don’t assume ASCII

– Many countries do not use English
– Asian languages use 16 bits per character

• Standardizations
– Latin-1 arguments ASCII by using all 8 bits
– Unicode uses 16 bits per character 
– Java uses unicode as its native character set for strings

• Issues with unicode
– Byte order issue!
– Solution: use UTF-8 as an intermediate representation or 

define the byte order for each character
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Summary on Portability
• Language

– Don’t assume char signed or unsigned
– Always use sizeof() to compute the size of types
– Don’t depend on the order of evaluation of an expression
– Beware of right shifting a signed value
– Make sure that the data type is big enough

• Use standard interfaces
– Use the common features where possible
– Provide as much isolation as possible

• Byte order 
– Fix byte order for data exchange

• Internationalization
– Don’t assume ASCII and English
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Important Dates
• Tuesday May 16 (Dean’s Date)

– Execution Profiler Assignment due

• Monday, May 22, 9:00-12:00
– Frick Chemistry Laboratory 324
– Open books, notes, slides, mind, etc.
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Practice Final Exams
• Many old exams and answers are online

– http://www.cs.princeton.edu/courses/archive/spr06/cos2
17/exam2prep

• We recommend you take some practice exams
– And then look at the answers afterwards
– Note that some material differs from term to term

• Also, ask questions about the practice exams
– On the listserv
– To me or Bob Dondero, in person
– To each other
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Wrap Up: Goals of COS 217
• Understand boundary between code and computer

– Machine architecture
– Operating systems
– Compilers

• Learn C and the Unix development tools
– C is widely used for programming low-level systems
– Unix has a rich development environment
– Unix is open and well-specified, good for study & research

• Improve your programming skills
– More experience in programming
– Challenging and interesting programming assignments
– Emphasis on modularity and debugging
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Relationship to Other Courses
• Machine architecture

– Logic design (306) and computer architecture (471)
– COS 217: assembly language and basic architecture

• Operating systems
– Operating systems (318)
– COS 217: virtual memory, system calls, and signals

• Compilers
– Compiling techniques (320)
– COS 217: compilation process, symbol tables, assembly 

and machine language

• Software systems
– Numerous courses, independent work, etc.
– COS 217: programming skills, UNIX tools, and ADTs
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Lessons About Computer Science
• Modularity

– Well-defined interfaces between components
– Allows changing the implementation of one component 

without changing another
– The key to managing complexity in large systems

• Resource sharing
– Time sharing of the CPU by multiple processes
– Sharing of the physical memory by multiple processes

• Indirection
– Representing address space with virtual memory
– Manipulating data via pointers (or addresses)
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Lessons Continued
• Hierarchy

– Memory: registers, cache, main memory, disk, tape, …
– Balancing the trade-off between fast/small and slow/big

• Bits can mean anything
– Code, addresses, characters, pixels, money, grades, …
– Arithmetic is just a lot of logic operations
– The meaning of the bits depends entirely on how they 

are accessed, used, and manipulated

• Capturing a human’s intent is really hard
– Precise specification of a problem is challenging
– Correct and efficient implementation of a solution is, too
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Have a Great Summer!

Credit: www.thepbf.com 
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