
EFFICIENT SEARCH FOR APPROXIMATE NEAREST NEIGHBOR
IN HIGH DIMENSIONAL SPACES∗

EYAL KUSHILEVITZ† , RAFAIL OSTROVSKY‡ , AND YUVAL RABANI†

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 457–474

Abstract. We address the problem of designing data structures that allow efficient search for
approximate nearest neighbors. More specifically, given a database consisting of a set of vectors
in some high dimensional Euclidean space, we want to construct a space-efficient data structure
that would allow us to search, given a query vector, for the closest or nearly closest vector in the
database. We also address this problem when distances are measured by the L1 norm and in the
Hamming cube. Significantly improving and extending recent results of Kleinberg, we construct data
structures whose size is polynomial in the size of the database and search algorithms that run in
time nearly linear or nearly quadratic in the dimension. (Depending on the case, the extra factors
are polylogarithmic in the size of the database.)

Key words. nearest neighbor search, data structures, random projections

AMS subject classification. 68Q25

PII. S0097539798347177

1. Introduction.
Motivation. Searching for a nearest neighbor among a specified database of points

is a fundamental computational task that arises in a variety of application areas, in-
cluding information retrieval [32, 33], data mining [20], pattern recognition [8, 14],
machine learning [7], computer vision [4], data compression [18], and statistical data
analysis [10]. In many of these applications the database points are represented as
vectors in some high dimensional space. For example, latent semantic indexing is a
recently proposed method for textual information retrieval [9]. The semantic contents
of documents, as well as the queries, are represented as vectors in R

d, and proxim-
ity is measured by some distance function. Despite the use of dimension reduction
techniques such as principal component analysis, vector spaces of several hundred
dimensions are typical. Multimedia database systems, such as IBM’s QBIC [16] or
MIT’s Photobook [31], represent features of images and queries similarly. In such ap-
plications, the mapping of attributes of objects to coordinates of vectors is heuristic,
and so is the choice of metric. Therefore, an approximate search is just as good as an
exact search and is often used in practice.

The problem. Let V be some (finite or infinite) vector space of dimension d,
and let ‖ · ‖ be some norm (Minkowsky distance function) for V. Given a database
consisting of n vectors in V, a slackness parameter ε > 0, and a query vector q, a
(1 + ε)-approximate nearest neighbor of q is a database vector a such that for any
other database vector b, ‖q− a‖ ≤ (1+ ε)‖q− b‖. We consider the following problem.

∗Received by the editors November 13, 1998; accepted for publication (in revised form) August
17, 1999; published electronically June 3, 2000. A preliminary version of this paper appeared in
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998,
pp. 614–623.

http://www.siam.org/journals/sicomp/30-2/34717.html
†Computer Science Department, Technion—IIT, Haifa 32000, Israel (eyalk@cs.technion.ac.il,

rabani@cs.technion.ac.il). Part of this work was done while the third author was visiting Bell Com-
munications Research. Work at Technion supported by BSF grant 96-00402, by a David and Ruth
Moskowitz Academic Lecturship award, and by grants from the S. and N. Grand Research Fund, the
Smoler Research Fund, and the Fund for the Promotion of Research at Technion.

‡Bell Communications Research, MCC-1C365B, 445 South Street, Morristown, NJ 07960-6438
(rafail@bellcore.com).

457

458 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

Given such a database and ε > 0, design a data structure S and a (1+ε)-approximate
nearest neighbor search algorithm (using S).

We aim at efficient construction of S as well as quick lookup. Our performance
requirements are the following. (i) The algorithm for constructing S should run in
time polynomial in n and d (and thus the size of S is polynomial in n and d). (ii) The
search algorithm should improve significantly over the näıve (brute force) O(dn) time
exact algorithm. More precisely, we aim at search algorithms using (low) polynomial
in d and logn arithmetic operations.

Our results. We obtain results for the Hamming cube ({0, 1}d with the L1 norm)
for Euclidean spaces (Rd with the L2 norm) and for �d1 (Rd with the L1 norm). Our
results for the cube generalize to vector spaces over any finite field; thus we can handle
a database of documents (strings) over any finite alphabet. Our results for Euclidean
spaces imply similar bounds for distance functions used in latent semantic indexing
(these are not metrics, but their square root is Euclidean).

Our data structures are of size (dn)O(1). For the d-dimensional Hamming cube
as well as for �d1, our search algorithm runs in time O(dpoly log(dn)) (the logarithmic
factors are different in each case). For d-dimensional Euclidean spaces, our search
algorithm runs in time O(d2poly log(dn)). (The big-Oh notation hides factors poly-
nomial in 1/ε.)

Our algorithms are probabilistic. They succeed with any desired probability (at
the expense of time and space complexity). We have to make precise the claims
for success: The algorithm that constructs S succeeds with high probability, and if
successful, S is good for every possible query. If S has been constructed successfully,
then given any query, the search algorithm succeeds to find an approximate nearest
neighbor with high probability, and this probability can be increased as much as we
like without modifying S (just by running the search algorithm several times). An
alternative, weaker guarantee is to construct a data structure that is good for most
queries. Our algorithms provide the stronger guarantee. (This means that they can
work when the queries are generated by an adversary that has access to the random
bits used in the construction of the data structure.) Much of the difficulty arises from
this requirement.

Related work. In computational geometry, there is a vast amount of literature on
proximity problems in Euclidean spaces, including nearest neighbor search and the
more general problem of point location in an arrangement of hyperplanes. We dare
not attempt to survey but the most relevant papers to our work.

There are excellent solutions to nearest neighbor search in low (two or three)
dimensions. For more information see, e.g., [30]. In high dimensional space, the
problem was first considered by Dobkin and Lipton [11]. They showed an exponential
in d search algorithm using (roughly) a double-exponential in d (summing up time
and space) data structure. This was improved and extended in subsequent work of
Clarkson [5], Yao and Yao [35], Matoušek [28], Agarwal and Matoušek [1], and others,
all requiring query time exponential in d. Recently, Meiser [29] obtained a polynomial
in d search algorithm using an exponential in d size data structure.

For approximate nearest neighbor search, Arya et al. [3] gave an exponential in
d time search algorithm using a linear size data structure. Clarkson [6] gave a search
algorithm with improved dependence on ε. Recently, Kleinberg [24] gave two algo-
rithms that seem to be the best results for large d prior to this work. The first
algorithm searches in time O(d2 log2 d + d log2 d log n) but requires a data structure
of size O(n log d)2d. The second algorithm uses a small data structure (nearly linear

APPROXIMATE NEAREST NEIGHBOR SEARCH 459

in dn) and takes O(n+ d log3 n) time (so it beats the brute force search algorithm).
Independently of our work, Indyk and Motwani [21] obtained several results

on essentially the same problems as we discuss here. Their main result gives an
O(dpoly log(dn)) search algorithm using a data structure of size O

(
n(1/ε)O(d)

poly log(dn)) for Euclidean and other norms. They obtain this result using space
partitions induced by spheres, and bucketing. In comparison with our work, they use
exponential in d (but not in 1/ε) storage in contrast with our polynomial in d storage.
Their search time is better than ours for the Euclidean case and similar for the L1

norm. They also point out that dimension reduction techniques, such as those based
on random projections, can be used in conjunction with their other results to get
polynomial size data structures which are good for any single query with high proba-
bility. However, the data structure always fails on some queries (so an adversary with
access to the random bits used in the construction can present a bad query).

