
Illumination

Adam Finkelstein

Princeton University

COS 426, Spring 2005

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Wireframe

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Without Illumination

Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

With Illumination

Illumination

• How do we compute radiance for a sample ray?

Angel Figure 6.2

image[i][j] = GetColor(scene, ray, hit);

Goal

• Must derive computer models for ...
! Emission at light sources

! Scattering at surfaces

! Reception at the camera

• Desirable features …
! Concise

! Efficient to compute

! “Accurate”

Overview

• Direct Illumination
! Emission at light sources

! Scattering at surfaces

• Global illumination
! Shadows

! Refractions

! Inter-object reflections

Direct Illumination

Modeling Light Sources

• IL(x,y,z,#,$,") ...

! describes the intensity of energy,

! leaving a light source, …

! arriving at location(x,y,z), ...

! from direction (#,$), ...

! with wavelength " (x,y,z)

Light

Empirical Models

• Ideally measure irradiant energy for “all” situations
! Too much storage

! Difficult in practice

"

OpenGL Light Source Models

• Simple mathematical models:
! Point light

! Directional light

! Spot light

Point Light Source

• Models omni-directional point source
! intensity (I0),

! position (px, py, pz),

! factors (kc, kl, kq) for attenuation with distance (d)

2

qlc

0

kkk

I

dd
I
L

++
=

d

Light

(px, py, pz)

Directional Light Source

• Models point light source at infinity
! intensity (I0),

! direction (dx,dy,dz)

0
II

L
=

(dx, dy, dz)

No attenuation

with distance

Spot Light Source

• Models point light source with direction
! intensity (I0),

! position (px, py, pz),

! direction (dx, dy, dz)

! attenuation

2

qlc

0

kkk

)(I

dd

LD
I
L

++

•
=

d

Light

(px, py, pz)
D

L &

Light Emitted from a Surface

• Power per unit area per unit solid angle –
Radiance (L)
! Measured in W/m2/sr

! Projected area – perpendicular to given direction

d%

dA

!ddA

d
L

"
=

Light Falling on a Surface

• Power per unit area – Irradiance (E)
! Measured in W/m2

• Move surface away from light
! Inverse square law: E ~ 1/r2

• Tilt surface away from light
! Cosine law: E ~ n • l

Overview

• Direct Illumination
! Emission at light sources

! Scattering at surfaces

• Global illumination
! Shadows

! Refractions

! Inter-object reflections

Direct Illumination

Modeling Surface Reflectance

• Rs(#,$,&,',") ...

! describes the amount of incident energy,

! arriving from direction (#,$), ...

! leaving in direction (&,'), …

! with wavelength "

Surface

(#,$)

(',")

"

Empirical Models

• Ideally measure radiant energy for “all”
combinations of incident angles
! Too much storage

! Difficult in practice

Surface

(#,$)

(',")

"

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

Based on model

proposed by Phong

Based on model

proposed by Phong

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

Based on Phong

illumination model

Based on Phong

illumination model
Based on model

proposed by Phong

Based on model

proposed by Phong

Diffuse Reflection

• Assume surface reflects equally in all directions
! Examples: chalk, clay

Surface

Diffuse Reflection

• How much light is reflected?
! Depends on angle of incident light

Surface

#

Diffuse Reflection

• How much light is reflected?
! Depends on angle of incident light

Surface

dL

!= cosdAdL

dA

#

Diffuse Reflection

• Lambertian model
! cosine law (dot product)

LDD
ILNKI)(•=

Surface

N

L
#

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

Specular Reflection

• Reflection is strongest near mirror angle
! Examples: mirrors, metals

N

L
R ##

Specular Reflection

How much light is seen?

Depends on:
! angle of incident light

! angle to viewer
N

L
R

V

Viewer

(

##

Specular Reflection

• Phong Model
! cos(()n

L

n

SS
IRVKI)(•=

N

L
R

V

Viewer

(

##

This is a physically-motivated hack!

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

Emission

Emission) 0Emission) 0

• Represents light eminating directly from polygon

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

Ambient Term

This is a total hack (avoids complexity of global illumination)!

