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Abstract—We consider the problem of finding similar patterns in a time sequence. Typical applications of this problem involve large

databases consisting of long time sequences of different lengths. Current time sequence search techniques work well for queries of a

prespecified length, but not for arbitrary length queries. We propose a novel indexing technique that works well for arbitrary length

queries. The proposed technique stores index structures at different resolutions for a given data set. We prove that this index structure

is superior to existing index structures that use a single resolution. We propose a range query and nearest neighbor query technique on

this index structure and prove the optimality of our index structure for these search techniques. The experimental results show that our

method is 4 to 20 times faster than the current techniques, including Sequential Scan, for range queries and 3 times faster than

Sequential Scan and other techniques for nearest neighbor queries. Because of the need to store information at multiple resolution

levels, the storage requirement of our method could potentially be large. In the second part of the paper, we show how the index

information can be compressed with minimal information loss. According to our experimental results, even after compressing the size

of the index to one fifth, the total cost of our method is 3 to 15 times less than the current techniques.

Index Terms—Time series, subsequence search, range query, nearest neighbor query, multiple resolutions.
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1 INTRODUCTION

TIME series or sequence data arises naturally in many
real-world applications like stock market, weather

forecasts, video databases, and medical data. Some exam-
ples of queries on such data sets include finding companies
which have similar profit/loss patterns, finding similar
motions in a video database, or finding similar patterns in
medical sensor data or biological data. A typical query on
such data can be “Find companies which had a similar profit
pattern as company A’s profit pattern in January 2000” or “Find
companies whose closing prices are similar to company A’s profit
during the last 6 months.”

The explosive increase in the size of the time series

databases and the variety of time series applications

introduces several challenges:

1. The search tools should be able to index and search
large databases efficiently.

2. There should not be any artificial restrictions on the
lengths of either the database sequence or the query
sequence.

3. The search techniques should be scalable with
the number of nodes in parallel and distributed
architectures.

The need for arbitrary length search arises in most real
world sequence database applications for two reasons. First,
the database sequences can be of any length. For example,
different companies may enter the stock market at different
times. Therefore, stock histories of different companies can
be of any length. Similarly, the length of video sequences

can be of any length from a few minutes to hours. Another
striking application is genome databases. The lengths of
genome strings vary from a few hundred to hundreds of
millions. Second, the user may be interested in searching
query sequences of any length. For example, one can query
based on the performance of a company in one month as
well as one year. The user may compare a small piece of a
video file as well as the whole video file. A biologist may
search a short gene string of a few hundred nucleotides or
compare whole chromosome of millions of nucleotides
against one another.

There are many ways to compare the similarity of two

time sequences. One approach is to define the distance

between two sequences to be the Euclidean distance in an

appropriate multidimensional space [1], [4], [6], [11], [19],

[25]. Non-Euclidean metrics have also been used to

compute the similarity for time sequences. Agrawal et al.

[2] use L1 as the distance metric. The Landmark model by

Perng et al. [17] chooses only a subset of values from a time

sequence which are peak points and uses them to represent

the corresponding sequence. The authors define distance

between two time sequences as a tuple of values, one

representing the time and the other the amplitude. In a

separate work, Park et al. [16] use the idea of time warping

distance. This distance metric compares sequences of

different lengths by stretching them.

The distance between two time series data can be made

shift and scale invariant by transforming them onto the shift

eliminated plane [5], [10]. Another distance metric Dnorm is

defined by Lee et al. [15] for multidimensional sequences.

Although this metric has a high recall, it again allows false

dismissals when determining candidate solution intervals.

Vlachos et al. [27] proposed using the Longest Common

Subsequence (LCSS) technique in order to find similar
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trajectories. The authors show that LCSS is more robust to

noise than both Euclidean and time warping distances.
Range searches and nearest neighbor searches in whole

matching and subsequence matching have been the principal
queries of interest for time series data. Whole matching
corresponds to the case when the query sequence and the
sequences in the database have the same length. Agrawal
et al. [1] developed the first solution to this problem. They
transformed the time sequence to the frequency domain by
using DFT (Discrete Fourier Transform). Later, they
reduced the number of dimensions to a feasible size by
considering the first few frequency coefficients. Chan and
Fu [4] used Haar wavelet transform to reduce the number of
dimensions and compared this method to DFT. They found
that Haar wavelet transform performs better than DFT.
However, the performance of DFT can be improved using
the symmetry of Fourier Transforms [20], [29]. In this case,
both methods give similar results. Wang and Wang [28]
proposed using B-spline wavelet transforms and the least
square method to approximate time series data. However,
this technique may result in false dismissals.

Subsequence matching is a more difficult problem.
Here, the query sequence is potentially shorter than the
sequences in the database. The user asks for subsequences
in the database that have the same length as the query
sequence and a similar pattern. For example, one can ask
a query: Find companies which had a similar profit pattern as
company A’s profit pattern in January 2000. A brute force
solution is to check all possible subsequences of the given
length. However, this is not feasible because of the large
number of long sequences in the database.

Faloutsos et al. [6] proposed I-adaptive index to solve the
matching problem for queries of prespecified length. They
store the trails of the prespecified length in MBRs
(Minimum Bounding Rectangles). In the same paper, they
also present two methods, Prefix Search and Multipiece
Search, to relax the restriction of prespecified query lengths.
Prefix Search performs a database search using a prefix of a
prespecified length of the query sequence. Multipiece
Search splits the query sequence into nonoverlapping
subsequences of prespecified length and performs queries
for each of these subsequences.

Keogh et al. [13] proposed spliting the time sequence into
equal sized windows. The average of the values in each
window is used to represent all the entries in the window.
This compression technique is called the PAA (Piecewise
Aggregate Approximation) technique. The experimental
results in this paper show that PAA can be computed faster
than SVD, Haar, and DFT, and the pruning power of PAA is
similar to that of DFT and Haar, but worse than SVD.
Although the main intent of this paper is to introduce a new
dimensionality reduction technique, the authors also
propose performing subsequence searching by sequentially
sliding the query sequence over the whole database
sequences. The pruning power of the PAA technique can
be improved by splitting the time sequences into varying
size windows [12]. This technique is called APCA (Adap-
tive Piecewise Constant Approximation). In a later paper,
Popivanov and Miller [18] show that PAA is worse than
DFT, Haar wavelets, and Daubechies wavelets. According
to these results, Daubechies (DB) wavelets result in the
highest precision and the lowest number of page accesses.
This can be used to infer that there is no clear winner among

all dimensionality reduction techniques and the benefits of
a specific technique depend highly on the data sequences.
We use DFT and wavelets in our experiments.

There are several ways to measure the quality of an
index structure. The size of an index structure must be
small enough to fit into memory. Furthermore, the running
time of the search algorithm must be small. Two parameters
are crucial to the running time: precision and the number of
disk page accesses. Precision is defined as the ratio of the
number of actual solutions to the number of candidate
solutions generated by the search algorithm. A good
indexing method and a search algorithm should have high
precision while reading few disk pages.

