
1

Writing Portable Programs

COS 217

2

Goals of Today’s Class
• Writing portable programs in C

– Sources of heterogeneity
– Data types, evaluation order, byte order, char set, …

• Reading period and final exam
– Important dates
– Practice exams

• Lessons from COS 217
– Course wrap-up
– Have a great summer!

3

The Real World is Heterogeneous
• Multiple kinds of hardware

– 32-bit Intel Architecture
– 64-bit IA, PowerPC, Sparc, MIPS, Arms, …

• Multiple operating systems
– Linux
– Windows, Mac, Sun, AIX, …

• Multiple character sets
– ASCII
– Latin-1, unicode, …

• Multiple byte orderings
– Little endian
– Big endian

4

Portability
• Goal: run program on any other system

– Do not require any modifications to the program at all
Simply recompile the program, and run

– Program should continue to perform correctly
Ideally, the program should perform well, too.

• Portability is hard to achieve
– Wide variation in computing platforms
– Patches and releases are frequent operations

• Normally, portability is difficult to achieve
– Still, good to make programs as portable as possible
– This requires extra care in writing and testing code

5

Programming Language
• Stick to the standard

– Program in a high-level language and stay within the
language standard

– However, the standard may be incomplete
E.g., char type in C and C++ may be signed or unsigned

• Program in the mainstream
– Mainstream implies the established style and use

Program enough to know what compilers commonly do
Difficult for large languages such as C++

• Beware of language trouble spots
– Some features are intentionally undefined to give

compiler implementers flexibility

6

Size of Data Types
• What are the sizes of char, short, int,
long, float and double in C and C++?
–char has at least 8 bits, short and int at least 16 bits
–sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤
sizeof(long)

–sizeof(float) ≤ sizeof(double)
• In Java, sizes are defined

–byte: 8 bits
–char: 16 bits
–short: 16 bits
–int: 32 bits
–long: 64 bits

• Our advice: always use sizeof() to be safe

7

Order of Evaluation
• Order of evaluation may be ambiguous

–strings[i] = names[++i];
i can be incremented before or after indexing strings!

–printf(“%c %c\n”, getchar(), getchar());
The second character in stdin can be printed first!

• What are the rules in C and C++?
– Side effects and function calls must be completed at “;”
– && and || execute left to right, only as far as necessary

• What about Java?
– Expressions including side effects evaluated left to right

• Our advice: do not depend on the order of
evaluation in an expression

8

Characters Signed or Unsigned?
• Char type may be signed or unsigned

– Either a 7-bit or an 8-bit character

• Code that is not portable
int i;
char s[MAX+1];
for (i = 0; i < MAX; i++)

if ((s[i] = getchar()) == ‘\n’) ||
(s[i] == EOF))

break;
s[i] = ‘\0’;

• If char is unsigned
–s[i] is 255, but EOF is -1
– Hence, the program will hang!

9

Portable Version Using Integers
• Solution

– Use an integer to store the output of getchar()

• Portable C code
int c, i;
char s[MAX+1];
for (i = 0; i < MAX; i++) {

if ((c = getchar()) == ‘\n’) ||
(c == EOF))

break;
s[i] = c;

}
s[i] = ‘\0’;

10

Other C Language Issues
• Arithmetic or logical shift

– C: signed quantities with >> may be arithmetic or logical
What is “-3 >> 1”?
Does it shift-in a sign bit (i.e., a 1) or a 0?

– Java: >> for arithmetic right shift, and >>> for logical

• Byte order
– Byte order within short, int, and long is not defined

11

Alignment of Structures and Unions
• Structure consisting of multiple elements

struct foo {
char x;
int y;

}

• Items are laid out in the order of declaration

• But, the alignment is undefined
– There might be holes between the elements
– E.g., y may be 2, 4, or 8 bytes from x

12

Use Standard Libraries
• Pre-ANSI C may have calls not supported in ANSI

C
– Program will break if you continue use them
– Header files can pollute the name space

• Consider the signals defined
– ANSI C defines 6 signals
– POSIX defines 19 signals
– Most UNIX defines 32 or more

• Take a look at /usr/include/*.h to see the
conditional definitions

13

Avoid Conditional Compilation
• Writing platform-specific code is possible

…
some common code
#ifdef MAC
…
#else
#ifdef WINDOWSXP
…
#endif
#endif

• But, #ifdef code is difficult to manage
– Platform-specific code may be all over the place
– Plus, each part requires separate testing

14

Isolation
• Common feature may not always work: Life is hard

• Localize system dependencies in separate files
– Separate file to wrap the interface calls for each system
– Example: unix.c, windows.c, mac.c, …

• Hide system dependencies behind interfaces
– Abstraction can serve as the boundary between portable

and non-portable components

• Java goes one big step further
– Virtual machine which abstracts the entire machine
– Independent of operating systems and the hardware

15

Data Exchange
• Use ASCII text

– Binary is often not portable

• Still need to be careful
– But, even with text, not all systems are the same

Windows systems use ‘\r’ or ‘\n’ to terminate a line
UNIX uses only ‘\n’

– Example
Use Microsoft Word and Emacs to edit files
CVS assumes all lines have been changed and will merge
incorrectly

– Use standard interfaces which will deal CRLF (carriage-
return and line feed) and newline in a consistent manner

16

Byte Order: Big and Little Endian
• Example interaction between two machines

– One process writes a short to outbound socket:
unsigned short x;
x = 0x1000;
...
write(sockOut, &x, sizeof(x));

– Later, another process reads it from inbound socket:
unsigned short x;
...
read(sockIn, &x, sizeof(x));

• What is the value of x after reading?