Also related to our work are constructions of hash functions that map “close” el-
ements to “close” images. In particular, nonexpansive hash functions guarantee that
the distance between images is at most the distance between the original elements.
However, such families are known only for one-dimensional points (Linial and Sas-
son [27]). For d-dimensional points, Indyk et al. [22] construct hash functions that
increase the distance by a bounded additive term (d or

√
d depending on the metric).

These results do not seem useful for approximate nearest neighbor search as they can
increase a very small distance δ to a distance which is much larger than (1+ε)δ. Dolev
et al. [13, 12] construct hash functions that map all elements at distance at most � to
“close” images. These constructions, too, do not seem useful for approximate nearest
neighbor search, because the construction time is exponential in �.

Our methods. Our data structure and search algorithm for the hypercube is based
on an inner product test. Similar ideas have been used in a cryptographic context
by [19] and as a matter of folklore to design equality tests (see, e.g., [25]). Here, we
refine the basic idea to be sensitive to distances. For Euclidean spaces, we reduce the
problem essentially to a search in several hypercubes (along with random sampling
to speed up the search). The reduction uses projections onto random lines through
the origin. Kleinberg’s algorithms are also based on a test using random projections.
His test relies on the relative positions of the projected points. In contrast, our test
is based on the property that the projection of any vector maintains, in expectation,
its (properly scaled) length. This property underlies methods of distance preserving
embeddings into low dimensional spaces, like the Johnson–Lindenstrauss lemma [23]
(see also Linial, London, and Rabinovich [26]). The problem with these techniques is
that when applied directly, they guarantee correct answers to most queries but not
to all possible queries. In order to overcome this difficulty, we resort to the theory of
Vapnik–Chervonenkis (or VC-) dimension [34] to show the existence of a small finite
sample of lines that closely imitate the entire distribution for any vector. A clustering
argument and another sampling argument allow us to use this sample to reduce our
problem to the cube. Similar ideas work for the L1 norm too (but we need to project
onto the axes rather than onto random lines).

Notation. We denote by n the number of database points, by q the query point,
and by ε the slackness (i.e., in reply to q we must return a database point whose
distance from q is within a factor of 1 + ε of the minimum distance from q to any
database point).

Metric spaces. We consider the following metric spaces. The d-dimensional Ham-
ming cube Qd is the set {0, 1}d of cardinality 2d, endowed with the Hamming distance

460 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

H. For a, b ∈ Qd, H(a, b) =
∑
i |ai − bi|. For a finite set F, let x, y ∈ F d. (That is,

x, y are words of length d over the alphabet F .) The generalized Hamming distance
H(x, y) is the number of dimensions where x differs from y. The Euclidean space �d2
is R

d endowed with the standard L2 distance. The space �d1 is R
d endowed with the

L1 distance.

2. Approximate nearest neighbors in the hypercube. In this section we
present an approximate nearest neighbors algorithm for the d-dimensional cube. That
is, all database points and query points are in {0, 1}d and distances are measured
by Hamming distance. The first idea behind our algorithm for the hypercube is to
design a separate test for each distance �. Given a query q, such a test either returns
a database vector at distance at most (1 + ε)� from q, or informs that there is no
database vector at distance � or less from q. Given such a test, we can perform
approximate nearest neighbor search by using binary search over � ∈ {1, 2, . . . , d}
(and also checking distance 0—this can be done using any reasonable dictionary data
structure).

We begin by defining a test, which we later use in the construction of our data
structure. A β-test τ is defined as follows. We pick a subset C of coordinates of the
cube by choosing each element in {1, 2, . . . , d} independently at random with proba-
bility β. For each of the chosen coordinates i we pick independently and uniformly at
random ri ∈ {0, 1}. For v ∈ Qd, define the value of τ at v, denoted τ(v) as follows:

τ(v) =
∑
i∈C
ri · vi (mod 2).

Equivalently, the test can be viewed as picking a vector �R ∈ {0, 1}d in a way that
each entry gets the value 0 with “high” probability (i.e., 1− β

2) and the value 1 with
“low” probability (i.e., β/2). With this view, the value of the test on v ∈ Qd is just

its inner product with �R modulo 2.1

Let q be a query, and let a, b be two database points with H(q, a) ≤ � and
H(q, b) > (1 + ε)�. We claim that for β = 1

2� the above test distinguishes between
a and b with constant probability. More formally, let β = 1

2� , and let ∆(u, v) =
Pr�R[τ(u)
= τ(v)]. Then we have the following lemma.

Lemma 2.1. There is an absolute constant δ1 > 0, such that for any ε > 0 there
is a constant δ2 > δ1 (depending on ε only), such that ∆(q, a) ≤ δ1 and ∆(q, b) ≥ δ2.
(In what follows we denote by δ the constant δ2 − δ1.)

Proof. For any u, v ∈ Qd with H(u, v) = k we have ∆(u, v) = 1
2 (1 − (1 − 1

2�)
k)

(if none of the k coordinates where ui
= vi is chosen to be in C, then τ(u) = τ(v);
if at least one such coordinate, j, is in C, then, for every way of fixing all other
choices, exactly one of the two choices for rj will give τ(u)
= τ(v)). Note that
∆(u, v) is monotonically increasing with k. We set δ1 = 1

2 (1 − (1 − 1
2�)

�) and δ2 =
1
2 (1− (1− 1

2�)
(1+ε)�). Thus δ2 −δ1= 1

2

[
(1− 1

2�)
�−(1− 1

2�)
(1+ε)�

]
= Θ(1− e−ε/2).

The above lemma implies that, for q, a, and b as above, a single test can get a
small (constant) bias towards making the correct decision as to which point is closer to
q. To amplify this bias we use several such tests as explained below (see Lemma 2.2).

The data structure. Our data structure S consists of d substructures S1, S2, . . . ,Sd
(one for each possible distance). Fix � ∈ {1, 2, . . . , d}. We now describe S�. Let

1It is common to use the inner product for “equality tests.” However, these tests just distinguish
the equal u, v from the nonequal u, v, but they lose all information on the distance between u and
v. In our test, by appropriately choosing the value β, we can obtain some distance information.

APPROXIMATE NEAREST NEIGHBOR SEARCH 461

M and T be positive integers which we specify later. S� consists of M structures
T1, . . . , TM . So fix i ∈ {1, 2, . . . ,M}. Structure Ti consists of a list of T 1

2� -tests
�R1, �R2, . . . , �RT ∈ {0, 1}d, and a table of 2T entries (one entry for each possible out-
come of the sequence of T tests). Each entry of the table either contains a database
point or is empty.

We construct the structure Ti as follows. We pick independently at random T
1
2� -tests t1, . . . , tT (defined by �R1, �R2, . . . , �RT ∈ {0, 1}d). For v ∈ Qd, let its trace be
the vector t(v) = (t1(v), . . . , tT (v)) ∈ {0, 1}T . Let δ1 and δ be the constants from
Lemma 2.1. An entry corresponding to z ∈ {0, 1}T contains a database point v with
H(t(v), z) ≤ (δ1 + 1

3δ)T, if such a point exists (any such point, if more than one
exists), and otherwise the entry is empty. This completes the specification of S (up
to the choice of T and M). Notice that in a straightforward implementation, the size
of S is O(d ·M · (dT + 2T log n)) (we also need to keep the original set of points, and
this takes dn space), and it takes O(d ·M · (dTn+ 2Tn)) time to construct S.