In this paper, we investigate the problem of range and
nearest neighbor searching for arbitrary length queries. We
propose an optimal index structure and search methods to
solve this problem efficiently. Our index structure stores
MBRs corresponding to database sequences at different
resolutions. To obtain the MBRs of appropriate dimension-
ality at different resolutions, we consider different compres-
sion techniques, namely, DFT, Haar, and DB2 (Daubechies
wavelet). We prove the superiority of this multiresolution
index structure to index structures based on a single
resolution like the I-adaptive index [6]. The resolutions that
optimize the index structure performance in terms of
precision and search cost are also derived theoretically.

Our range search algorithm splits a given query into
several nonoverlapping subqueries at various resolutions.
For each subquery, the method performs a search on the
index structure corresponding to the resolution of the
subquery. The results of a subquery are used to refine the
radius of the next subquery. We prove the optimality of this
search algorithm on our index structure. Our experimental
results show that our method is 4 to 20 times faster than the
current techniques including Sequential Scan.

The k-nearest neighbor search algorithm works in two
phases. The first phase finds an upper bound to the distance
of the query to the kth nearest neighbor by performing a
search on the index structure. The second phase is a range
query using the upper bound found in the first phase
followed by a postprocessing.

Storing information at different resolutions increases the
amount of storage needed by our index structure. However,
a good index structure must not occupy too much space. So,
in the second part of the paper, we propose two methods to
compress the index information. These methods decrease
the number of MBRs by replacing a set of MBRs with a
larger EMBR (Extended MBR) that tightly covers these
MBRs. The first of these methods splits the set of all MBRs
into nonoverlapping subsets of equal size and replaces each
of these subsets with an EMBR. The second method
combines MBRs so that the volume of the resulting EMBR
is minimized. Our experimental results show that our index
structure is 3 to 15 times faster than the current techniques
even after compressing the index to one-fifth.

The rest of the paper is as follows: The problem of range
queries for subsequence search and the existing techniques
is discussed in Section 2. Our index structure and the search
algorithms are presented in Section 3. Experimental results
are given in Section 4. Index compression methods are
presented in Section 5. We end with a brief discussion in
Section 6.
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2 CURRENT SEARCH TECHNIQUES

Current subsequence search techniques can be classified
in two groups based on whether they handle fixed length
queries or variable length queries. Section 2.1 discusses
the case when the length of the queries is prespecified.
Sections 2.2 and 2.3 discuss two solutions for variable
length queries.

2.1 Fixed Length Queries

A simpler version of the subsequence matching problem is
when the length of a query sequence equals a prespecified
window size w. An indexing method called I-adaptive was
proposed by Faloutsos et al. [6] for this problem. This
method first transforms all possible subsequences of
length w in the database using DFT. Only the first few
frequency coefficients are maintained after this transfor-
mation. An MBR that covers the first subsequence in the
frequency domain is then created. This MBR is extended
to cover the next subsequence if the marginal cost does not
increase. Otherwise, a new MBR that covers the new
subsequence is created. The resulting MBRs are stored
using an R-tree [3], [7].

2.2 Variable Length Queries: Prefix Search

For variable length queries, Faloutsos et al. proposed two
different solutions using I-adaptive index, namely, Prefix
Search and Multipiece Search [6].

Prefix Search assumes that there is a prespecified lower
bound w on the length of the query. The method constructs
the index structure using I-adaptive technique with window
size w. Given a query q of an arbitrary length, it searches the
database using a length w prefix of q. If the distance
between the query q and a subsequence s of length jqj is
dðq; sÞ, the Euclidean distance between sequences q and s,
then the distance between any of their prefixes cannot be
greater than dðq; sÞ. Therefore, the method does not cause
any false dismissals.

A shortcoming of the Prefix Search method is that its
search volume can become unnecessarily large, leading to a
large number of false hits. This is captured in the following
lemma. The Euclidean distance between two sequences x

and y is denoted by dðx; yÞ and the expected value of this
distance is represented by E½dðx; yÞ�.
Lemma 1. Let q be a query sequence and x be a database sequence

of the same length. Let q1 be a subsequence of q and x1 be a
subsequence of x such that jq1j ¼ jx1j. Then,

E½dðq; xÞ� �

ffiffiffiffiffiffiffi
jqj
jq1j

s
:E½dðq1; x1Þ�:

Proof. Let jqj ¼ jxj ¼ n. Let Y1; Y2; . . . ; Yn be iid (indepen-
dent and identical) random variables, where Yi ¼
jq½i� � x½i�j for 1 � i � n. Let Y be a random variable,
whose distribution is equal to Yi, for 1 � i � n. Let �ðY 2Þ
and �2ðY 2Þ be the mean and the variance of Y 2,
respectively.

Define Zk ¼
Pk

i¼1 Y
2
i , where k is a positive integer.

From the Central Limit Theorem, we know that,
regardless of the distribution of Y 2, for large k, Zk is
normally distributed with mean �ðZkÞ ¼ k � �ðY 2Þ and

variance �2ðZkÞ ¼ k � �2ðY 2Þ. The probability density
function of Zk can be written as

fZk
ðtÞ ¼ 1

� �
ffiffiffiffiffiffi
2�

p � e�
ðt��ðZkÞÞ2

2��2ðZkÞ :

Let Tk be the random variable denoting the Euclidean
distance between two randomly chosen time series of
length k, then Tk ¼

ffiffiffiffiffiffi
Zk

p
. The mean of Tk can be

calculated as

�ðTkÞ ¼
Z 1

0

t � fZk
ðt2Þ � dt:

Then, we have

�ðTkÞ ¼
1

� �
ffiffiffiffiffiffi
2�

p �
Z 1

0

t � e�
ðt2��ðZkÞÞ2

2��2ðZkÞ � dt:

After changing the variables as u ¼ t2��ðZkÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2ðZkÞ

p , we get

�ðTkÞ ¼
1

2 � ffiffiffi
�

p �
Z 1

��ðZkÞ
�ðZkÞ�

ffiffi
2

p
e�u2 � du

¼ 1

2 � ffiffiffi
�

p �
Z �ðZkÞ

�ðZkÞ�
ffiffi
2

p

�1
e�u2 � du:

It is well-known that
R 0
�1 e�u2 � du ¼

ffiffi
�

p

2 and the Taylor
expansion of the following integral isZ t

0

e�u2 � du ¼
X1
i¼0

ð�1Þi � t2�iþ1

ð2 � iþ 1Þ � i! :

From the Taylor expansion, we have

�ðTkÞ �
1

4
� 1þ �ðZkÞ

�ðZkÞ �
ffiffiffi
2

p
 !

¼ 1

4
� 1þ k � �ðY 2Þ

�ðY 2Þ �
ffiffiffiffiffiffiffiffiffi
2 � k

p
 !

¼ 1

4
� 1þ

ffiffiffi
k

p
� �ðY 2Þ

�ðY 2Þ �
ffiffiffi
2

p
 !

