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Overview

• Kinematics
" Considers only motion

" Determined by positions, velocities, accelerations

• Dynamics
" Considers underlying forces

" Compute motion from initial conditions and physics

Example: 2-Link Structure

• Two links connected by rotational joints
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Forward Kinematics

• Animator specifies joint angles: !1 and !2

• Computer finds positions of end-effector: X
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Forward Kinematics

• Joint motions can be specified by spline curves
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Forward Kinematics

• Joint motions can be specified by initial conditions
and velocities
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Example: 2-Link Structure

• What if animator knows position of “end-effector”
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“End-Effector”

Inverse Kinematics

• Animator specifies end-effector positions: X

• Computer finds joint angles: !1 and !2:
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Inverse Kinematics

• End-effector postions specified by spline curves
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Inverse Kinematics

• Problem for more complex structures
" System of equations is usually under-defined

" Multiple solutions
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Three unknowns: !1, !2 , !3

Two equations: x, y

Inverse Kinematics

• Solution for more complex structures:
" Find best solution (e.g., minimize energy in motion)

" Non-linear optimization
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Inverse Kinematics

• Style-based IK: optimize for learned style

Growchow 04



Summary of Kinematics

• Forward kinematics
" Specify conditions (joint angles)

" Compute positions of end-effectors

• Inverse kinematics
" “Goal-directed” motion

" Specify goal positions of end effectors

" Compute conditions required to achieve goals

Inverse kinematics provides easier 

specification for many animation tasks,

but it is computationally more difficult

Inverse kinematics provides easier 

specification for many animation tasks,

but it is computationally more difficult

Overview

• Kinematics
" Considers only motion

" Determined by positions, velocities, accelerations

• Dynamics
" Considers underlying forces

" Compute motion from initial conditions and physics

" Active dynamics: objects have muscles or motors

" Passive dynamics: external forces only

Dynamics

• Simulation of physics insures realism of motion

Lasseter `87

Spacetime Constraints

• Animator specifies constraints:
" What the character’s physical structure is

» e.g., articulated figure

" What the character has to do

» e.g., jump from here to there within time t

" What other physical structures are present

» e.g., floor to push off and land

" How the motion should be performed

» e.g., minimize energy

Spacetime Constraints

• Computer finds the “best” physical motion
satisfying constraints

• Example: particle with jet propulsion
" x(t) is position of particle at time t

" f(t) is force of jet propulsion at time t

" Particle’s equation of motion is:

" Suppose we want to move from a to b within t0 to t1
with minimum jet fuel:
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Witkin & Kass `88

Spacetime Constraints

• Discretize time steps:
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Spacetime Constraints

• Solve with
iterative
optimization
methods

Witkin & Kass `88

Spacetime Constraints

• Advantages:
" Free animator from having to specify details of

physically realistic motion with spline curves

" Easy to vary motions due to new parameters

and/or new constraints

• Challenges:
" Specifying constraints and objective functions

" Avoiding local minima during optimization

Spacetime Constraints

• Adapting motion:

Witkin & Kass `88

Heavier Base

Original Jump

Spacetime Constraints

• Adapting motion:

Witkin & Kass `88

Hurdle

Spacetime Constraints

• Adapting motion:

Witkin & Kass `88

Ski Jump

Motion Sketching

• Plausible motion matches sketched constraints

Popovic 03



Spacetime Constraints

• Advantages:
" Free animator from having to specify details of

physically realistic motion with spline curves

" Easy to vary motions due to new parameters

and/or new constraints

• Challenges:
" Specifying constraints and objective functions

" Avoiding local minima during optimization

Passive Dynamics

• Other physical simulations:
" Rigid bodies

" Soft bodies

" Cloth

" Liquids

" Gases

" etc.

Hot Gases
(Foster & Metaxas `97)

Cloth
(Baraff & Witkin `98)

Particle Systems

• A particle is a point mass
" Mass

" Position

" Velocity

" Acceleration

" Color

" Lifetime

• Use lots of particles to model complex phenomena
" Keep array of particles

p = (x,y,z)

v

Particle Systems

• For each frame:
" Create new particles and assign attributes

" Delete any expired particles

" Update particles based on attributes and physics

" Render particles

Creating/Deleting Particles

• Where to create particles?
" Around some center

" Along some path

" Surface of shape

" Where particle density is low

• When to delete particles?
" Where particle density is high

" Life span

" Random

This is where user 

controls animation

Example: Wrath of Khan

Reeves



Example: Wrath of Khan

Reeves

Example: Wrath of Khan

Reeves

Equations of Motion

• Newton’s Law for a point mass
" f = ma

• Update every particle for each time step
" a(t+#t) = g

" v(t+#t) = v(t) + a(t)*#t

" p(t+#t) = p(t) + v(t)*#t + a(t)2*#t/2

Solving the Equations of Motion

• Initial value problem
" Know p(0), v(0), a(0)

" Can compute force at any time and position

" Compute p(t) by forward integration

f
p(0)

p(t)

Hodgins

Solving the Equations of Motion

• Euler integration
" p(t+#t)=p(t) + #t f(x,t)

Hodgins

Solving the Equations of Motion

• Euler integration
" p(t+#t)=p(t) + #t f(x,t)

• Problem:
" Accuracy decreases as #t gets bigger

Hodgins



Solving the Equations of Motion

• Midpoint method (2nd order Runge-Kutta)
" Compute an Euler step

" Evalute f at the midpoint

" Take an Euler step using midpoint force

» p(t+#t)=p(t) + #t f( p(t) + 0.5*#t f(t),t)

Hodgins

Solving the Equations of Motion

• Adapting step size
" Compute pa by taking one step of size h

" Compute pb by taking 2 steps of size h/2

" Error = | pa  - pb |

" Adjust step size by factor (epsilon/error)1/f

error

pa

pb

Particle System Forces

• Force fields
" Gravity, wind, pressure

• Viscosity/damping
" Liquids, drag

• Collisions
" Environment

" Other particles

• Other particles
" Springs between neighboring particles (mesh)

" Useful for cloth

Rendering Particles

• Volumes
" Ray casting, etc.

• Points
" Render as individual points

• Line segments
" Motion blur over time

Example: Fountain

Particle System API

More Passive Dynamics Examples

• Spring meshes

• Level sets

• Collisions

• etc.



Example: Cloth

Fedkiw

Example: Smoke
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Example: Water
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Example: Water

Fedkiw

Example: Rigid Body Contact

Fedkiw

Summary

• Kinematics
" Forward kinematics

» Animator specifies joints (hard)

» Compute end-effectors (easy - assn 4!)

" Inverse kinematics

» Animator specifies end-effectors (easier)

» Solve for joints (harder)

• Dynamics
" Space-time constraints

» Animator specifies structures & constraints (easiest)

» Solve for motion (hardest)

" Also other physical simulations