Lemma 2.2. Let q be a query, and let a, b be two database points with H(q, a) ≤ �
and H(q, b) > (1 + ε)�. Consider a structure Ti in S�, and let δ1, δ2, and δ be as in
Lemma 2.1. Then the following hold.

• Pr[H(t(q), t(a)) > (δ1 +
1
3δ)T] ≤ e−

2
9 δ

2T .

• Pr[H(t(q), t(b)) < (δ2 − 1
3δ)T] ≤ e−

2
9 δ

2T .
Proof. The proof follows immediately by plugging in the success probabilities

from Lemma 2.1 in the following Chernoff bounds. For a sequence of m indepen-
dently and identically distributed (i.i.d.) 0-1 random variables X1, X2, . . . , Xm,

Pr [
∑
Xi > (p+ γ)m] ≤ e−2mγ2

, and Pr [
∑
Xi < (p− γ)m] ≤ e−2mγ2

, where p =
Pr[Xi = 1] (see [2, Appendix A]).

Our goal is to show that we can answer every possible query “correctly.” This is
formalized by the following definition.

Definition 2.3. For q ∈ Qd, �, and Ti in S�, we say that Ti fails at q if there exists
a database point a with H(q, a) ≤ � (or a database point b with H(q, b) > (1 + ε)�),
such that H(t(q), t(a)) > (δ1 +

1
3δ)T (or H(t(q), t(b)) < (δ2 − 1

3δ)T, respectively). We
say that S fails at q if there exists �, such that more than µM/ log d structures Ti in
S� fail (where µ is a constant that affects the search algorithm). We say that S fails
if there exists q ∈ Qd such that S fails at q.

The following theorem bounds the probability that S fails at any given query q.
Theorem 2.4. For every γ > 0, if we set M = (d+ log d+ log γ−1) log d/µ and

T = 9
2δ

−2 ln(2en log d/µ), then, for any query q, the probability that S fails at q is at
most γ2−d.

Proof. For any �, Ti in S� and database point a, the probability that H(t(q), t(a))
is not within the desired range (i.e., ≤ (δ1 + 1

3δ)T if H(q, a) ≤ � or ≥ (δ2 − 1
3δ)T if

H(q, a) > (1+ε)� or anything otherwise) is at most e−
2
9 δ

2T = µ
2en log d , by Lemma 2.2.

Summing over the n database points, the probability that Ti fails is at most µ
2e log d .

Therefore, the expected number of Tis that fail is at most µM
2e log d . By standard Chernoff

bounds (see [2, Appendix A]), for independent 0-1 random variables X1, X2, . . . , Xm,
setting X =

∑
iXi and denoting by E the expectation of X, Pr[X > (1 + β)E] <(

eβ/(1 + β)(1+β)
)E

. Thus the probability that more than µM
log d of the Tis fail is

less than 2−µM/ log d = γ/d2d. Summing over all d possible values of � completes
the proof.

We conclude the following corollary.
Corollary 2.5. The probability that S fails is at most γ.

462 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

Proof. Sum the bound from the above theorem over 2d possible queries q.
Notice that using the values from Theorem 2.4 for M and T and assuming that

γ and µ are absolute constants, we get that the size of S is O(ε−2d3 log d(log n +

log log d)+d2 log d(n log d)O(ε−2)), and the construction time is essentially this quantity
times n.

2.1. The search algorithm. Our search algorithm assumes that the construc-
tion of S is successful. By Corollary 2.5, this happens with probability 1− γ. Given a
query q, we do a binary search to determine (approximately) the minimum distance �
to a database point. A step in the binary search consists of picking one of the struc-
tures Ti in S� uniformly at random, computing the trace t(q) of the list of tests in
Ti, and checking the table entry labeled t(q). The binary search step succeeds if this
entry contains a database point, and otherwise it fails. If the step fails, we restrict
the search to larger �s, and otherwise we restrict the search to smaller �s. The search
algorithm returns the database point contained in the last nonempty entry visited
during the binary search.

Lemma 2.6. For any query q, the probability that the binary search uses a struc-
ture Ti that fails at q is at most µ.

Proof. The binary search consists of log d steps, each examining a different value
�. As we are assuming that S did not fail, the probability that for any given � the
random Ti in S� that we pick fails is at most µ/ log d. Summing over the log d steps
completes the proof.

Lemma 2.7. If all the structures used by the binary search do not fail at q, then
the distance from q to the database point a returned by the search algorithm is within
a (1 + ε)-factor of the minimum distance from q to any database point.

Proof. Denote the minimum distance from q to any database point by �min. If
� < �min/(1+ ε), then no database point is within distance (1+ ε)� of q, and therefore
all the binary search steps that visit � in this range fail. On the other hand, all the
binary search steps that visit � in the range � ≥ �min succeed. Therefore, the binary
search ends with � such that �min/(1+ε) ≤ � ≤ �min. At that point, the database point
a returned hasH(t(q), t(a)) ≤ (δ1+

1
3δ)T . Any database point b withH(q, b) > (1+ε)�

has H(t(q), t(b)) > (δ2 − 1
3δ)T > (δ1 +

1
3δ)T . Therefore, H(q, a) ≤ (1 + ε)� ≤ (1 + ε)

�min.
Lemmas 2.6 and 2.7 imply the main result of this section which is the following

theorem.
Theorem 2.8. If S does not fail, then for every query q the search algorithm

finds a (1 + ε)-approximate nearest neighbor with probability at least 1 − µ using
O(ε−2d(log n+ log log d+ log 1

µ) log d) arithmetic operations.
Proof. The success probability claim is immediate from the above lemmas. The

number of operations follows from the fact that we perform log d binary search steps.
Each step requires computing the value of T β-tests. Each β-test requires computing
the sum of at most d products of two elements.

Remark. Some improvements of the above implementation are possible. For ex-
ample, note that the value of M was chosen so as to guarantee that with constant
probability no mistake is made throughout the binary search. Using results of [17], a
binary search can still be made in O(log d) steps even if there is a constant probability
of error at each step. This allows choosing M which is smaller by an O(log d) factor
and getting the corresponding improvement in the size of S and the time required to
construct it.

APPROXIMATE NEAREST NEIGHBOR SEARCH 463

3. Approximate nearest neighbors in Euclidean spaces. In this section we
present our algorithm for Euclidean spaces. The main idea underlying the solution
for Euclidean spaces is to reduce the problem to the problem on the cube solved in
the previous section. In fact, we produce several cubes, and the search involves several
cube searches.

Notation. Let x ∈ R
d, and let � > 0. Denote by B(x, �) the closed ball around

x with radius �; i.e., the set {y ∈ R
d | ‖x − y‖2 ≤ �}. Denote by D(x, �) the set of

database points contained in B(x, �).
The main tool in reducing the search problem in Euclidean space to search prob-

lems in the cube is the following embedding lemma. The proof of this lemma follows
standard arguments. We defer the proof to the appendix.

Lemma 3.1. There exists a constant λ > 0, such that for every δ > 0, β > 0,
� > 0, positive integer d, and x ∈ R

d, the following holds. There is an embedding
η = η(x, �, δ, β), η : R

d ↪→ Qk with the following properties.

1. k = poly
(
δ−1
) · (d log2 d+ d log d log δ−1 + log β−1

)
.