:

Hence,

�ðTnÞ
�ðTkÞ

¼
1þ

ffiffi
n

p
��ðY 2Þ

�ðY 2Þ�
ffiffi
2

p

1þ
ffiffi
k

p
��ðY 2Þ

�ðY 2Þ�
ffiffi
2

p
:

For large values of n and k, we can ignore 1s, then we
have

�ðTnÞ
�ðTkÞ

�

ffiffi
n

p
��ðY 2Þ

�ðY 2Þ�
ffiffi
2

pffiffi
k

p
��ðY 2Þ

�ðY 2Þ�
ffiffi
2

p

¼
ffiffiffi
n

k

r
:

Hence, we conclude that

E½dðq; xÞ� �

ffiffiffiffiffiffiffi
jqj
jq1j

s
:E½dðq1; x1Þ�:

ut
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As a consequence of the above lemma, if dðq1; x1Þ ¼ r,

then dðq; xÞ � r �
ffiffiffiffiffi
jqj
jq1j

q
. As a result, searching for r-distant

prefixes using q1 is tantamount to searching for

r �

ffiffiffiffiffiffiffi
jqj
jq1j

s
-distant

sequences using q. We refer to the radius r �
ffiffiffiffiffi
jqj
jq1j

q
as the

implicit search radius and to the corresponding search

volume as the implicit search volume.
If the Prefix Search method uses dim dimensions for the

transformed sequences, the implicit search volume in-
creases by a factor of

ffiffiffiffiffi
jqj
w

r dim

:

If jqj is much larger than the window size w ¼ jq1j, the

method incurs many false retrievals. This decreases the

precision and increases the number of disk reads. For

example, let the length of a query sequence be 16 times the

window size. In this case, the implicit search radius will be

4 times the actual search radius. If the index stores six

dimensions, then the implicit search volume will be more

than 4,000 times the actual search volume.

2.3 Variable Length Queries: Multipiece Search

Multipiece Search assumes that the length of the query

sequence is an integer multiple of the window size,1 i.e.,

jqj ¼ kw for some integer k. Given a query sequence q

and a radius �, the method divides the query sequence

into k nonoverlapping subsequences of length w. Later,

the method runs k subqueries, i.e., one for each

subsequence, with radius �=
ffiffiffi
k

p
, and combines the results

of these subqueries. The method does not incur any false

dismissals because, if a sequence is within � distance of

the query, then at least one of the corresponding

subsequences must be within the distance �=
ffiffiffi
k

p
.

However, there are several problems with the Multi-

piece Search technique. 1) The cost of a query increases

linearly with its size. The radius for each subquery is

�=
ffiffiffi
k

p
. From Lemma 1, the likelihood of finding a

subsequence of length w within a distance of �=
ffiffiffi
k

p
from

a subquery is the same as that of finding a sequence of

length kw within a distance of � from the original query.

This implies that the expected cost of each subquery is

the same as that of the original query. The number of

subqueries (k) increases linearly with the size of the

original query. As a result, the total search cost of the

Multipiece Search technique increases linearly with the

length of the query. 2) Multipiece Search has a post-

processing step in which the results from different

subqueries are combined and filtered. This has an extra

CPU overhead.

3 PROPOSED METHOD

The main problem with the two solutions for variable

length queries is that the index structure does not use all the

information available in the query sequence, due to the

static structure of the index and the unpredictable length of

queries. Our solution alleviates this problem by storing

information at different resolutions in the database.

3.1 Storing Information at Multiple Resolutions

Let s be the longest time sequence in the database, where

2b � jsj < 2bþ1 for some integer b. Similarly, let the

minimum possible length for a query be 2a, for some

integer a where a � b. Let s1; s2; . . . ; sn be the time

sequences in the database, as shown in Fig. 1. Our index

structure stores a grid of trees Ti;j, where i ranges from a to

b and j ranges from 1 to n. Tree Ti;j is the set of MBRs for the

jth sequence corresponding to window size 2i. In order to

obtain Ti;j, we transform each sequence of length 2j in

sequence si using DFT or wavelets and choose a few of the

coefficients from the transformation. The transformed

sequences are stored in MBRs similar to the I-adaptive index

structure. We begin with an initial MBR. It is extended to

cover the next subsequence of length w until the marginal

cost of the MBR increases. When the marginal cost of an

MBR increases, a new MBR is created and used for later

subsequences. The ith row of our index structure is

represented by Ri, where Ri ¼ fTi;1; . . . ; Ti;ng corresponds

to the set of all trees at resolution 2i. Similarly, the jth

column of our index structure is represented by Cj, where

Cj ¼ fTa;j; . . . ; Tb;jg corresponds to the set of all trees for the

jth time sequence in the database. We call this index

structure the MR (Multi-Resolution) index structure. One can

consider using a different base (e.g., base 3) to construct the

index structure; however, base 2 turns out to be the optimal

(as shown later). An MR index structure that uses a base of i

is referred to as a base-i MR index structure.

If each MBR of the index structure contains c points on

the average, then the size of Ri ¼ 2 � d �
Pn

j¼1
jsjj�2iþ1

c , where

d is the number of dimensions of the index structure. This is

KAHVECI AND SINGH: OPTIMIZING SIMILARITY SEARCH FOR ARBITRARY LENGTH TIME SERIES QUERIES 421

1. If the query length is not an exact multiple of the window size, then
the longest prefix that is a multiple of the window size can be used.

Fig. 1. Layout of the index structure.



because each time sequence sj corresponds to
jsjj�2iþ1

c

MBRs, and each MBR stores two vectors (one for lower

coordinates and one for higher coordinates) of d dimen-

sions. Based on this formula, we conclude that the size of Ri

decreases as i (i.e., resolution) increases. However, if the

time sequences are very long compared to the resolutions of

the index structure, then the size of the rows decreases

slowly. The total space complexity of the index structure is

Oða �D=cÞ, where a is the number of different resolution

and D is the database size. In Section 5, we will discuss how

the index structure can be compressed.
The MR index structure can be constructed by sequen-

tially scanning the database only once. Therefore, the time

complexity of index construction is OðDÞ.

3.2 Longest Prefix Search (LPS)

Let q1 be a prefix of a query sequence q. In Lemma 1, we

proved that a range query using q1 with a query radius of �

has an implicit search radius of � �
ffiffiffiffiffi
jqj
jq1j

q
. The implicit search

radius decreases as jq1j increases. Our first search technique,

the Longest prefix search technique (LPS), uses the longest

prefix (q1) of the query sequence (for which the resolution

jq1j appears in the MR index structure) to perform a range

search on the corresponding row (Rlog2jq1j) of the MR index

structure to find the candidate set. Later, this candidate set

is postprocessed to eliminate false retrievals.
In order to optimize the LPS technique, the length of the

largest resolution available in the MR index structure must

be maximized. As shown in Lemma 2, this implies that

base 2 must be used in the construction of the index

structure.

Lemma 2. Let MRi; i � 2, be the base-i MR index structure

constructed on a time series data set. If queries whose lengths

are uniformly distributed between 1 and N (for some large

integer N) are performed on these index structures with equal

probability, then the expected length of the longest prefix of

these queries is maximized for MR2.

