Texture Mapping & Hidden Surface Removal

Adam Finkelstein
Princeton University
COS 426, Spring 2005

Textures

- Describe color variation in interior of 3D polygon
 - When scan converting a polygon, vary pixel colors according to values fetched from a texture

Angel Figure 9.3

Surface Textures

- Add visual detail to surfaces of 3D objects

Polygonal model

With surface texture

Surface Textures

- Add visual detail to surfaces of 3D objects

3D Rendering Pipeline (for direct illumination)

Texture Mapping Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering

3D Rendering Pipeline

Texture mapping

3D Primitives

- 3D Modeling Coordinates
- Modeling Transformation
- 3D World Coordinates
- Lighting
- Viewing Transformation
- 3D Camera Coordinates
- Projection Transformation
- 2D Screen Coordinates
- Clipping
- Viewing Transformation
- 2D Image Coordinates
- Texture Mapping
- Image
Parameterization

\[\text{geometry} + \text{image} = \text{texture map} \]

- Q: How do we decide where on the geometry each color from the image should go?

Option: Varieties of projections

Option: unfold the surface

Option: make an atlas

Texture Mapping Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Volume textures
 - Non-photorealistic rendering

Texture Mapping

- Steps:
 - Define texture
 - Specify mapping from texture to surface
 - Lookup texture values during scan conversion
Texture Mapping

- When scan convert, map from...
 - image coordinate system (x,y)
 - modeling coordinate system (u,v)
 - texture image (t,s)

Texture Mapping

- Texture mapping is a 2D projective transformation
 - texture coordinate system: (t,s)
 - image coordinate system: (x,y)

Texture Mapping

- Scan conversion
 - Interpolate texture coordinates down/across scan lines
 - Distortion due to bilinear interpolation approximation
 - Cut polygons into smaller ones, or
 - Perspective divide at each pixel

Texture Filtering

- Must sample texture to determine color at each pixel in image

Overview

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Non-photorealistic rendering
Texture Filtering

• Aliasing is a problem

Point sampling Area filtering

Angel Figure 9.5

• Ideally, use elliptically shaped convolution filters

In practice, use rectangles

Texture Filtering

• Size of filter depends on projective warp
 - Can prefiltering images
 » Mip maps
 » Summed area tables

Mip Maps

• Keep textures prefiltered at multiple resolutions
 - For each pixel, linearly interpolate between two closest levels (e.g., trilinear filtering)
 - Fast, easy for hardware

Summed-area tables

• At each texel keep sum of all values down & right
 - To compute sum of all values within a rectangle, simply subtract two entries
 - Better ability to capture very oblique projections
 - But, cannot store values in a single byte

Overview

• Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering

• Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
Modulation textures

Map texture values to scale factor

Wood texture

Texture value

I = I_L + K_r I_r + \sum (K_a (N \cdot L) + K_d (V \cdot R)^d) S_r I_d + K_f I_f + K_s I_s

Illumination Mapping

Map texture values to surface material parameter

K_r = T(s,t)

Bump Mapping

Texture values perturb surface normals

Environment Mapping

Texture values are reflected off surface patch

Image-Based Rendering

Map photographic textures to provide details for coarsely detailed polygonal model
Solid textures

Texture values indexed by 3D location \((x,y,z)\)
- Expensive storage, or
- Compute on the fly, e.g. Perlin noise

Texture Mapping Summary

- Texture mapping methods
 - Parameterization
 - Mapping
 - Filtering
- Texture mapping applications
 - Modulation textures
 - Illumination mapping
 - Bump mapping
 - Environment mapping
 - Image-based rendering
 - Volume textures

Hidden Surface Removal (HSR)

- Surfaces may be back-facing.
- Surfaces may be occluded.
- Surfaces may overlap in the image plane.
- Surfaces may intersect.

3D Rendering Pipeline

Somewhere in here we have to decide which objects are visible, and which objects are hidden.

HSR Algorithms

- Object space
 - Back-face detection
 - Depth sort
- Screen space
 - Ray casting
 - Scan-line
 - Z-buffer
 - Area subdivision
Q: How do we test for back-facing polygons?
A: Dot product of the normal and view directions.

Back-face detection

Depth sort

“Painter’s algorithm”

- Sort surfaces in order of decreasing maximum depth
- Scan convert surfaces in back-to-front order

BSP Tree

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations
 - Provides linear-time depth sort for arbitrary view

Hidden Surface Removal Algorithms

- Object space
 - Back-face detection
 - Depth sort
- Screen space
 - Ray casting
 - Scan-line
 - Z-buffer
 - Area subdivision

(We’ll come back to this…)
Ray Casting

- Fire a ray for every pixel
 - If ray intersects multiple objects, take the closest

Z-Buffer

- Color & depth of closest object for every pixel
 - Update only pixels whose depth is closer than in buffer
 - Depths are interpolated from vertices, just like colors

Scan-Line Algorithm

- For each scan line, construct spans
 - Sort by depth

3D Rendering Pipeline

- Full pipeline for 3D rendering
- Coordinates and transformations are used throughout
Area Subdivision

Warnock's algorithm
- Fill area if:
 - All surfaces are outside area, or
 - Only one surface intersects area, or
 - One surface occludes other surfaces in area
- Otherwise, subdivide

3D Rendering Pipeline

Area subdivision comments
- Augments scan conversion
- Polygon coherence
- Commonly in software

Summary

- **Texture Mapping**
 - Add detail during scan conversion
- **Hidden surface removal**
 - Find visible surfaces