ot

Kinematics & Dynamics

Adam Finkelstein
Princeton University
COS 426, Spring 2005

Example: 2-Link Structure g@;

+ Two links connected by rotational joints

“End-Effector”

X=(xy)

(0,0)

Forward Kinematics

X=(xy)

Overview

ot

+ Kinematics
o Considers only motion
o Determined by positions, velocities, accelerations

+ Dynamics
o Considers underlying forces
o Compute motion from initial conditions and physics

Forward Kinematics g@
+ Animator specifies joint angles: ©, and 0,

« Computer finds positions of end-effector: X

X=(xy)

(0,0)

X =(l,cos®, +1,cos(®, +0,),],sin®, +/,sin(0, +0,))

Forward Kinematics &®

+ Joint motions can be specified by initial conditions
and velocities

X=(xy)

0,(0)=60° ©,(0)=250°

e, _ , d®, _
d dt

-0.1

Example: 2-Link Structure

« What if animator knows position of “end-effector”

“End-Effector”

X=(xy)

0,0)

Inverse Kinematics g@

+ End-effector postions specified by spline curves

X=xy)

Inverse Kinematics

+ Solution for more complex structures:
o Find best solution (e.g., minimize energy in motion)
o Non-linear optimization

X=(xy)

(0,0)

Inverse Kinematics

7B

« Animator specifies end-effector positions: X

+ Computer finds joint angles: ©, and 0,:

211,

2 2 2 2
®2=cos"(x +x* =1, IZJ

_ = (4sin(®,)x + (], +1, cos(0,))y

' (Lsin(®,))y + (I, +1, cos(®,))x

Inverse Kinematics g@

+ Problem for more complex structures
o System of equations is usually under-defined
o Multiple solutions

X=(xy)

e,
\ ,,,,,,,,,,, Three unknowns: ©,,0,, 0,

©0.0) Two equations: X, y

Inverse Kinematics ,@

+ Style-based IK: optimize for learned style

Summary of Kinematics @f

+ Forward kinematics
o Specify conditions (joint angles)
o Compute positions of end-effectors

* Inverse kinematics
o “Goal-directed” motion
o Specify goal positions of end effectors
o Compute conditions required to achieve goals

Inverse kinematics provides easier
specification for many animation tasks,
but it is computationally more difficult

Dynamics g@;

+ Simulation of physics insures realism of motion

Spacetime Constraints

« Computer finds the “best” physical motion
satisfying constraints

+ Example: particle with jet propulsion

o X(t) is position of particle at time t o~
o f(t) is force of jet propulsion at time t /’
o Particle’s equation of motion is: 77

mx"-f -mg=0

o Suppose we want to move from a to b within t, to t,
with minimum jet fuel:

il
Minimize f ‘ f (t)2 ‘dt subject to x(?,)=a and x(t,)=b
fy

Overview

+ Dynamics
o Considers underlying forces
o Compute motion from initial conditions and physics
o Active dynamics: objects have muscles or motors
o Passive dynamics: external forces only

Spacetime Constraints ggg

+ Animator specifies constraints:
o What the character’s physical structure is
» e.g., articulated figure
o What the character has to do
» e.g., jump from here to there within time t
o What other physical structures are present
» e.g., floor to push off and land
o How the motion should be performed
» e.g., minimize energy

Spacetime Constraints

+ Discretize time steps:

X, — X,
' i -1
x' = L
h
¥ = Xy = 2%, + X,
i hz
X, —2X, + X,
" i+l i i-1
m| x =T 2 —fl.—mg=0
h
.. . 2 .
Minimize hz Ji| subject to x,=a and x,=b
7

4 2\ 4 2\

Spacetime Constraints g Spacetime Constraints fg
+ Solve with 7 AT AT + Advantages:

iterative ﬁ g Q@%@;{ o Free animator from having to specify details of

optimization e e physically realistic motion with spline curves

methods - o Easy to vary motions due to new parameters

; and/or new constraints
Witkin & Kass "88)
4 N\ 4

Spacetime Constraints gﬁ; Spacetime Constraints

+ Adapting motion: + Adapting motion:

N
VAN

o

N

SRy

BN

Sy

Heavier Base

Witkin & Kass 88 Witkin & Kass 88
J

J

4 2\ 4
Spacetime Constraints

Motion Sketching

+ Adapting motion: + Plausible motion matches sketched constraints

Ski Jump

> 03
Witkin & Kass '88 Popovic 03

J J

on

Spacetime Constraints

+ Advantages:
o Free animator from having to specify details of
physically realistic motion with spline curves
o Easy to vary motions due to new parameters
and/or new constraints

+ Challenges:
o Specifying constraints and objective functions
o Avoiding local minima during optimization

Particle Systems ggg

+ A particle is a point mass
o Mass
o Position v

o Velocity
o Acceleration ./

o Color p=(Xy,2)
o Lifetime

+ Use lots of particles to model complex phenomena
o Keep array of particles

Creating/Deleting Particles

+ Where to create particles?
o Around some center
o Along some path
o Surface of shape
o Where particle density is low

This is where user
controls animation

+ When to delete particles?
o Where particle density is high
o Life span
o Random

Passive Dynamics @f

+ Other physical simulations:
o Rigid bodies
o Soft bodies
o Cloth
o Liquids
o Gases
o etc.

Cloth

Hot Gases

Particle Systems ggg

+ For each frame:

Create new particles and assign attributes
Delete any expired particles

Update particles based on attributes and physics
Render particles

© 0 ©0 ©o

"

Example: Wrath of Khan

a typical
particle’s
initial

speed &
direction —.)

7

ejection /
angle /
7 /
<a typical

/ particle’s initial /
/ osition

\ impact
point

Fig.2. Distribution of particle systems on the planet’s surface.

Vs

Example: Wrath of Khan

o]

(4

Reeves

Vs

Equations of Motion

+ Newton’s Law for a point mass
of=ma

+ Update every particle for each time step
o a(t+At) = g
o V(t+At) = v(t) + a(t)*At
o p(t+At) = p(t) + v(t)*At + a(t)2*At/2

Vs

Solving the Equations of Motion

4 N\
Example: Wrath of Khan Lol
Fig. 7. Wall of fire about to engulf camera. /\’ur Los
e -
Solving the Equations of Motion 19
+ Initial value problem
o Know p(0), v(0), a(0)
o Can compute force at any time and position
o Compute p(t) by forward integration
“
\ o PO
! - w
L |
I/(u/}:i//\/

+ Euler integration
o p(t+At)=p(t) + At f(x,t)

Hodgins

Vs

Solving the Equations of Motion

+ Euler integration
o p(t+At)=p(t) + At f(x,t)

+ Problem:
o Accuracy decreases as At gets bigger

©

Hodgins

Ve

Solving the Equations of Motion

o=

+ Midpoint method (2™ order Runge-Kutta)

o Compute an Euler step

o Evalute f at the midpoint

o Take an Euler step using midpoint force
» p(t+At)=p(t) + At f(p(t) + 0.5*At f(t),t)

N

Hodgins

J

Ve

Particle System Forces

.

« Force fields

o Gravity, wind, pressure
+ Viscosity/damping

o Liquids, drag
« Collisions

o Environment
o Other particles

+ Other particles

o Springs between neighboring particles (mesh)

o Useful for cloth

Ve

Example: Fountain

Particle System API
. J

Ve

N
Solving the Equations of Motion gf

L

+ Adapting step size
o Compute p, by taking one step of size h
o Compute p, by taking 2 steps of size h/2
o Error=1p, -p,!
o Adjust step size by factor (epsilon/error) '

Py

\etror

Pa

Ve

Rendering Particles Sg

* Volumes
o Ray casting, etc.

+ Points
o Render as individual points

+ Line segments
o Motion blur over time

Ve

N
More Passive Dynamics Examples ,f

+ Spring meshes
* Level sets
» Collisions

* etc.

Ve

Example: Cloth

o=

Fedkin

Ve

Example: Smoke

J

-
Example: Water

Fedkin

Fedkiw

J

Ve

Example: Rigid Body Contact

Fu//\n\/

J
Ve 2\
Example: Water g?;
I"u//\in/
P
Summary

Kinematics
o Forward kinematics
» Animator specifies joints (hard)
» Compute end-effectors (easy - assn 4!)
o Inverse kinematics
» Animator specifies end-effectors (easier)
» Solve for joints (harder)

Dynamics

o Space-time constraints
» Animator specifies structures & constraints (easiest)
» Solve for motion (hardest)

o Also other physical simulations