Proof. The leading nonzero digit of the base-i representation

of jqj corresponds to the longest prefix of q whose

resolution is available in MRi. Define h ¼ logiN . Let us

partition the numbers 1 . . .N based on the number of

leading zeros in the h digit base-i representation. Let Pk,

0 � k � h, denote the partition corresponding to k

leading zeros. All the numbers in partition Pk use a

prefix of length ih�k�1 for range searching in the LPS

technique. The size of partition Pk is ði� 1Þ � ih�k�1. The

leading nonzero digit can take i� 1 values and the

remaining digits can take i values each. Therefore, the

average length of the longest prefix for MRi is:

Li ¼
1

N
�
Xh�1

k¼1

ði� 1Þ � ih�k�1 � ih�k�1:

¼ i� 1

N
�
Xh�1

k¼1

ði2Þh�k�1

¼ i� 1

N
� i

2h � 1

i2 � 1

¼ N2 � 1

N � ðiþ 1Þ

’ N

iþ 1
:

Therefore, the length of the longest prefix decreases as
the base of the MR index structure increases. tu
Lemma 2 proves that using powers of 2 for the

resolutions of the MR index structure maximizes the
performance of the LPS technique. A base-2 MR index
structure guarantees that the implicit search radius for any
query does not increase by a factor of more than

ffiffiffi
2

p
.

3.3 An Improved Search Algorithm

The LPS technique uses the longest prefix of the query
sequence whose resolution is available in the MR index
structure. Although this technique is better than the Prefix
Search technique (i.e., the implicit search radius is less), it
still does not use all the information in the query sequence.
Our second search technique partitions a given query
sequence of arbitrary length into a number of subqueries at
various resolutions available in our index structure. Later, it
performs a partial range query for each of these subqueries on
the corresponding row of the index structure. This is called
a partial range query because it only computes the distance
of the query subsequence to the MBRs, not the distance to
the actual subsequences contained in the MBRs.

Given any query q of length k � 2a and a range �, there is
a unique partitioning,2 q ¼ q1q2 . . . qt, with jqij ¼ 2ci and
a � c1 < . . . < ci � ciþ1 � . . . ct � b. This partitioning corre-
sponds to the 1s in the binary representation of k. We first
perform a search using q1 on row Rc1 of the index structure.
As a result of this search, we obtain a set of MBRs that lie
within a distance of � from q1. Using the distances to these
MBRs, we refine the value of � for each MBR and make a
second query using q2 on row Rc2 and the new value of �.
This process continues for the remaining rows Rc3 . . .Rct .
The idea of the above radius refinement is captured in the
following lemma.

Lemma 3. Let q be a given query sequence and x be an arbitrary

subsequence of the same length in the database. Let q1 be a

prefix of q and q2 be the rest of q. Similarly, let x1 be a prefix of

x and x2 be the rest of x such that jq1j ¼ jx1j. If dðq; xÞ � �,

then

dðq2; x2Þ � maxB2Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � dðq1; BÞ2

q
Þ;

where B is an MBR that covers x1 and B is any arbitrary set of

rectangles that contains B.
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Proof. Since dðq; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðq1; x1Þ2 þ dðq2; x2Þ2

q
� �, we have

dðq2; x2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � dðq1; x1Þ2

q
:

Since dðq1; x1Þ � dðq1; BÞ,

dðq2; x2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � dðq1; BÞ2

q
Þ:

From this, it follows that

dðq2; x2Þ � maxB2Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � dðq1; BÞ2

q
Þ:

ut

An example partitioning of a query sequence is shown in

Fig. 2. In this example, the length of the query sequence is

208 and the minimal query length is 16. The query is split

into three pieces of length 16, 64, and 128. Three subqueries

are performed, one for each partition.
Fig. 3 depicts the execution of the range query algorithm

on database sequence s1 for � ¼ 0:6 for the query sequence
in Fig. 2. In this example, s1 contains four MBRs for each
resolution. The real number displayed inside each MBR
represents the distance between the corresponding query
subsequence and that MBR. The real numbers next to each
arrow show the refined radius after processing that MBR.
The first subquery q1 is performed on row R4 with � ¼ 0:6

as the radius. As a result of this search, � is refined to �0k for
each MBR Bk in row R4. Since the distance between jq1j
and the third MBR is greater than �, the subsequences of s1
corresponding to this MBR are pruned at this step. The
next subquery q2 is performed on row R6 with the smaller
radius �0k for each MBR Bk. As a result of this subquery, �0k
is refined further to �00k. After the second subquery, the
subsequences of the first MBR are also pruned since the
distance of q2 to the first MBR is larger than the current
threshold for that MBR. Finally, subquery q3 is performed
on row R7 with radius �00k for each MBR Bk. The fourth
MBR of s1 is pruned away at this step similarly. The
resulting set of MBRs (i.e., only the second MBR in this
example) is then processed to find the actual subsequences
using disk I/Os. The same algorithm is run for other
database sequences as well.

Fig. 4 presents the complete search algorithm. Step 1
partitions the query q into separate pieces corresponding to
a subset of the rows Rc1 ; Rc2 ; . . . ; Rct of the index structure.
In Step 2, these rows are searched from top to bottom
independently for each sequence (column) in the database.
At every row, a partial range query (Step 2b(i)), and then a
range refinement (Step 2b(ii)) are carried out. When all rows
have been searched, the disk pages corresponding to the
last result set are read (Step 2c). Finally, postprocessing is
carried out to eliminate false retrievals (Step 2d).

As a consequence of Lemma 3, we have the following
theorem.

Theorem 1. The MR index structure does not incur any false

dismissals.

We note the following about the search algorithm.

1. Every column of the index structure (or each
sequence in the database) is searched independently.
For each MBR, the refinement of radius is carried out
independently using only the results from the
related MBRs. For example, if an MBR covers the
subsequences starting at positions 300 to 500 for
resolution 64 in the previous example (Fig. 2), then
we only use the results that derive from the MBRs
whose starting position ranges intersect with 300-16
to 500-16 for resolution 16.

2. For each sequence, no disk reads are done until the
termination of the for loop in Step 2b. Furthermore,
the target pages are read in the same order as their
location on disk. As a result, the average cost of a
page access is much less than the cost of a random
page access.

3. Performing subqueries in increasing length order
(i.e., from top to bottom in Fig. 1) improves the
performance. This is explained in Lemma 4.

4. A special condition occurs when one of the
subqueries qi turns out to be in one of the MBRs
(say B) of tree Ti;j. In this case, dðqi; BÞ ¼ 0,
�ciþ1;j ¼ �ci;j, and no radius refinement is possible at
this search step. However, if we use the actual
subsequences corresponding to B (by accessing disk
pages), a refinement may still be possible.

5. One may be tempted to simplify the algorithm by
iterating row by row, i.e., by finding MBRs within
the current radius for all sequences in a row and
then refining the search radius simultaneously
across all sequences for the next row. Such a row-
based refinement impacts the performance of the
algorithm. This is because the amount of radius
refinement is reduced due to nonlocal considera-
tions. With respect to Lemma 3, this means that a
row-based approach increases the size of B and,
consequently, reduces the amount of refinement.
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Fig. 2. Partitioning for query q, jqj ¼ 208.