2. For every y ∈ B(x, �), and for every z ∈ R
d,

((1−O(δ))m−O(δ))k ≤ H(η(y), η(z)) ≤ ((1 +O(δ))m′ +O(δ))k,

where

m = κ ·max

{‖y − z‖2

�
, λ

}
,

m′ = κ ·min

{‖y − z‖2

�
, δ−1

}
,

κ = Θ
(
1/(1 + δ−1)

√
log(δ−1)

)
.

Furthermore, there is a probabilistic algorithm that computes in polynomial time, with
success probability at least 1 − β, an embedding η with the above properties. The al-
gorithm computes a representation of η as O(dk) rational numbers. Using this rep-
resentation, for every rational y ∈ R

d, we can compute η(y) using O(dk) arithmetic
operations.

The data structure. Our data structure S consists of a substructure Sa for every
point a in the database. Each Sa consists of a list of all the other database points,
sorted by increasing distance from a, and a structure Sa,b for each database point
b
= a. Fix a and b, and let � = ‖a− b‖2 be the distance from a to b. (For simplicity,
we’ll assume that different bs have different distances from a.) The structure Sa,b
consists of (1) a representation of an embedding η (as in Lemma 3.1), (2) a Hamming
cube data structure, and (3) a positive integer.

We construct Sa,b as follows. Set δ = ε/O(1). Part (1) of Sa,b is a representation
of η(a, �, δ, β) (β to be determined below), which we compute by Lemma 3.1. Let k be
the dimension of the target of η. Part (2) of Sa,b is an approximate nearest neighbor
search structure for Qk, with the database consisting of the images under η of the
points in D(a, �), and the slackness parameter being δ. Part (3) of Sa,b is the number
of database points in D(a, �). This completes the specification of Sa,b (up to the choice
of β, and of the error probability γ allowed in the cube data structure construction).

464 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

Definition 3.2. We say that Sa,b fails if the embedding η does not satisfy the
properties stipulated in Lemma 3.1, or if the construction of the cube data structure
fails. We say that S fails if there are a, b such that Sa,b fails.

Lemma 3.3. For every ζ > 0, setting β = ζ/n2 and γ = ζ/n2 (where β is the
parameter of Lemma A.3, and γ is the parameter of Corollary 2.5) the probability that
S fails is at most ζ.

Proof. Sum up the failure probabilities from Lemma 3.1 and Corollary 2.5 over
all the structures we construct.

Our data structure S requires O(n2 · poly(1/ε) · d2 · poly log(dn/ε) · (n log(d
log n/ε))O(ε−2)) space (we have O(n2) structures, and the dominant part of each is the
k-dimensional cube structure). The time to construct S is essentially its size times n
(again, the dominant part is constructing the cube structures).

3.1. The search algorithm. As with the cube, our search algorithm assumes
that the construction of S succeeds. This happens with probability at least 1 − ζ,
according to Lemma 3.3. Given a query q, we search some of the structures Sa,b as
follows. We begin with any structure Sa0,b0 , where a0 is a database point and b0 is
the farthest database point from a0. Let �0 = ‖a0 − b0‖2. Then D(a0, �0) contains
the entire database. We proceed by searching Sa1,b1 , Sa2,b2 , . . . , where aj+1, bj+1 are
determined by the results of the search in Saj ,bj .

So fix j. We describe the search in Saj ,bj . Let �j = ‖aj − bj‖2. Let η be the
embedding stored in Saj ,bj . We compute η(q), a node of the k-dimensional cube.
We now search for a (1 + δ)-approximate nearest neighbor for η(q) in the cube data
structure stored in Saj ,bj (allowing failure probability µ). Let the output of this search
be (the image of) the database point a′. If ‖q − a′‖2 >

1
10�j−1, we stop and output

a′. Otherwise, we pick T database points uniformly at random from D(aj , �j), where
T is a constant. Let a′′ be the closest among these points to q. Let aj+1 be the
closest to q between aj , a

′ and a′′, and let bj+1 be the farthest from aj+1 such that
‖aj+1 − bj+1‖2 ≤ 2‖aj+1 − q‖2. (We find bj+1 using binary search on the sorted list of
database points in Saj+1

.) If no such point exists, we abort the search and we output
aj+1.

Before going into the detailed analysis of the search algorithm, let us try to
motivate it. Our test gives a good approximation for the distance if � is “close” to
the true minimum distance between q and a database point. Thus, � can be viewed
as the scale with which we measure distances. If the scale is too large, we cannot
make the right decision. However, we are able to detect that � is too large, and in
such a case we reduce it. This guarantees that if we start with �0 and the nearest
neighbor is at distance �min, the search will terminate in O(log �0

�min
) iterations. This

quantity may be enormous compared with d and logn. To speed up the search (i.e.,
have the number of iterations independent of the ratio of distances), we add random
sampling from the points D(aj , �j). Using random sampling guarantees that not only
the distances reduce but also that the number of database points to consider decreases
quickly. This guarantees that the number of iterations is O(log n).

The following lemmas formulate the progress made by each step. For the analysis,
let amin be the closest point in the database to q and let �min be its distance.

Lemma 3.4. For every j ≥ 0, amin ∈ D(aj , �j).
Proof. D(aj , �j) contains all the database points whose distance from aj is at

most 2‖q − aj‖2. In particular (by triangle inequality), it contains all the database
points whose distance from q is at most ‖q − aj‖2 ≥ �min. Therefore, it contains
amin.

APPROXIMATE NEAREST NEIGHBOR SEARCH 465

Lemma 3.5. For every j ≥ 1, if �j is such that δ−1�j < �min, then for every
a ∈ D(aj , �j) we have ‖q − a‖2 ≤ �min(1 + δ).

Proof. By the assumptions (and since we have amin ∈ D(aj , �j)), the distance
from q to a is at most �min + �j < �min(1 + δ).

Lemma 3.6. For every j ≥ 1, ‖q−a′‖2 ≤ max{(1+ε)�min,
1
10�j−1} with probability

at least 1− µ.
Proof. As amin ∈ D(aj−1, �j−1), we claim that our search of Saj−1,bj−1 returns a′

whose distance from q is at most (1 + ε)max{�min, λ�j−1} with probability at least
1− µ (we set λ such that (1 + ε)λ ≤ 1/10). The reason is that, by Lemma 3.1,

H(η(q), η(a)) ≤ ((1 +O(δ))κmax{�min/�j−1, λ}+O(δ))k.
Therefore, the search algorithm returns a point bc such that

H(η(q), bc) ≤ (1 + δ)((1 +O(δ))κmax{�min/�j−1, λ}+O(δ))k.
Using Lemma 3.1 again, this point bc is the image of a point a′ whose distance from
q satisfies

‖q − a′‖2 ≤ (1 +O(δ))max{�min, λ�j−1}+O(δ)�j−1.

Lemma 3.7. For every j ≥ 1, B(q, ‖q − aj‖2) contains at most 1
2 |D(aj−1, �j−1)|

database points with probability at least 1− 2−T .
Proof. First notice that B(q, ‖q−aj‖2) contains database points fromD(aj−1, �j−1)

only. Let ξ be such that B(q, ξ) contains exactly half the points of D(aj−1, �j−1). (For
simplicity, we assume that the distances from q to the database points are all distinct.)
Each database point in the random sample we pick has probability 1

2 to be in B(q, ξ).
Therefore, the probability that a′′
∈ B(q, ξ) is at most 2−T .

Lemma 3.8. For all j ≥ 1, D(aj , �j) ⊂ B(q, ‖q − aj−1‖2) with probability at least
1− µ.

