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Motivations

Fast searching for time-series of real 
numbers. (“data mining”)

Scientific database: weather, geological, 
astrophysics, etc.
“find past days in which solar wind showed similar 

pattern to today’s”
Financial, marketing time series:
“Find past sales patterns that resemble last month”



Real motivation?



Difficulties for time-series data

Can’t use exact match like fast string match:
Need to use distance function to compare two 
time series (next slide)

Can’t easily index the time-series data 
directly.

Need faster algorithm than linear scan (whole 
talk)



Distance functions

L-p distance function
D(x,y) = ( ∑|xi – yi|p )1/p

L-2 distance function (Most popular)
D(x,y) = ( ∑(xi - yi)2 )1/2

Finding similar signals to query signal q 
means finding all x such that:
D(q,x) = ( ∑(qi - xi)2 )1/2 <= ε



Why prefer L2 distance

Important feature:
L2 distance is preserved under “orthonormal

transforms” (For L-p norm, only p=2 satisfy this 
property)

Orthonormal transforms: K-L transform, DFT, DWT 
Optimal distance measure for estimation

If signals are corrupted by Gaussian, additive 
noise

Widely used



How to index time-series data

Can not direct index the data
Very big dimensionality (Even if query is just 512 
points)

Need to extract fewer important 
representative features to build index upon.
Try to use first few parameters of DFT 
(Discrete Fourier Transform) to build index. 



DFT: Discrete Fourier transform

Figures taken from: “A comparison of DFT and DWT based similarity search in Time-
series Databases” (Also figures on slide 9,17,18,24,25)





DFT definition

n-point DFT:
(Xf is frequency domain, xt is time domain)
Xf = (1/n1/2) * ∑t=0 to n-1 xt exp(-j2πft/n)2  f = 0,1,…, n-1
Inverse DFT:
xt = (1/n1/2) * ∑f=0 to n-1 Xf exp(j2πft/n)2  t = 0,1,…, n-1
Energy E(x):
E(x) = ||x||2 = ∑ |xt|2

FFT can be done in O(nlogn) time



Parseval’s theorem

Let X be the DFT of sequence x:
∑ |xt|2 = ∑ |Xf|2

Since DFT is a linear transformation:
… => || xt – yt ||2 = || Xf – Yf ||2
L2 distance of two signal in time domain is same as 

their L2 distance in frequency domain
No false dismissal if we just use first few 
parameters.
But also do not want too many false hits



Different time series data

Water level of river 
vs time

O(f -b) b > 2Black noise

Stock movement, 
exchange rates

O(f -2)Brown noise
(Brownian walks)

Musical score, work 
of art

O(f -1)Pink noise

Totally independent 
time series

O(f0)White noise

ExampleEnergy distribution
in O(fb)

Type



Building Index

When the signal is not white noise, we can 
use first few DFT parameter to capture most 
of the “energy” of the signal
Let Q to be the query time-series data:
∑first_few_freq (qf - xf )2 

<= ∑ all_freq (qf - xf |)2 

= ∑(qt - xt)2 

<= ε2



Building index (cont)

Use the first few (4-6) DFT parameters, use 
R*-tree as index (called “F-index”)
Given a query Q and ε, use the index to filter 
out all nodes where:
∑first_few_freq (qf - xf )2  > ε2



Can we do better?
Use DWT (Discrete Wavelet Transform)
Harr wavelet definition:

ψi
j (x) = ψ(2jx – i) i = 0, … , 2j-1

1 0 < t < 0.5
Where ψ(t) =  -1 0.5 < t < 1

0 elsewhere



Harr transform example
Time series data: f(t) = (9 7 3 5)

(2)(6)1

(1 -1)(8 4)2

(9 7 3 5)4

CoefficientsAverageResolution

Harr transform result: (6 2 1 -1)
If we take only first two coefficients (6 2) and 
transform back, we get: (8 8 4 4)



Use Harr wavelet with real data







Harr wavelet vs DFT

Low frequencyLow resolutionEnergy 
concentration for 
first few params

O(nlogn)O(n)Computation 
time

Only global 
feature

Can capture 
localized feature

Feature

YesYesPreserve L2 
distance 

DFTHarr wavelet



Performance comparison

10k feature vectors from HK stock market 
using sliding window size ω=512
Precision = Stime / Stransform

Stime: # of sequences qualified in time domain
Stransform: # of sequences qualified in transformed 
domain

Compare precision using different amount of 
coefficients with different method



Performance (HK stock)



DFT fights back

Use last few DFT coefficient to improve 
quality (Davood Rafiei)
The DFT coefficients of a real valued sequence of 

duration n satisfy:
Xn-f = Xf* (f = 1, … , n-1)
Note: if X = a+bi, X* = a-bi



Energy distribution: DFT vs DWT



Performance (100 stocks)



What is next: “Subsequence”
query

Up to now, we are focused on “whole” time 
series data match.
What if we need to match subsequence 
efficiently?

Query:

Data:



Naïve method

Assume query length fixed at ω
Using a sliding window with length ω, slide 
through the data.
Insert all possible data points into the index 
(using F-index)
Could be twice as slow as “sequential scan”



ST-index

Observation: Successive sliding window tend 
to generate similar coefficients
MBR: Minimum Bounding (hyper) Rectangle



How about “arbitrary” length 
time series query?

Two basic methods: (Assume dataset is 
indexed with window length ω)

Prefix search
Simply use the first ω of the query to do the search
Multipiece search
If |q| >= kω, split q into k pieces, and search DB 
with ε/(k1/2), join the results.



Multi-resolution index

Base-2 MR index structure
Take ω as base unit, build index for each 
window size of 2iω.
Basic algorithm: Longest Prefix Search (LPS)
Eg: if query length = 19ω

use 16ω as the prefix to do search.



Index structure layout

Figure taken from: “Optimizing similarity search for arbitrary length time series queries”
(also figures on three slides)



Improved algorithm

Split q into q1q2…qt, where |qi|= 2Ci

Eg: Given |q| = 208 = 16 + 32 + 128

q1 q2 q3

16 32 128

Given ε = 0.6, query example shown in the 
next slide





Performance on 556 stocks (again)



Summary

Harr DWT and DFT performs similar in feature 
extraction for stock data.
Start monitor stock now! (All of these papers 
use stock data + synthetic data)
Time series data is hard to optimize for 
similarity search. 
All these paper are focused on “no false 
dismissal”, approximation might help. (Some 
research done.)
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Orthonormal transform

Matrix Ο is known as orthonormal if it satisfy 
the orthonormality property:

From: http://www.math.iitb.ac.in/~suneel/final_report/node15.html