Fig. 3. The execution of a sample range query on database sequence s1
with jqj ¼ 208 and � ¼ 0:6. The real number displayed inside each MBR
represents the distance between the corresponding query subsequence
and that MBR. The real numbers next to each arrow show the refined
radius after processing that MBR.



6. Our range search algorithm can be easily paralle-
lized by splitting the MR index structure vertically.
Since the columns of the MR index structure are
independent of each other, vertical splitting
achieves linear speedup in parallel and distributed
environments.

3.4 Theoretical Analysis

In Section 3.2, we proved that the base-2 MR index
structure maximizes the expected length of the longest
prefix of the query sequence, hence maximizes the
performance of the LPS technique. In this section, we
present a theoretical analysis of the MR index structure for
the search technique proposed in Section 3.3. We first
show that top-down search on the MR index structure has
better expected performance than any other traversal
order. Next, we verify that the base-2 MR index structure
minimizes the expected number of subqueries, hence
minimizes the CPU cost for preprocessing.

3.4.1 Ordering the MR Index Rows

One can consider various traversal strategies on the MR
index structure by performing subqueries in different order.
Lemma 4 proves that performing subqueries in increasing
length order minimizes the expected search cost.

Lemma 4. The performance of the MR index structure is
optimized if it is traversed from top to bottom (i.e., subqueries
are performed in an increasing length order).

Proof. Let q ¼ q1q2 . . . be a partitioning of the query
sequence q in increasing length order. Let the initial
query radius be r and the dimensionality of the MR
index structure be d. We compare two cases: 1) Database

is searched first for q1 and then for q2 and 2) database is
searched first for q2 and then for q1.

Case 1. Let r1 denote the distance of q1 to an MBR. As
shown in Lemma 1,

r1 � r �

ffiffiffiffiffiffiffi
jq1j
jqj

s
:

Let �1 be the refined radius after q1. Using the radius
refinement formula in Lemma 1, we have

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r21

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2 � jq1jjqj

s

¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jq1j

jqj

s

¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj � jq1j

jqj

s
:

As a result, the final implicit search radius for q2 after the
initial radius refinement by q1 ¼

rf1 ¼ �1 �

ffiffiffiffiffiffiffi
jqj
jq2j

s

¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj � jq1j

jqj

s
�

ffiffiffiffiffiffiffi
jqj
jq2j

s

¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj � jq1j

jq2j

s
:
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Case 2. As in Case 1, it can be shown that the final
implicit search radius is

rf2 ¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj � jq2j

jq1j

s
:

Next, we compare the implicit search radii from
Cases 1 and 2. Since q ¼ q1q2 . . . is a partitioning of the
initial query, we know that

jq1j þ jq2j � jqj
) ðjq1j þ jq2jÞ � ðjq2j � jq1jÞ � jqj � ðjq2j � jq1jÞ
) jq2j2 � jq1j2 � jqj � jq2j � jqj � jq1j
) jqj � jq1j � jq1j2 � jqj � jq2j � jq2j2
) jq1j � ðjqj � jq1jÞ � jq2j � ðjqj � jq2jÞ
) jqj�jq1j

jq2j � jqj�jq2j
jq1j

) rf1 � rf2 :

This implies that the final implicit search radius is
minimized if the subqueries are performed in an
increasing length order. tu

3.4.2 Expected Number of Subqueries

The refined search algorithm has additional CPU cost due
to multiple in-memory subqueries. For example, let q be a
query sequence of length 25. If a base-2 MR index
structure is used, then q is partitioned into three
subqueries of lengths 1, 8, and 16. This corresponds to
the 1s in the base-2 representation of jqj, 25 ¼ ð11001Þ2. On
the other hand, if a base-3 MR index structure is used, then
q must be partitioned into five subqueries of lengths 1, 3, 3,
9, and 9. These partitions correspond to the base-3
representation of jqj, 25 ¼ ð221Þ3. The number of sub-
queries for a base-i MR index structure can be computed
as the sum of the digits in base-i representation of q. In our
example, ð11001Þ2 results in 1þ 1þ 0þ 0þ 1 ¼ 3 subqu-
eries and ð221Þ3 results in 2þ 2þ 1 ¼ 5 subqueries. The
additional CPU cost is minimized when the number of
subqueries is minimized. Lemma 5 proves that the
expected number of subqueries is minimized if a base-2
MR index structure (i.e., resolutions of powers of 2) is
used. This lemma is analogous to Lemma 2 that proved the
optimality of base-2 MR index structure for performing a
single longest prefix search.

Lemma 5. If queries whose lengths are uniformly distributed
between 1 and N (for some large integer N) are performed on
the base-i MR index structure with equal probability, for
i � 2, then the expected number of subqueries is

Ni ¼
ði� 1Þ � logiN

2
:

Proof. Let Ni represent the average number of subqueries
for base-i MR index structure. The sum of digits of the
base-i representation of jqj is equal to the number of
subqueries on MRi. Define h ¼ logiN . Let S be the set of
h digit, base-i representations of all the numbers from 1
to N . The numbers in S have a total of N � h digits. Since
numbers 0; 1; . . . ; i� 1 occur in S with the same
frequency, each of them occurs N�h

i times. We can find

the average number of subqueries by dividing the sum of
the digits in S by jSj. As a result, we have:

Ni ¼
1

N
�
Xi�1

k¼0

k:
N � h
i

¼ h

i
�
Xi�1

k¼0

k

¼ h � ði� 1Þ
2

¼ ði� 1Þ � logiN
2

:

ut

Lemma 5 implies that the number of subqueries is
minimized when powers of two are used as resolutions of
the MR index structure since ði�1Þ�logiN

2 decreases as i

decreases.

3.5 Nearest Neighbor Queries

A k-nearest neighbor (k-NN) query seeks the k closest
subsequences from the database to a query string s. We
perform a k-NN query in two phases. In the first phase, the
k closest MBRs in the index structure are determined by an
in-memory search on the index structure using the maximal
resolution in the MR index structure. Once the k closest
MBRs are determined, the algorithm reads the subse-
quences contained in these MBRs and finds the kth smallest
distance of these subsequences to the query sequence. We
represent this distance by r1. Note that, generally a small
percentage of the database is processed at this stage. In the
second phase, we perform a range query using r1 as the
query radius. Fig. 5 presents the complete k-NN search
algorithm. It is guaranteed that the k nearest neighbors are
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retrieved in the second phase. This is because the distance
to the actual kth nearest neighbor is at most r1.

Korn et al. [14] propose a similar k-NN search. The
authors propose a technique in which k closest points are
obtained in the first phase using an approximate distance
function. The actual distance to these points is computed,
and a range query with the greatest actual distance is
performed in the second phase. Seidl and Kriegel [24]
propose an optimal iterative k-nearest neighbor search
technique. They iterate over both the feature and the object
spaces to ensure that no unnecessary objects are accessed.
Our algorithm is closer in spirit to the former algorithm
except that we work with MBRs instead of data points in the
first phase.

3.6 Comparison of the Methods

The MR index structure alleviates a number of problems of
the Prefix Search and Multipiece Search techniques that
arise from their fixed structure. These problems are mainly
the large amount of redundant computation and redundant
disk page reads.