Proof. Let a ∈ D(aj , �j). By the triangle inequality, ‖q − a‖2 ≤ �j + ‖q − aj‖2 ≤
3‖q − aj‖2. By Lemma 3.6, 3‖q − aj‖2 ≤ 3

10�j−1. Since �j−1 ≤ 2‖q − aj−1‖2, the
lemma follows.

Corollary 3.9. For every j ≥ 2, |D(aj , �j)| ≤ 1
2 |D(aj−2, �j−2)| with probability

at least 1− (µ+ 2−T).
Theorem 3.10. If S does not fail, then for every query q the search algorithm

finds a (1+ ε)-approximate nearest neighbor using expected poly(1/ε)d2poly log(dn/ε)
arithmetic operations.2

Proof. Corollary 3.9 says that within two iterations of the algorithm, with con-
stant probability the number of database points in the current ball, D(aj , �j), is
reduced by a factor of 2. Hence, within expected O(log n) iterations the search ends.

If the search ends because ‖q−a′‖2 >
1
10�j−1, then by Lemma 3.6 it must be that

‖q − a′‖2 ≤ (1 + ε)�min. Otherwise, the search ends because no database point b
= aj
satisfies: ‖aj − b‖2 ≤ 2‖aj − q‖2. In this case, aj = amin, because ‖aj − amin‖2 ≤
‖aj − q‖2 + ‖amin − q‖2 ≤ 2‖aj − q‖2. In either case, the search produces a (1 + ε)-
approximate nearest neighbor.

As for the search time, we have O(log n) iterations. In each iteration we perform
O(dk) = O(poly(1/ε)·d2 ·poly log(dn/ε)) operations to compute η(q); then, we execute
a search in the k-cube, which by Theorem 2.8 takes O(poly(1/ε) · d · poly log(dn/ε))
operations.

2Alternatively, we can demand a deterministic bound on the number of operations, if we are
willing to tolerate a vanishing probability error in the search.

466 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

4. Extensions. In what follows we discuss some other metrics for which our
methods (with small variations) apply.

Generalized Hamming metric. Assume that we have a finite alphabet Σ and con-
sider the generalized cube Σd. For x, y ∈ Σd, the generalized Hamming distanceH(x, y)
is the number of dimensions where x differs from y. The case Σ = {0, 1} is the Ham-
ming cube discussed in section 2. Here we argue that the results in that section extend
to the case of arbitrary Σ. For convenience, assume that Σ = {0, 1, . . . , p − 1} for a
prime p. (We can always map the elements of Σ to such a set, perhaps somewhat
larger, without changing the distances.) It suffices to show that a generalization of
the basic test used in section 2 has the same properties. The generalized test works
as follows: pick each element in {1, 2, . . . , d} independently at random with prob-
ability 1/(2�). For each chosen coordinate i, pick independently and uniformly at
random ri ∈ Σ. (For every i which is not chosen put ri = 0.) The test is defined by

τ(x) =
∑d
i=1 rixi, where multiplication and summation are done in GF [p]. As before,

for any two vectors x, y ∈ Σd, let ∆(x, y)
�
= Pr[τ(x)
= τ(y)]. If H(x, y) = k, then

∆(x, y) = p−1
p · (1− (1− 1

2�)
k). Therefore, the difference δ in the probabilities between

the case of vectors with Hamming distance at most � and the case of vectors with
Hamming distance at least (1+ε)� is p−1

p ·[(1− 1
2�)

� − (1− 1
2�)

(1+ε)�
]
. δ is minimized

at p = 2, so we do better with a larger alphabet. Notice that the number of possible
traces here is pT , so this construction gives a polynomial size data structure if and
only if p is a constant. In the next paragraph we mention how to handle nonconstant
p-s.
L1 norm for finite alphabet. Consider, again, the case Σ = {0, 1, . . . , p − 1} and

define the distance between x and y as d(x, y)
�
=
∑d
i=1 |xi − yi|. The first observation

is that this case is reducible to the case of the Hamming cube as follows. Map any
x ∈ Σd into x̂ ∈ {0, 1}d(p−1) by replacing every coordinate xi ∈ {0, 1, . . . , p− 1} of x
by p− 1 coordinates of x̂. These are xi ones followed by (p− 1− xi) zeros. Observe
that indeed d(x, y) = H(x̂, ŷ). Therefore, we can apply the cube construction and
algorithm to x̂. If p is not a constant, this solution is not satisfactory, because it
blows up not only the data structure size (by a factor polynomial in p), but also the
search time (by a factor of p at least). Our second observation is that we can restrict
the blowup in search time to a factor of O(log p). This is because we do not really
have to map x into x̂. The contribution of xi ∈ {0, 1, . . . , p − 1} to τ(x̂) is just the
sum modulo 2 of (at most p− 1) rj-s. As there are only p possible sums (and not 2p)
they can all be precomputed and stored in a dictionary using O(p) space. (Notice that
this needs to be done for each test and for each coordinate.) To compute the value
of the test on a query, we need to sum up the contributions of the coordinates. For
each coordinate, it takes at most O(log p) time to retrieve the desired value (because
operations on values in {0, 1, . . . , p− 1} take that much time). The same ideas can be
used to handle the generalized Hamming metric for nonconstant alphabets. Map each
coordinate xi into p binary coordinates, which are all 0s except for a 1 in position
xi + 1. The Hamming distance in the (dp)-cube is twice the original distance. For a
given test, there are only p different values to consider for each original coordinate,
so we can precompute them and retrieve them as before.

The space �d1. The construction and algorithm are similar to those for the Eu-
clidean case. The only difference is in the embedding η to the cube. Instead of pro-
jecting the points onto random unit vectors, we project them onto the original coor-
dinates. Let w, δ, λ, � be as in the Euclidean case. For the ith coordinate, we place
S = 2d(1+1/δ)/δλ equally spaced points between wi− (1+1/δ)� and wi+(1+1/δ)�.

APPROXIMATE NEAREST NEIGHBOR SEARCH 467

These partition the line into S + 1 (finite or infinite) segments. We number them 0
through S from left to right. Now for every x ∈ R

d we define η(x) to be the vector with
entries in {0, 1, . . . , S}, such that η(x)i is the number of the segment that contains xi.
Using Lemma A.4, we show the equivalent of Lemma A.5 for �d1.

Lemma 4.1. For every x such that ‖x− w‖1 ≤ �, for every y ∈ R
d,

(1− δ)m d
δλ

≤ ‖η(x)− η(y)‖1 ≤ (1 + δ)m′ d
δλ
,

where m = max
{

‖x−y‖1

� , λ
}
, and m′ = min

{
‖x−y‖1

� , δ−1
}
.

Proof. We show the case λ� ≤ ‖x − y‖1 ≤ �/δ. The other two cases are similar.
Notice that in this case, for every i, xi, yi ∈ [wi − (1 + δ−1)�, wi + (1 + δ−1)�]. By
Lemma A.4, for every i,

−1 + ‖xi − yi‖S/2(1 + δ−1)� ≤ ‖η(x)i − η(y)i‖ ≤ 1 + ‖xi − yi‖S/2(1 + δ−1)�.

Thus, summing over the d coordinates,

−d+ ‖x− y‖1S/2(1 + δ
−1)� ≤ ‖η(x)− η(y)‖1 ≤ d+ ‖x− y‖1S/2(1 + δ

−1)�.

As d = δλS/2(1 + δ−1) ≤ δ‖x− y‖1S/2(1 + δ
−1)�, the lemma follows.

