lHlumination

Adam Finkelstein
Princeton University
COS 426, Spring 2005

-

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imagel[i][j] = GetColor(scene, ray, hit);

}

return image;

-

Ray Casting gw;

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

Wireframe

-

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}

return image;

-

}
return image;
}
Without lllumination
lllumination Sg

image[i][j] = GetColor(scene, ray, hit);

Angel Figure 6.2

With lllumination

-

Goal gw;

+ Must derive computer models for ...
o Emission at light sources
o Scattering at surfaces
o Reception at the camera

+ Desirable features ... e
o Concise "\
o Efficient to compute —~
o “Accurate”

Ve

Overview

T

+ Direct lllumination
o Emission at light sources
o Scattering at surfaces

+ Global illumination
o Shadows
o Refractions
o Inter-object reflections

Direct lllumination

Ve

Empirical Models

-

+ ldeally measure irradiant energy for “all” situations
o Too much storage
o Difficult in practice

e

Ve

Point Light Source

T

+ Models omni-directional point source
o intensity (I,),
o position (px, py, pz),
o factors (k, k;, k,) for attenuation with distance (d)

[]
(Px, py, pz)
| I,
I, = 3
k. +kd+k.d

Light

Ve

Modeling Light Sources

.

* 1L(X%Y,2,0,0,\) ...
o describes the intensity of energy,
o leaving a light source, ...
o arriving at location(x,y,z), ...
o from direction (6,9), ...
o with wavelength A

Light

Ve

OpenGL Light Source Models

~N

+ Simple mathematical models:
o Point light
o Directional light
o Spot light

Ve

Directional Light Source

.

+ Models point light source at infinity
o intensity (I,),
o direction (dx,dy,dz)

N\

(dx, dy, dz)

AW

No attenuation
with distance

=
Spot Light Source X_ o

+ Models point light source with direction
o intensity (I,),
o position (px, py, pz),
o direction (dx, dy, dz)
o attenuation

(PX, PY, PY) o —>
_ I,(DeL)
Light "ok, +kd+kd’
Light Falling on a Surface 2

+ Power per unit area — Irradiance (E)
o Measured in W/m?2

* Move surface away from light
o Inverse square law: E ~ 1/r2

ot

« Tilt surface away from light

o Cosinelaw: E~n - | @
& i@

Modeling Surface Reflectance g@;

* Ry(8,0,7,9,MN) ...
o describes the amount of incident energy,
o arriving from direction (6,9), ...
o leaving in direction (y,3), ...
o with wavelength A by

6.9

(w,x)\

Light Emitted from a Surface g@;

+ Power per unit area per unit solid angle —
Radiance (L)
o Measured in W/m?2/sr
o Projected area — perpendicular to given direction

%
dw I - do
dddw

Overview o

* Direct lllumination

o Scattering at surfaces

+ Global illumination
o Shadows
o Refractions
o Inter-object reflections

Direct lllumination

Empirical Models g@;

+ ldeally measure radiant energy for “all”
combinations of incident angles
o Too much storage
o Difficult in practice

6.9

(w,x)\

OpenGL Reflectance Model gﬁ

+ Simple analytic model:
o diffuse reflection +
o specular reflection +
0 emission +

o “ambient”
Based on model
proposed by Phong ,\ /

Diffuse Reflection §®;

) 5,

+ Assume surface reflects equally in all directions
o Examples: chalk, clay

Diffuse Reflection §®;

) 5,

* How much light is reflected?
o Depends on angle of incident light

6 =dL
oA,

dL = dAcos®

OpenGL Reflectance Model gﬁ

+ Simple analytic model:

o diffuse reflection +

o specular reflection +

o emission +
o “ambient”

Based on model
proposed by Phong

Diffuse Reflection ggz

* How much light is reflected?
o Depends on angle of incident light

e o0 od

Diffuse Reflection ggz

+ Lambertian model
o cosine law (dot product)

ID =KD(N.L)IL

4 2\

OpenGL Reflectance Model g@;

+ Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”

4 N\
Specular Reflection g@;

4 N\
Specular Reflection g@;

+ Reflection is strongest near mirror angle
o Examples: mirrors, metals

How much light is seen?

Depends on:
o angle of incident light
o angle to viewer

Viewer

Vs

N
OpenGL Reflectance Model g@

+ Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”

J
e A
Specular Reflection g@;

+ Phong Model
o cos(a)" This is a physically-motivated hack!
Viewer
Is=K,Ve*R)I,
J
e A
Emission é@é
+ Represents light eminating directly from polygon
J

Ve

p
OpenGL Reflectance Model Ambient Term
+ Simple analytic model: + Represents reflection of all indirect illumination
o diffuse reflection +
o specular reflection +
o emission +
o “ambient” \ / =
l W I This is a total hack (avoids complexity of global illumination)!
J J
e A e A
OpenGL Reflectance Model g@ OpenGL Reflectance Model g@
+ Simple analytic model: + Simple analytic model:
o specular reflection + o specular reflection +
o “ambient” \ / - o “ambient”
J J
e A e A
OpenGL Reflectance Model g@ Surface lllumination Calculation g@;
+ Sum diffuse, specular, emission, and ambient + Single light source:
Phong| Rmbien Puittuse Ppecutar Puout)
_ 0] |
Viewer
e\ B
I=1,+K,1,+K,(N*L), +K ¥V *R)'],
Leonard McMillan, MIT
J

-

~

Surface lllumination Calculation

+ Multiple light sources:

o
L.