The Multipiece Search technique can have as much as
jqmaxj=w subqueries, where qmax is the longest possible
query. On the other hand, the upper bound on the number
of subqueries for our method is logðjqmaxjÞ � logðwÞ, where
w is the minimum window length. This means a dramatic
reduction in the number of subqueries. The other advantage
of our technique is that disk reads are performed only after
the last (longest) subquery, as opposed to the Multipiece
Search technique which performs disk reads after each
subquery.

Each subquery of the MR index structure refines the
radius of the query. Since the search volume is proportional
to �dim, even small refinements in the radius can prevent
large number of disk reads. For example, if 10 dimensions
are used in the index, then a 5 percent decrease in the radius
will decrease the search volume by 40 percent. Therefore,
the total search volume, hence, the amount of computation
and disk reads, for our technique is much lower than the
Prefix Search technique.

However, there is a drawback of the MR index structure
in that it uses more space than both Prefix Search and
Multipiece Search. This is because it stores index structures
at various resolutions. Since all the preprocessing steps
must be done in memory, the index structure must fit into
memory. In Section 5, we will present several methods that
shrink the size of the MR index structure without much of a
drop in performance.

4 EXPERIMENTAL RESULTS

We carried out several experiments to compare different
search techniques and to test the impact of using different
parameters on the quality of our method. We used three
data sets in our experiments. The first data set is composed
of stock market data taken from chart.yahoo.com. This data
set contains information about 556 companies for 1,024 days.
The total size of this data set is approximately 4.3 MB. The
second data set is formed synthetically by adding four sine
signals of random frequencies and some amount of random
noise. This data set is composed of 500 time series data each

of length 1,024. The total size of this data set is approxi-
mately 4.0 MB. The third data set is the high quality
Australian Sign Language (AUSLAN) data set. This data
consists of sample Australian Sign Language signs. Twenty-
seven examples of each of 95 AUSLAN signs were captured
from a native signer using high-quality position trackers
and instrumented gloves. There are a total of 2,565 signs of
various lengths in this data set. We chose the first
1,024 entries of each time series in this data set. The total
size of this data set is slightly more than 20 MB. This data set
is publicly available at http://kdd.ics.uci.edu.

We normalized the entries of each of the time sequences
in all data sets by dividing all the entries of each time
sequence to the maximum of the absolute values of all the
entries of that time sequence. We considered variable length
queries of lengths between 16 and 1,024. We assumed that
the lengths of the queries are uniformly distributed. Each
query sequence is generated by averaging two randomly
selected subsequences from the database. The radii for these
queries are selected uniformly between 0.10 and 0.20. The
experimental results are computed as the average of
100 such queries. We assumed that the index structure fits
into memory and that the page size was 8K for these
experiments.

In order to obtain data at various resolutions, we had to
transform the data to compact the time sequences and
obtain MBRs of appropriate dimensionality. We experi-
mented with three transformations, namely, DFT, Haar
wavelet [21], [26], and DB2 (Daubechies) wavelet. We also
ran some of the experiments using other wavelet bases such
as DB3, DB5, SYM2 (Symlet), SYM3, SYM5, and several
Coeiflets. However, we did not get any improvements with
these basis functions. Haar wavelet performed slightly
better than DFT. DB2 performed poorly for lower dimen-
sions, but its performance was comparable to Haar for
higher dimensions.

Note that one can consider using other dimensionality
reduction techniques like PAA [13] instead of DFT or
wavelets. However, the experiments in [18] show that PAA
is worse than DFT, Haar wavelets, and Daubechies
wavelets. Our experiments with string data [8] also confirm
that wavelets perform better than other techniques for our
sliding window-based index structure. There is no clear
winner among different dimensionality reduction techni-
ques. Therefore, we will report all our experiments using
Haar wavelets.

Fig. 6 shows the trails for IBM’s closing prices for w ¼ 16,
when it is compressed to two dimensions using DFT, Haar,
and DB2 wavelets. The figure shows that the trails are
smooth for all of them. A smooth trail implies that the
resulting subsequences can be indexed efficiently. We
observed similar trails for other time series data as well.

4.1 Range Queries

Our first set of experiments considered range queries. We
measured precision and I/O for four different techniques:
Sequential Scan, Prefix Search, Longest Prefix Search, and
MR index. The results are presented in Figs. 7 and 8. The
results for Multipiece Search are not presented as it was
not competitive with other methods: The total number of
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page accesses was even more than the total number of
pages on disk.

We plot the precision and I/O (number of disk reads)
as a function of the number of dimensions (coefficients) of
the transformed data set. We define precision as the
number of MBRs that contain result sequences divided by
the number of MBRs in the candidate set. Note that, for
Sequential Scan, the candidate set is the entire database.
The performance of Sequential Scan is not affected by the
number of dimensions.

According to Figs. 7a and 7b, the MR index and LPS
perform better than Prefix Search and Sequential Scan for
all dimensionalities. For the stock market data set, the
precision of the MR index structure is more than five times
better than Prefix Search and more than 15 times better
than Sequential Scan. For the synthetic data set, the
precision of the MR index structure is three times better
than Prefix Search and Sequential Scan. As compared to
LPS, the MR index is about 15 percent better for the stock
market data set and 35 percent better for the synthetic data
set. This improvement is an indication of the performance
gain due to iterative reduction in query range as we
traverse down the rows of the MR index structure. The
relative differences in the precision levels for the two data
sets are due to the differences in their data distributions.

Figs. 8a and 8b compare the I/O overhead of the four
above mentioned techniques. For the stock market data set,
the number of page reads for the MR index structure is less

than one-sixth of that for Prefix Search and less than one-
seventh of that for Sequential Scan. For the synthetic data

set, the number of page reads for the MR index structure is

less than one-third of that for both Prefix Search and

Sequential Scan.
It should also be noted from the above four figures that

the relative performance of the MR index structure

improves as the number of dimensions increases. For

example, by using 10 dimensions instead of four dimen-

sions, the number of page accesses for the MR index
structure decreases by 13 percent, while that for Prefix

Search decreases by less than 1 percent for both data sets.

Similarly, precision for the MR index structure increases by
13 percent, while that for Prefix Search increases by only

8 percent for both data sets.
As the number of dimensions increases, the number of

disk I/Os drops slowly in Figs. 8a and 8b. This can be

explained as follows: The MR index structure stores only
two vectors for each MBR, one for lower coordinates and

one for higher coordinates, in order to decrease the size of

the index structure. This is because storing the points in the

MBR increases the size of the index structure dramatically.
When the index structure becomes too large to fit into

memory, the search technique incurs disk I/Os even in the

index search phase. Since the MR index structure does not
store the individual points, it postprocesses all the candi-

date MBRs. Hence, although the number of dimensions
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Fig. 6. The trails of the IBM’s stock for w ¼ 16 when it is compressed to two dimensions using (a) DFT, (b) Haar, and (c) DB2.

Fig. 7. Precision for (a) stock market and (b) synthetic data for different dimensionalities.



increases, there is still an imprecision due to the use of

MBRs for all the points within that MBR.