We use the construction for the finite alphabet L1 norm to handle the embedded
instance. The remainder of the argument is identical to the Euclidean case. Notice,
however, that given a query q, computing η(q) is more efficient than in the Euclidean
case: In each coordinate, we can use a binary search to determine the segment in
O(logS) = O(log(d/ε)) operations. Projecting is trivial and takes O(1) operations per
coordinate. In the Euclidean case, the search time is dominated by the calculation of
η(q). Thus, here it goes down to O(dpoly log(dn/ε)).

Further comments. The iterative search procedure described in section 3.1 is
quite general and can be used in any metric space; i.e., the problem of finding an
approximate nearest neighbor reduces to the following problem. Given a query q and
a distance estimate �, either return an approximate nearest neighbor of q, or return
a data point at distance at most �/10 from q. Of course, the latter problem might be
hard to solve in an arbitrary metric space.

Appendix. Proof of Lemma 3.1. The proof of the embedding lemma follows
two parts. First, we use a low distortion embedding of �d2 into �k1 (where, for fixed
ε, k = O(d log2 d + log n)). Second, we use an embedding of �k1 into QO(k). This
embedding maintains low distortion on certain distances, as stipulated by the lemma.

It is known (see, for example, [15] and references therein) that the projection �d2
onto O(d) random unit vectors, properly scaled, gives a low distortion embedding of

�d2 into �
O(d)
1 (the distortion 1 + ε drops to 1 as the constant hidden by the big-Oh

notation grows). Using the arguments in section 4 (which in turn use the second part
of the proof here), we could prove a version of the embedding lemma. The dimension
of the cube would have to grow by a factor of O(d/ log2 d). Thus the size of the data
structure would grow significantly (yet the search time would improve by a factor of
O(log d)).

To avoid this blowup in space, and because we require explicit bounds on the
dependency on ε and on the error probability, we give here another argument for the
low distortion of embedding �d2 into �k1 via random projections. The dimesion k of the
target space is somewhat worse than in [15]. However, the details of the analysis allow

468 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

us to save significantly on the embedding into the cube. (In fact, it is likely that our
analysis of the dimension can be improved by a factor of O(log d), thus matching the
search time required using [15].)

It is also known (see, for example, [26]) that for a finite set P of points in �d1,
rounding each point to a grid point, and then representing each coordinate in unary
(padded by leading zeros), gives an embedding of P into a hypercube that approx-
imately preserves relative distances (the approximation depends on the fineness of
the grid). We argue here (a straightforward argument) that such a construction ap-
proximately preserves relative distances among an infinite number of point pairs (as
required by the embedding lemma). We also argue that for these pairs the grid need
not be too fine, so the dimension of the cube is small. (Notice that distances in Qk
vary by a factor of k at most. On the other hand, in an arbitrary finite set P of points
in �d1 the distances can vary by an arbitrarily large factor. Thus, it is impossible to
bound the dimension of the cube uniformly for all sets P .)

We now proceed with the proof. Fix x and �. Let D, S, and L be parameters
that we fix later (we will set k = DS). We map the points in D(x, �) into the (D · S)-
dimensional cube as follows: We pick a set of D i.i.d. unit vectors {z1, . . . , zD} from
the uniform (Haar) measure on the unit sphere and project the points in D(x, �) onto
each of these vectors; i.e., for every a ∈ D(x, �) and for every z ∈ {z1, . . . , zD} we
compute the dot product a · z. For every z ∈ {z1, . . . , zD} we place S equally spaced
points in the interval [x·z−L, x·z+L]. We call these points cutting points. Each vector
z and cutting point c determine a single coordinate of the cube. For any a ∈ D(x, �),
the value of this coordinate is 0 if a · z ≤ c, and it is 1 otherwise.3 Altogether, we get
a mapping of x into a point in the cube {0, 1}D·S .

The following lemma analyzes the distribution of length when projecting a fixed
(unit) vector on a random (unit) vector.

Lemma A.1. Let X be the length of the projection of a unit vector onto a random
unit vector drawn from the uniform measure on the unit sphere. Then, for every δ > 0
there exist α = Θ(δ) and α′ = Θ(δ3/2) such that the following hold.

1. α0
�
= Pr

[
X <

√
δ

d

]
< α;

2. α∞
�
= Pr

[
X >

√
log(1/δ)

d

]
< α;

3. For every j ≥ 1 such that (1 + δ)j
√
δ/d ≤√log(δ)−1/d,

αj
�
= Pr

[
(1 + δ)j−1

√
δ

d
≤ X ≤ (1 + δ)j

√
δ

d

]
≥ α′.

Proof. Let Sd(r) denote the sphere of radius r in R
d centered at the origin. Its

surface area, Ad(r), is given by Ad(r) = 2πd/2rd−1/Γ(d/2) = Ad(1)rd−1, where Γ is

3Note that if the cutting points are c1 ≤ c2 ≤ · · · cS , then the S coordinates obtained for a point
a by comparing a · z to the cutting points are always of the following form: j 0s followed by S − j
1s. In other words, only S + 1 out of the 2S combinations of 0s and 1s are possible. This observation
can be used to get certain improvements in the efficiency of our algorithm. See section 4 for details.

APPROXIMATE NEAREST NEIGHBOR SEARCH 469

the so-called Gamma function.4 By “rotating” the space we can view the experiment
of projecting a fixed vector on a random vector as if we project a random vector on
the axis x1 = 1. Therefore, the probabilities that we need to estimate are just “slices”
of the sphere. In particular, consider the set of points {x ∈ Sd(1) | x1 ∈ (τ − ω, τ)}
(with ω, τ−ω > 0). The surface area of this set is lower bounded by ω ·Ad−1(r), where
r =

√
1− τ2. By symmetry, the same is true for {x ∈ Sd(1) | xi ∈ (−τ,−τ + ω)}.

To compute the probability of the desired event we compare the area of the slice
with the area of the whole sphere. Note that Ad−1(1)/Ad(1) = Θ(

√
d). Plug in

τ = τ(j) = (1 + δ)j
√
δ/d and ω = ω(j) = τ(j) − τ(j − 1) = δ(1 + δ)j−1

√
δ/d. Put

ξ = ξ(j) = δ(1 + δ)2j ; thus r2 = 1 − τ2 = 1 − ξ/d and ω = δ
√
ξ/d/(1 + δ). We get

that

Pr

[
(1 + δ)j−1

√
δ

d
≤ X ≤ (1 + δ)j

√
δ

d

]
≥ 2ωAd−1(

√
1− τ2)/Ad(1)

= 2ωAd−1(1) · (
√
1− τ2)d−2/Ad(1)

= Θ

(
δ

1 + δ

√
ξ

(
1− ξ
d

) d−2
2

)

= Ω(δ3/2),

where the last equality follows from the fact that in the range of j that interests us,
1 ≤ (1 + δ)j−1 < (1 + δ)j ≤ √

δ−1 log(1/δ). This shows the third claim. Similar
arguments show the first two claims.

Corollary A.2. Using the above notation, there is an absolute constant b such
that

jmax∑
j=1

(
αj(1 + δ)

j−1

√
δ

d

)
≤ E[X] ≤ b

√
δ

d
+

jmax∑
j=0

(
αj(1 + δ)

j

√
δ

d

)
.

In what follows, we denote by b′ the constant b′ = E[X]
√
d.

The next lemma analyzes the lengths distribution with respect to a series of D
projections.