17

Byte Order Solutions
• Fix the byte order for data exchange

– Sender:
unsigned short x;
putchar(x >> 8); /* high-order byte */
putchar(x & 0xFF); /* low-order byte */

– Receiver:
unsigned short x;
x = getchar() << 8; /* high-order */
x |= getchar() & 0xFF; /* low-order */

• Extremely important for network protocols

18

More on Byte Order
• Language solution

– Java has a serializable interface that defines how data
items are packed

– C and C++ require programmers to deal with the byte
order

• Binary files vs. text files
– Binary mode for text files

No problem on UNIX
Windows will terminate reading once it sees Ctrl-Z as input

19

Internationalization
• Don’t assume ASCII

– Many countries do not use English
– Asian languages use 16 bits per character

• Standardizations
– Latin-1 arguments ASCII by using all 8 bits
– Unicode uses 16 bits per character
– Java uses unicode as its native character set for strings

• Issues with unicode
– Byte order issue!
– Solution: use UTF-8 as an intermediate representation or

define the byte order for each character

20

Summary on Portability
• Language

– Don’t assume char signed or unsigned
– Always use sizeof() to compute the size of types
– Don’t depend on the order of evaluation of an expression
– Beware of right shifting a signed value
– Make sure that the data type is big enough

• Use standard interfaces
– Use the common features where possible
– Provide as much isolation as possible

• Byte order
– Fix byte order for data exchange

• Internationalization
– Don’t assume ASCII and English

21

Important Dates
• Tuesday May 16 (Dean’s Date)

– Execution Profiler Assignment due

• Monday, May 22, 9:00-12:00
– Frick Chemistry Laboratory 324
– Open books, notes, slides, mind, etc.

22

Practice Final Exams
• Many old exams and answers are online

– http://www.cs.princeton.edu/courses/archive/spr06/cos2
17/exam2prep

• We recommend you take some practice exams
– And then look at the answers afterwards
– Note that some material differs from term to term

• Also, ask questions about the practice exams
– On the listserv
– To me or Bob Dondero, in person
– To each other

23

Wrap Up: Goals of COS 217
• Understand boundary between code and computer

– Machine architecture
– Operating systems
– Compilers

• Learn C and the Unix development tools
– C is widely used for programming low-level systems
– Unix has a rich development environment
– Unix is open and well-specified, good for study & research

• Improve your programming skills
– More experience in programming
– Challenging and interesting programming assignments
– Emphasis on modularity and debugging

24

Relationship to Other Courses
• Machine architecture

– Logic design (306) and computer architecture (471)
– COS 217: assembly language and basic architecture

• Operating systems
– Operating systems (318)
– COS 217: virtual memory, system calls, and signals

• Compilers
– Compiling techniques (320)
– COS 217: compilation process, symbol tables, assembly

and machine language

• Software systems
– Numerous courses, independent work, etc.
– COS 217: programming skills, UNIX tools, and ADTs

25

Lessons About Computer Science
• Modularity

– Well-defined interfaces between components
– Allows changing the implementation of one component

without changing another
– The key to managing complexity in large systems

• Resource sharing
– Time sharing of the CPU by multiple processes
– Sharing of the physical memory by multiple processes

• Indirection
– Representing address space with virtual memory
– Manipulating data via pointers (or addresses)

26

Lessons Continued
• Hierarchy

– Memory: registers, cache, main memory, disk, tape, …
– Balancing the trade-off between fast/small and slow/big

• Bits can mean anything
– Code, addresses, characters, pixels, money, grades, …
– Arithmetic is just a lot of logic operations
– The meaning of the bits depends entirely on how they

are accessed, used, and manipulated

• Capturing a human’s intent is really hard
– Precise specification of a problem is challenging
– Correct and efficient implementation of a solution is, too

27

Have a Great Summer!

Credit: www.thepbf.com

	Writing Portable Programs
	Goals of Today’s Class
	The Real World is Heterogeneous
	Portability
	Programming Language
	Size of Data Types
	Order of Evaluation
	Characters Signed or Unsigned?
	Portable Version Using Integers
	Other C Language Issues
	Alignment of Structures and Unions
	Use Standard Libraries
	Avoid Conditional Compilation
	Isolation
	Data Exchange
	Byte Order: Big and Little Endian
	Byte Order Solutions
	More on Byte Order
	Internationalization
	Summary on Portability
	Important Dates
	Practice Final Exams
	Wrap Up: Goals of COS 217
	Relationship to Other Courses
	Lessons About Computer Science
	Lessons Continued
	Have a Great Summer!