Another important observation is that Prefix Search

reads almost all the pages. The expected length of a query is

512. Since the minimum query length is 16, the implicit

radius for an average query is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512=16

p
(approximately 5.6)

times larger than the actual range. This means that for �

between 0.1 and 0.2, the Prefix Search technique examines

almost the entire search space.
The subqueries in the MR index structure correspond to

binary representation of the ratio of the length of the query

sequence to the minimum window size. Therefore, the

expected number of subqueries for the MR index structure

is ðlogð1; 024Þ � logð16ÞÞ=2 ¼ 3. In our experiments, the

average number of subqueries was 3.08, which is pretty

close to the theoretical results. On the other hand, for

Multipiece Search, the expected number of subqueries is

512=16 ¼ 32, more than 10 times higher.

4.2 Estimating the Total Cost

Although Figs. 7 and 8 give us information about CPU cost

(precision determines the candidate set size, which in turn

determines the number of arithmetic operations) and the

I/O cost (number of disk page reads), determining the

overall cost requires an estimation of the relative cost of

arithmetic operations to disk page accesses. The cost of an

arithmetic operation is usually much less than the cost of a

disk page read. However, the cost of a disk page read itself

can vary based on whether the read is sequential or

random. In case of random I/O, there is a high seek and

rotational latency cost for each page access. However, for

sequential reads, disk head is at the start of the next page to

be read, thus avoiding the seek cost. As a result, the cost of

reading pages in a random order is much higher than the

cost of reading them sequentially. We assume this ratio to

be 12 [22], [23]. (There are also several other factors like

buffering and prefetching that affect the page access cost.

However, we do not consider these effects in our analysis.)
We normalize all costs to the number of sequential disk

pages read. The total cost of a query is then computed as

follows:

Total Cost = CPU Cost + I/O Cost, where
CPU Cost = Candidate Set Size � c, and
I/O Cost = k � Number of page reads.

The constant c converts the cost of computing the
distance between two sequences to the cost of a sequential
disk page read. It was experimentally estimated to be
between 1/300 and 1/600 depending on the hardware
architecture.

The constant k depends on the search algorithm. Prefix
Search performs random page reads; as a result, the
corresponding constant is 12. In the MR index structure, a
candidate set of database sequences is determined by
accessing the MBRs corresponding to the last subquery.
Disk accesses are then carried out to read this set of
candidate sequences. Since the candidate sequences are
accessed in the disk placement order, the average cost of a
page read is much less than the cost of a random page read.
We used the cost model proposed in [22] to find the cost of
reading a subset of pages in sequential order. Typically, the
value of k for the MR index structure lies between 2.0 and
3.0. We also validated this experimentally by reading
subsets of pages in sequential order from a real disk.

The total cost comparisons corresponding to Figs. 7 and 8
are presented in Figs. 9a and 9b. The results for the LPS
technique are not presented here because, at this scale, they
become similar to the results of the MR index structure.

It can be seen from these figures that the MR index
structure performs 2 to 4 times better than Sequential Scan
and more than 20 times better than Prefix Search for both
data sets. Prefix Search always has the highest cost among
the three techniques. This is because Prefix Search reads
almost every disk page in a random order. As a result, the
cost of disk reads dominates CPU time. Although, Prefix
Search is a good method for subsequence search when the
query size is predefined, we conclude that it is not suitable
when the query size is variable.

4.3 Nearest Neighbor Queries

Our second set of experiments considers arbitrary length
k-NN queries on stock market and synthetic data sets for
k ¼ f1; 5; 10; 15; 20; 30; 40; 50g. Figs. 10a and 10b present the
number of disk reads for Sequential Scan, LPS technique,
and the MR index structure. The results for the Prefix
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Fig. 8. Number of disk reads for (a) stock market and (b) synthetic data for different dimensionalities.



Search and Multipiece Search techniques are not presented
because they were not competitive.

According to our experimental results, the MR index
structure runs more than three times faster than sequential
scan and two times faster than the LPS technique for both
data sets. The other point to note is that the number of disk
reads does not increase significantly with the number of
nearest neighbors.

4.4 Effect of Query Length

We inspect the effect of query length on the performance of
the MR index structure, Prefix Search, and Sequential Scan.
We used resolutions w ¼ f16; 32; 64; 128; 256; 512g for the
MR index structure for this experiment andw ¼ 16 for Prefix
Search. The number of dimensions for this experiment is
reduced to four using Haar wavelets. In this experiment, we
performed range queries for � randomly selected between
0.1 and 0.2 for jqj ¼ f16; 32; 64; 128; 256; 512g. The average of
100 queries is reported for each query length.

Fig. 11a displays the number of disk I/Os performed for
stock market data set. In this figure, an additional curve,
called Oracle, is plotted. We assume that Oracle knows
which pages contain result subsequences in advance and
accesses only those pages. The curve for Oracle shows the
minimum number of disk I/Os required to answer the

specified query. Prefix Search performs the same as the

MR index structure for jqj ¼ 16. This is because the prefix of

length 16 of a query is equal to the whole query when

jqj ¼ 16. The MR index structure accesses smaller number of

pages compared to both Sequential Scan and Prefix Search.

The number of disk I/O for the MR index structure

decreases as jqj increases. This is because the answer set

gets smaller for large jqj, and the MR index structure can

capture this since it uses all the information within jqj.
Unlike other competing techniques, the number of disk I/O

for the MR index structure changes in parallel with Oracle.

This shows that the MR index structure scales well with

respect to the query length. The gap between Oracle and the

MR index structure corresponds to information lost due to

dimensionality reduction and the use of an MBR to

approximate a set of subsequences.
Fig. 11b plots the total cost in terms of number of

sequential page transfers for the stock market data set. The

MR index structure always has the lowest cost and Prefix

Search always has the highest cost. The performance of the

MR index structure is similar to that of Sequential Scan for

jqj ¼ 16. This is because the result set is so large that almost

all the disk pages contain at least one result sequence (see

the graph for Oracle in Fig. 11a).
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Fig. 9. Total cost of range queries for (a) stock market and (b) synthetic data for different dimensionalities.

Fig. 10. Number of disk reads for NN queries for (a) stock market and (b) synthetic data.



Figs. 12a and 12b show the number of disk I/Os
performed and the total cost for the synthetic data set.
The MR index structure accesses the smallest number of
disk pages. Prefix Search reads almost all the pages for this
data set. The total cost of the MR index structure is less than
both Prefix Search and Sequential Scan. For short queries,
the performance of the MR index structure is similar to that
of Sequential Scan. This is because almost all the disk pages
contain at least one answer sequence (see the graph for
Oracle in Fig. 12a). As query length increases, the size of the
answer set decreases. The decreasing cost graph for the MR
index structure shows that the MR index structure prunes
the search space much better than Prefix Search as query
becomes longer.