Lemma A.3. Let δ, α, α′ be as in Lemma A.1. Let ϕ, β > 0. Set

D =
c

ϕ2
(8(d+ 1) log(4(d+ 1))(log(8(d+ 1)) + log log(4(d+ 1)) + logϕ−1) + log β−1)

for some absolute constant c. Let z1, . . . , zD be i.i.d. unit vectors from the uniform
distribution on the unit sphere. Then, with probability at least 1 − β, the following
holds. For every x, y ∈ R

d define

I0 =

{
i; |(x− y) · zi| <

√
δ

d
‖x− y‖2

}
,

I∞ =

{
i; |(x− y) · zi| >

√
log(1/δ)

d
‖x− y‖2

}
,

4For integer d the Gamma function is given by

Γ(d/2)
�
=

{
(d−2

2
)! d even,

(d−2)(d−4)···1
2(d−1)/2

√
π d odd.

470 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

Ij =

{
i; (1 + δ)j−1

√
δ

d
‖x− y‖2 ≤ |(x− y) · zi| ≤ (1 + δ)j

√
δ

d
‖x− y‖2

}
,

where j = 1, 2, . . . , jmax, with jmax the largest possible such that Ijmax
∩I∞ = ∅.5 Then

1. |I0|, |I∞| < (α+ ϕ)D; and
2. for j = 1, 2, . . . , jmax, (αj − ϕ)D ≤ |Ij | ≤ (αj + ϕ)D.

Proof. Consider the following range space over the set of vectors in the unit
sphere. Every pair of points x, y ∈ R

d defines several ranges: a range of vectors z such
that |(x−y)·z| <√δ/d‖x−y‖2, a range such that |(x−y)·zi| >

√
log(1/δ)/d‖x−y‖2,

and ranges such that (1+ δ)j−1
√
δ/d‖x− y‖2 ≤ |(x− y) · zi| ≤ (1+ δ)j

√
δ/d‖x− y‖2

for j = 1, 2, . . . , jmax. Each of these ranges is a Boolean combination of at most four
(closed or open) half-spaces. Therefore, the VC-dimension of this range space is at
most 8(d+ 1) log(4(d+ 1)) (see [2]). The lemma follows from the fact that a random
subset of the unit sphere of size D is a ϕ-sample with probability at least 1−β.

Lemma A.4. Let L,ψ > 0. Let σ = [−L,L] be a segment of the real line. Set
S = � 1

ψ �. Let −L = p1 < p2 < · · · < pS = L be equally spaced points in σ (i.e.,

pj = −L + 2L(j − 1)/(S − 1)). Then, every segment [σ1, σ2) ⊂ σ contains at least
(−ψ + (σ2 − σ1)/2L)S such points and at most (ψ + (σ2 − σ1)/2L)S such points.

Proof. The number of points in [σ1, σ2) is approximately proportional to the
measure of this segment (under the uniform measure on σ). It might be at worst one
point below or one point above the exact proportion.

Let w ∈ R
d and let � > 0. Fix L,ϕ, β, ψ. (Thus D and S are fixed.) Consider

the following (random) embedding η : R
d ↪→ QDS : Let z1, . . . , zD be the random

vectors in Lemma A.3, and Let p1, . . . , pS be the points in Lemma A.4. For x ∈ R
d,

η(x) = η(x)11η(x)12 · · · η(x)ij · · · η(x)DS , where η(x)ij = 0 if (x − w) · zj ≤ pi, and
η(x)ij = 1 otherwise. We are now ready to restate and prove the embedding lemma.

Lemma A.5. Let λ > 0 be a sufficiently small constant. Set

L = (1 + δ−1) �
√
log(1/δ)/d.

Set ϕ = δα′ and ψ = δ2λ/2(1 + δ−1).
Then, for η the following holds with probability at least 1 − β. For every x ∈

B(w, �) ⊆ R
d and y ∈ R

d

((1−O(δ))m−O(δ))DS ≤ H(η(x), η(y)) ≤ ((1 +O(δ))m′ +O(δ))DS,

where

m = κ ·max

{‖x− y‖2

�
, λ

}
,

m′ = κ ·min

{‖x− y‖2

�
, δ−1

}
,

and κ = b′/2(1 + δ−1)
√
log(1/δ).

Proof. We prove the lemma for the case λ� ≤ ‖x− y‖2 ≤ �/δ. The proofs of the
two extreme cases are similar. To analyze the distance in the cube, H(η(x), η(y)),
we notice that this distance is influenced by the distribution of the projection lengths

5For simplicity we assume that these sets form a partition of the space; otherwise, there are
minor changes in the constants.

APPROXIMATE NEAREST NEIGHBOR SEARCH 471

|(x − y) · z1|, . . . , |(x − y) · zD| among the sets Ij (Lemma A.3 guarantees that this
distribution is “nice”); the error in estimating |(x−y) ·zi| for each set Ij , and, for each
zi, the error caused by discretizing the projection length with the S cutting points
(i.e., the value ψ of Lemma A.4). In what follows we assume that everything went
well. That is, we avoided the probability β that Lemma A.3 fails.

First we prove the lower bound. Consider Ij for 1 ≤ j ≤ jmax. By Lemma A.3, at
least (αj − ϕ)D of the projections |(x− y) · zi| are in the set Ij . For each such zi, by

the definition of Ij , we have that |(x− y) · zi| ≥ (1 + δ)j−1
√

δ
d‖x− y‖2. Every point

pk (1 ≤ k ≤ S) such that pk is between (x − w) · zi and (y − w) · zi contributes 1 to
the Hamming distance. Lemma A.4 shows that the number of such points is at least

(−ψ+ ((1 + δ)j−1
√

δ
d‖x− y‖2)/2L)S, provided that both (x−w) · zi and (y−w) · zi

are contained in the segment [−L,L]. As x ∈ B(w, �) and by the triangle inequality
y ∈ B(w, (1+ δ−1)�), the corresponding projections are not contained in the segment
[−L,L] only if they fall in the set I∞. For each vector this happens with probability
at most α, by Lemma A.1. Thus the probability that both vectors fall in this segment
is at least 1− 2α.

For the lower bound we can ignore the bad events: the is for which |(x−y)·zi| falls
in I0 and I∞, as well as the is for which (x−w) · zi or (y−w) · zi fall outside [−L,L].
These contribute nonnegative terms to the distance. We get that H(η(x), η(y)) is at
least

jmax∑
j=1


−ψ +

(1 + δ)j−1
√

δ
d‖x− y‖2

2L


 · (αj − ϕ)DS − 2αDS.

As ϕ = δα′ and αj > α′ we get that ϕ < δαj and so (αj − ϕ) > (1 − δ)αj . Also,
note that ψ is at most δ times the other term: This term is minimized at j = 1 and
‖x− y‖2 = λ�, and in this case

(1 + δ)j−1
√

δ
d‖x− y‖2

2L
=

λ�
√

δ
d

2(1 + δ−1)�
√
log(1/δ)/d

≥ δλ/2(1 + δ−1).

By Corollary A.2,

jmax∑
j=1

(
αj(1 + δ)

j−1

√
δ

d

)
=

1

1 + δ

jmax∑
j=1

(
αj(1 + δ)

j

√
δ

d

)

≥ 1

1 + δ

(
E[X]− (1 + o(1))b

√
δ

d

)

= (1−O(δ))b′
√

1

d
.