• Represents reflection of all indirect illumination

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

OpenGL Reflectance Model

• Simple analytic model:
! diffuse reflection +

! specular reflection +

! emission +

! “ambient”

Surface

OpenGL Reflectance Model

• Sum diffuse, specular, emission, and ambient

Leonard McMillan, MIT

Surface Illumination Calculation

• Single light source:

L

n

SLDALAE
IRVKILNKIKII)()(•+•++=

N

L
R

V

Viewer

(

##

Surface Illumination Calculation

• Multiple light sources:

))()((! •+•++=
i i

n

iSiiDALAE
IRVKILNKIKII

N

L2

V

Viewer L1

Overview

• Direct Illumination
! Emission at light sources

! Scattering at surfaces

• Global illumination
! Shadows

! Transmissions

! Inter-object reflections

Global Illumination

Global Illumination

Greg Larson

Shadows

• Shadow term tells if light sources are blocked
! Cast ray towards each light source Li

! Si = 0 if ray is blocked, Si = 1 otherwise

! •+•++=
L LL

n

SDAAE
ISRVKLNKIKII))()((

Shadow
Term

Ray Casting (last lecture)

• Trace primary rays from camera
! Direct illumination from unblocked lights only

! •+•++=
L LL

n

SDAAE
ISRVKLNKIKII))()((

TTRSL LL

n

SDAAE
IKIKISRVKLNKIKII ++•+•++= !))()((

Recursive Ray Tracing

• Also trace secondary rays from hit surfaces
! Global illumination from mirror reflection and

transparency

Mirror reflections

• Trace secondary ray in mirror direction
! Evaluate radiance along secondary ray and

include it into illumination model

TTRSL LL

n

SDAAE
IKIKISRVKLNKIKII ++•+•++= !))()((

Radiance
for mirror

reflection ray

I
R

Transparency

• Trace secondary ray in direction of refraction
! Evaluate radiance along secondary ray and

include it into illumination model

TTRSL LL

n

SDAAE
IKIKISRVKLNKIKII ++•+•++= !))()((

Radiance for
refraction ray

I
T

TTRSL LL

n

SDAAE
IKIKISRVKLNKIKII ++•+•++= !))()((

Transparency

• Transparency coefficient is fraction transmitted
! KT = 1 for translucent object, KT = 0 for opaque

! 0 < KT < 1 for object that is semi-translucent

Transparency
Coefficient

K
T

Refractive Transparency

• For thin surfaces, can ignore change in direction
! Assume light travels straight through surface

N

L

*i

T
*r

+r

+i

*i

T
LT !"

Refractive Tranparency

N

L

*i

T
*r

+r

+i

LNT

r

i

ri

r

i

!

!

!

!
"#"#=)coscos(

For solid objects, apply Snell’s law:

iirr
!=! sinsin ""

Recursive Ray Tracing

• Ray tree represents illumination computation

Ray traced through scene Ray tree

TTRSL LL

n

SDAAE
IKIKISRVKLNKIKII ++•+•++= !))()((

Recursive Ray Tracing

• Ray tree represents illumination computation

Ray traced through scene Ray tree

TTRSL LL

n

SDAAE
IKIKISRVKLNKIKII ++•+•++= !))()((

Recursive Ray Tracing

Image RayTrace(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Image RayTrace(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

• GetColor calls RayTrace recursively

Summary

• Ray casting (direct Illumination)
! Usually use simple analytic approximations for

light source emission and surface reflectance

• Recursive ray tracing (global illumination)
! Incorporate shadows, mirror reflections,

and pure refractions

More on global illumination later!More on global illumination later!

All of this is an approximation

so that it is practical to compute

All of this is an approximation

so that it is practical to compute

Illumination Terminology

• Radiant power [flux] (,)

! Rate at which light energy is transmitted (in Watts).

• Radiant Intensity (I)
! Power radiated onto a unit solid angle in direction (in Watts/sr)

» e.g.: energy distribution of a light source (inverse square law)

• Radiance (L)
! Radiant intensity per unit projected surface area (in Watts/m2sr)

» e.g.: light carried by a single ray (no inverse square law)

• Irradiance (E)
! Incident flux density on a locally planar area (in Watts/m2)

» e.g.: light hitting a surface at a poi

• Radiosity (B)
! Exitant flux density from a locally planar area (in Watts/ m2)