Viewer

I=1,+K,1, + Ei(KD(N.Li)Ii +Ks(VeR)"I)

-

Global lllumination

.

Greg Larson

-

.

Ray Casting (last lecture)

+ Trace primary rays from camera
o Direct illumination from unblocked lights only

Light 1

w‘*wq{l’\}‘% \
®

View

Plane e
Light zé

4 2\
Overview é?z
+ Global illumination
o Shadows
o Transmissions
o Inter-object reflections
Gilobal lllumination
J
4 2\
Shadows é?z
+ Shadow term tells if light sources are blocked
o Cast ray towards each light source L;
o S;=0ifray is blocked, S; = 1 otherwise
®
Flone A Shadow
(% Term
Light2
=1, +K 1+ (Ky(N*L)+ K (V *R)")S, 1,
J
/

N

Recursive Ray Tracing

I=I,+K,, + EL(KD(N L)+ K (VRS I,

+ Also trace secondary rays from hit surfaces
o Global illumination from mirror reflection and

tranSparen y | Mé I

View
Plane

Light Zé

[=1,+K,0,+ Y (Kp(N* L)+ KV * RIS, 1, {K 1+ K, 1)

e ———

Viewer

Mirror reflections g@

+ Trace secondary ray in mirror direction
o Evaluate radiance along secondary ray and
include it into illumination model

Light 1&

Radiance
for mirror
reflection ray

Light zéL>

I=I,+K 0+ (Ky(N*L)+K(V *R)")S, 1, + Kol + K1,

Transparency g@

« Transparency coefficient is fraction transmitted
o K; =1 for translucent object, K; = 0 for opaque
o 0 <K; < 1 for object that is semi-translucent

View
Plane

Viewer

s Transparency
é,, Coefficient
Light 2

I=I,+K 0+ (Kp(N*L)+K(V *R)")S, 1, + Kol + Kpl,

Refractive Tranparency g@

For solid objects, apply Snell’s law:
n,sin®, =n,sinO,

T= (icos 0, -cosO®,)N N
T’r 1/’}/

Transparency g@

+ Trace secondary ray in direction of refraction
o Evaluate radiance along secondary ray and
include it into illumination model

View
Plane

Viewer

E Radiance for
é, refraction ray
Light 2

|

I=I,+K 0+ (Ky(N*L)+ KV *R))S, 1, + Kol + Ko I

Refractive Transparency gg;

+ For thin surfaces, can ignore change in direction
o Assume light travels straight through surface

Recursive Ray Tracing

+ Ray tree represents illumination computation

Light 1@

Primal
Ray |

Transmissior Reflection
Ru/ Ray

Transrissig eflection
Ray Ray

Background Background

Ligmzé

Ray traced through scene Ray tree

Background

I=I,+K 0+ (Ky(N*L)+K(V *R)")S, 1, + Kol + K1,

4 N\ 4
Recursive Ray Tracing g?;

Recursive Ray Tracing

+ Ray tree represents illumination computation » GetColor calls RayTrace recursively

loteer

Image RayTrace(Camera camera, Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

Light2 é IBack }

Ray traced through scene Ray tree return image;

I=1,+K,, +EL(KD(N'L)+KS(V‘R)”)SL1L +K I, + K, I,
=/ J

e ™ e
Summary gw; lllumination Terminology
+ Ray casting (direct lllumination) + Radiant power [flux] (®)
o Usually use simple analytic approximations for o Rate at which light energy is transmitted (in Watts).
light source emission and surface reflectance + Radiant Intensity (I)

o Power radiated onto a unit solid angle in direction (in Watts/sr)
» e.g.: energy distribution of a light source (inverse square law)

+ Radiance (L)
o Radiant intensity per unit projected surface area (in Watts/m?sr)
» e.g.: light carried by a single ray (no inverse square law)

+ Recursive ray tracing (global illumination)

o Incorporate shadows, mirror reflections,
and pure refractions

+ lIrradiance (E)
o Incident flux density on a locally planar area (in Watts/m?)
» e.g.: light hitting a surface at a poi

All of this is an approximation
so that it is practical to compute

More on global illumination later! I + Radiosity (B)
o Exitant flux density from a locally planar area (in Watts/ m?)