Combining everything we get that the lower bound is at least(
(1−O(δ))b′√1/d‖x− y‖2

2L
− 2α

)
DS

=

(
(1−O(δ)) b′

2(1 + δ−1)
√
log(1/δ)

· ‖x− y‖2

�
−O(δ)

)
DS.

472 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

Now we show the upper bound. By Lemma A.4, at most (αj + ϕ)D of the
projections |(x − y) · zi| are in the set Ij for 1 ≤ j ≤ jmax, and at most (α + ϕ)D
for I0 and I∞. If |(x − y) · zi| is in Ij for 0 ≤ j ≤ jmax, then |(x − y) · zi| ≤
(1+ δ)j

√
δ
d‖x− y‖2. By Lemma A.4, the contribution of zi to the Hamming distance

is at most (ψ+((1+ δ)j
√

δ
d‖x− y‖2)/2L)S, provided (as before) that (x−w) · zi and

(y−w) · zi are contained in the segment [−L,L]. The latter happens with probability
at least 1−2α. With the remaining probability, the contribution of zi is no more than
S.

If zi is in I∞, we have no bound on the distance between x · zi and y · zi, but the
contribution of zi to the Hamming distance is no more than S. Summing this up, we
get an upper bound of at most

jmax∑
j=0


ψ +

(1 + δ)j
√

δ
d‖x− y‖2

2L


 · (αj + ϕ)DS + 2αDS + (α∞ + ϕ)DS.

As before, the choice of parameters implies that (αj + ϕ) ≤ (1 + δ)αj and ψ ≤
δ · (1+δ)j

√
δ
d‖x−y‖2

2L . Using the lower bound in Corollary A.2,

jmax∑
j=0

(
αj(1 + δ)

j

√
δ

d

)
= α0

√
δ

d
+

jmax∑
j=1

(
αj(1 + δ)

j

√
δ

d

)

≤ O(δ)
√
δ

d
+ E[X]

= (1 +O(δ3/2))b′
√

1

d
.

We get that the Hamming distance is at most(
(1 +O(δ))

√
1/d‖x− y‖2

2L
+ (3 + δ)α

)
DS =

(
(1 +O(δ))

b′

2(1 + δ−1)
√
log δ−1

· ‖x− y‖2

�
+O(δ)

)
DS.

Acknowledgments. We thank Shai Ben-David, Nati Linial, and Avi Wigderson
for helpful comments on earlier versions of this work.

REFERENCES

[1] P.K. Agarwal and J. Matoušek, Ray shooting and parametric search, in Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 1992,
pp. 517–526.

[2] N. Alon and J. Spencer, The Probabilistic Method, John Wiley and Sons, New York, 1992.
[3] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, An optimal algorithm

for approximate nearest neighbor searching in fixed dimensions, in Proceedings of the
5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994, pp.
573–582.

[4] J.S. Beis and D.G. Lowe, Shape indexing using approximate nearest-neighbor search in
high-dimensional spaces, in Procceedings of the IEEE Conference on Computer Vision
and Pattern Recogognition, Japan, 1997, pp. 1000–1006.

APPROXIMATE NEAREST NEIGHBOR SEARCH 473

[5] K. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput., 17
(1988), pp. 830–847.

[6] K. Clarkson, An algorithm for approximate closest-point queries, in Proceedings of the
10th Annual ACM Symposium on Computational Geometry, Stony Brook, New York,
1994, pp. 160–164.

[7] S. Cost and S. Salzberg, A weighted nearest neighbor algorithm for learning with symbolic
features, Machine Learning, 10 (1993), pp. 57–67.

[8] T.M. Cover and P.E. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform.
Theory, 13 (1967), pp. 21–27.

[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman, Indexing
by latent semantic analysis, J. Amer. Soc. Inform. Sci., 41 (1990), pp. 391–407.

[10] L. Devroye and T.J. Wagner, Nearest neighbor methods in discrimination, in Handbook
of Statistics, Vol. 2, P.R. Krishnaiah and L.N. Kanal, eds., North Holland, Amsterdam,
1982.

[11] D. Dobkin and R. Lipton, Multidimensional searching problems, SIAM J. Comput., 5
(1976), pp. 181–186.

[12] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parnas, Neighborhood preserving hash-
ing and approximate queries, in Proceedings of the 5th Annual ACM-SIAM Symposium
on Discrete Algorithms, Arlington, VA, 1994, pp. 251–259.

[13] D. Dolev, Y. Harari, and M. Parnas, Finding the neighborhood of a query in a dictionary,
in Proceedings of the 2nd Israel Symposium on the Theory of Computing and Systems,
IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 33–42.

[14] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley and
Sons, New York, 1973.

[15] T. Figiel, J. Lindensrauss, and V.D. Milman, The dimension of almost spherical sections
of convex bodies, Acta Math., 139 (1977), pp. 53–94.

[16] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P.Yanker, Query by image and
video content: The QBIC system, IEEE Computer, 28 (1995), pp. 23–32.

[17] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Computing with unreliable informa-
tion, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, MD, 1990, pp. 128–137.

[18] A. Gersho and R.M. Gray, Vector Quantization and Signal Compression, Kluwer Aca-
demic, Dordrecht, The Netherlands, 1991.

[19] O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, in Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, 1989, pp.
25–32.

[20] T. Hastie and R. Tibshirani, Discriminant adaptive nearest neighbor classification, in 1st
International ACM Conference on Knowledge Discovery and Data Mining, ACM, New
York, 1995.

[21] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse
of dimensionality, in Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, Dallas, TX, 1998, pp. 604–613.

[22] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, Locality-preserving hashing in
multidimensional spaces, in Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, El Paso, TX, 1997, pp. 618–625.

[23] W.B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into Hilbert space,
Contemp. Math., 26 (1984), pp. 189–206.

[24] J. Kleinberg, Two algorithms for nearest-neighbor search in high dimensions, in Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997,
pp. 599–608.

[25] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press,
Cambridge, UK, 1997.

[26] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algo-
rithmic applications, Combinatorica, 15 (1995), pp. 215–245.

[27] N. Linial and O. Sasson, Non-expansive hashing, in Proceedings of the 28th Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, 1996, pp. 509–518.

[28] J. Matoušek, Reporting points in halfspaces, in Proceedings of the 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, IEEE Computer Society
Press, Los Alamitos, CA, 1991, pp. 207–215.

[29] S. Meiser, Point location in arrangements of hyperplanes, Inform. and Comput., 106 (1993),
pp. 286–303.

474 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI

[30] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice Hall, Englewood Cliffs, NJ, 1993.

[31] A. Pentland, R.W. Picard, and S. Sclaroff, Photobook: tools for content-based manip-
ulation of image databases, in Proceedings of the SPIE Conference on Storage and Re-
trieval of Image and Video Databases II, San Jose, CA, SPIE Proceedings 2185, Belling-
ham, WA, 1994, pp. 34–37.

[32] G. Salton, Automatic Text Processing, Addison-Wesley, Reading, MA, 1989.
[33] A.W.M. Smeulders and R. Jain, Proceedings of the 1st Workshop on Image Databases and

Multi-Media Search, World Sci. Ser. Software Engrg. and Knowledge Engrg. 8, World
Scientific, River Edge, NJ, 1996.

[34] V.N. Vapnik and A.Y. Chervonenkis, On the uniform convergence of relative frequencies
of events to their probabilities, Theory Probab. Appl., 16 (1971), pp. 264–280.

[35] A.C. Yao and F.F. Yao, A general approach to d-dimension geometric queries, in Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, Providence, RI,
1985, pp. 163–168.