4.5 Effect of Database Size

We used the AUSLAN data set to test the effect of
database size on Sequential Scan, Prefix Search, and the
MR index structure. In order to carry out this experi-
ment, we split the AUSLAN data set into nine equal
sized data sets D1; D2; . . . ; D9. Later, we formed data sets
D0

1; D
0
2; . . . ; D

0
9 of various sizes by merging the smaller

data sets cumulatively (i.e., D0
1 ¼ D1 and D0

i ¼ [i
j¼1Dj, for

2 � i � 9, where [ is the union operator). We performed
range queries of random lengths between 16 and 1,024

on these data sets. The query radius is also selected
randomly between 0.1 and 0.2.

Fig. 13 displays the total cost for Sequential Scan, Prefix
Search, and the MR index structure. The MR index structure
always has the lowest cost. The total cost of the MR index
structure increases linearly with the database size as well as
other discussed techniques. This is because of the grid
structure of the MR index: The MBRs at different columns
of the MR index structure are pruned independently.
Increasing the size of the database increases the number
of columns. Since the probability of pruning a column is
independent of the number of columns, the total cost of the
MR index structure increases linearly with the number of
columns. We conclude that the MR index structure scales
well with respect to database size.

5 INDEX COMPRESSION

The MR index structure performs better than all the other
techniques discussed in this paper in terms of precision,
number of page accesses, and total cost. However, the
method keeps information about the data at more than one
resolution in the index structure. Therefore, the MR index
structure uses more space than other index structures like
the I-adaptive index that maintain information at a single
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Fig. 11. (a) Number of disk reads. (b) Total cost for range queries on stock market data for different query lengths.

Fig. 12. (a) Number of disk reads. (b) Total cost for range queries on synthetic data for different query lengths.



granularity level. In order to perform the preprocessing
steps of the search in memory, the index structure must fit
into memory. If the index structure does not fit into
memory, then the method will incur disk page reads for
accessing the index. Therefore, the performance of the
MR index structure could degrade if enough memory is
not available. In this section, we consider index compres-
sion techniques with which memory requirements of the
MR index structure can be made similar to the other index
structures.

5.1 Compression Methods

We experimented with two index compression methods
for the MR index to shrink the size of the index: Fixed

Compression and Greedy Compression. These methods
merge a set of MBRs to create an extended MBR (EMBR)
of the same dimensionality that tightly covers and
replaces the constituent MBRs. The MR index assumes
that an index node contains subsequences that start at
consecutive offsets. In order to preserve this property,
only consecutive MBRs can be merged into an EMBR.
Each merge operation increases the total volume covered
by the index structure. As the total volume increases, the
probability that a range query accesses one or more of
these MBRs increases. This increases the size of the
candidate sets. Therefore, we would like to merge as
many MBRs as possible into an EMBR, while minimizing
the increase in volume. We consider two strategies for
merging MBRs. Let r be the desired compression rate.

1. Fixed Compression is based on the observation that, in
real applications, consecutive subsequences are simi-
lar. As a result, this method merges the first r MBRs
into an EMBR, second r MBRs into another EMBR,
and so on. This is a very fast method. However, if
consecutive MBRs are not similar, the performance
drops quickly.

2. Greedy Compression tries to minimize the increase in
the total volume occupied by the MBRs at each
merge operation. The algorithm chooses the two
consecutive index nodes that lead to a minimal
volume increase at each step until the number of
index nodes is decreased by the given ratio r. This
method adapts to the layout of the index nodes at

each merge operation. However, since the two MBRs
to be merged are determined independently at each
step, some of the EMBRs can contain many more
subsequences than others, leading to an unbalanced
partitioning. This has the drawback that an access to
one of the heavily populated index nodes will incur
the overhead of reading large number of candidate
subsequences. This decreases the precision of the
index.

5.2 Experimental Results

We ran several experiments using range queries to test the

performance of the compression heuristics on the stock

market data set. In these experiments, we varied the

compression rate from 1 (implying no compression) to 5

(maximum compression). The results are shown in Fig. 14.

As evident from the figure, the Greedy heuristic has a

lower cost than the Fixed Compression technique for all

compression rates. We obtained similar results for other

data sets as well.
Figs. 15a and 15b compare the total cost of range queries

for Sequential Scan and MR index with Greedy Compres-

sion. We did not plot the results for Prefix Search since it

performed worse than sequential results. When the com-

pression rate is 5, the total cost of the MR index structure is

still four times better than the cost of Sequential Scan and

more than 15 times better than that of Prefix Search for the

stock market data set. The total cost of the MR index

structure is 20 percent less than that of Sequential Scan for

the synthetic data set when the compression rate is 5.
In Figs. 9a and 9b, we already showed that Sequential

Scan is better than Prefix Search when the MBRs of the

I-adaptive index are not compressed. Since the compressed

MR index structure has lower cost than Sequential Scan, we

conclude that the compressed MR index structure is also

better than Prefix Search of equal size index structure.
Compression has another advantage. It increases the

number of rows of the MR index structure and, as a

result, makes the index structure efficiently applicable to

longer query sequences. For example, compressing the

MR index to one-fifth, the number of rows of the MR

index can be increased five times while keeping the

storage cost invariant.
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Fig. 13. Total cost of range queries in terms of number of sequential

page transfers for different database sizes.

Fig. 14. Total cost of range queries for different index compression

techniques on stock market data.



6 DISCUSSION

In this paper, we considered the problem of variable length
queries for subsequence matching for time sequences. This
is the most general version of the Euclidean distance-based
time series similarity problem since no restriction is
imposed on the length of the sequences. We proposed a
new indexing method called MR index that stores informa-
tion about the data at different resolutions. This index
structure overcomes the limitations of the current search
techniques. We proved the superiority of this multiresolu-
tion index structure over single-resolution index structures.

We first proposed a naive range search technique called
Longest Prefix Search. This technique performs a prefix
search on the largest possible resolution available in the in
index structure. Based on this technique, we proved that
using powers of two in the index resolutions maximizes the
accuracy of the MR index structure.

Later, we presented improved algorithms for both range
queries and nearest neighbor queries. The range query
algorithm splits the given query sequence of arbitrary
length into several subqueries corresponding to the resolu-
tions available in the index structure. The ranges of the
subqueries are successively refined, and only the last
subquery performs disk reads. We proved that a top-down
search of the index structure maximizes the efficiency of the
search technique. As a result of these optimizations, the MR
index performed 4 to 20 times better than the other
methods, including Sequential Scan for range queries.

The k-nearest neighbor algorithm runs in two phases. In
the first phase, the distance of the query to the MBRs is
computed, and the distance to the kth closest subsequence
in the k closest MBRs is used as the radius for a range query
in the second phase. This algorithm performed three times
better than Sequential Scan on our data sets.

Since the MR index stores information at multiple
resolutions, the size of the MR index structure is larger
than index structures based on a single resolution. We
proposed two methods to compress the index structure
without losing much information: Fixed Compression and
Greedy Compression. These methods compress the index
structure by merging some of the MBRs. Greedy Compres-
sion has better results since it minimizes the information
loss (increase in volume). The MR index performed 3 to

15 times better than other techniques even after compres-

sing the index to one-fifth.
The simple grid structure of our index provides a good

opportunity for parallel implementation. The index struc-

ture can be partitioned into subsets of columns and each

subset can be mapped to a separate processor with its own

disk. No communication would be needed among the

processors except to merge the results at the end.
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