11. Approximation Algorithms

Algorithm Design by Eva Tardos and Jon Kleinberg -

11.1 Load Balancing

Copyright © 2005 Addison Wesley +

Slides by Kevin Wayne

Algorithm Design by Eva Tardos and Jon Kleinberg -

Copyright © 2005 Addison Wesley +

Slides by Kevin Wayne

Approximation Algorithms

Q. Suppose I heed to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
= Solve problem to optimality.
= Solve problem in poly-time.
. Solve arbitrary instances of the problem.

p-approximation algorithm.
« Guaranteed to run in poly-time.
« Guaranteed to solve arbitrary instance of the problem
« Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

Load Balancing

Input. m identical machines; n jobs, job j has processing time 1;.
« Job j must run contiguously on one machine.
« A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine i is L; = % ¢ 5 t;.

Def. The makespan is the maximum load on any machine L = max; L.

Load balancing. Assign each job to a machine fo minimize makespan.

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.
Pf. PARTITION =, LOAD-BALANCE.

e f g

length ovf job f

machine 1 a d f
yes

machine 2 b Cc e 9

0 Time L

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
« First worst-case analysis of an approximation algorithm.
= Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. The optimal makespan L* = L% 1.
Pf.
« The fotal processing time is 3t

. One of m machines must do at least a 1/m fraction of total work.

v

Load Balancing: List Scheduling

List-scheduling algorithm.
« Consider n jobs in some fixed order. @

=« Assign job j to machine whose load is smallest so far.

List-Scheduling(m, n, t,,t,,..,t;) {
for i =1 tom {
L;«< 0 <— load on machine i
J(i) < ¢ < jobs assigned to machine i

}

for j =1 ton {

i = argmin, Ly <+— machine i has smallest load
J(i) <= J(1) U {j} <« assignjobj tomachinei
L; < L; + t <«— update load of machine i

}

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
« Let j be last job scheduled on machine i.
= When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = L;i-1; = L, foralll<ks=m.

blue jobs scheduled before j

}

Load Balancing: List Scheduling Analysis Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation. Q. Is our analysis tight?
Pf. Consider load L, of bottleneck machine i. A. Essentially yes.
« Let j be last job scheduled on machine i.
« When job j assigned to machine i, i had smallest load. Its load Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

before assignment isL;- ¥; = L;-t; < L, foralllsks=m.
« Sum inequalities over all k and divide by m:

Li-t; = 33 Iy ——
_ iy 2 12 22 32 4 B2 62 72 8 Machine 2 idle
m &k Ck 3 13 23 33 43 5 63 73 83 Machine 3 idle
Ltemal — < L* 4 14 24 34 44 54 64 T4 84 Machine 4 idle
5 15 25 35 45 55 65 75 85 Machine 5 idle
« Now L, = (Li—tj) + 1 = 2L* . 6 16 26 36 4 56 66 76 86 Machine 6 idle
—n 7 17 27 37 47 57 67 77 87 Machine 7 idle
t 8 18 28 38 48 58 68 78 88 Machine 8 idle
Lemma 2 9 19 29 39 49 59 69 79 89 Machine 9 idle
10 20 30 40 5 60 70 8 90 Machine 10 idle
m =10, list scheduling makespan = 19
9 10
Load Balancing: List Scheduling Analysis Load Balancing: LPT Rule
Q. Is our analysis tight? Longest processing time (LPT). Sort n jobs in descending order of
A. Essentially yes. processing time, and then run list scheduling algorithm.
Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m
LPT-List-Scheduling(m, n, t,,t,,..,t)) {
Sort jobs so that t; 2 t,2 .. 2 t,
1 21 31 4 5 61 71 8 10 for i =1 tom {
12 2 32 4 52 6 72 8 20 L, < 0 «— loadonmackinei
13 23 33 43 53 63 73 83 30 J(1) < ¢ < Jobs ossigned o machine
14 24 34 44 B4 64 T4 84 40 }

25 35 45 55 65 75 8 50

16 26 36 4 56 66 76 86 60 for j =1 ton {

O 0 N OO AW =
=
o

17 27 37 47 57 67 77 87 70 ; = arg“:n-k IS) -— rchhme' rb@sfsmllff l?ad
1 -— 1 <+— @assign jol ‘0 machine |

18 28 38 48 58 68 78 88 80 L()) +(t) {3} gn job j

19 29 39 49 59 69 79 89 90 i i 5 <«<— update load of machine i

}
- }

m = 10, optimal makespan = 11

Load Balancing: LPT Rule Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Q. Is our 3/2 analysis tight?
Pf. Each job put on its own machine. = A. No.

Lemma 3. If there are more thanm jobs, L* = 2+t,,;.

Pf.
« Consider first m+1 jobs ty, ..., t,..;. Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
. Since the 1;'s are in descending order, each takes at least t,,,; time. Pf. More sophisticated analysis of same algorithm.
« There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. = Q. Is 6raham's 4/3 analysis tight?

A. Essentially yes.

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling. Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, .., 2m-1 and
one job of length m.

L= (Li-t) + t; = 3L* .
——— —
< L* =iL*
Lemma 3

(by observation, can assume number of jobs >m)

Center Selection Problem

112 Cem‘er' Selec‘rion Input. Set of nsitess,, .., s,.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4

r(€)

@ center
W site

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne 16

Center Selection Problem Center Selection Example

Input. Set of nsites s, ..., s, Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Center selection problem. Select k centers C so that maximum

distance from a site to nearest center is minimized. Remark: search can be infinite!

Notation.
. dist(x, y) = distance between x and y.
« dist(s;, C) = min . . dist(s;, ¢) = distance from s; to closest center.

« r(C) = max; dist(s;, C) = smallest covering radius. ©
r

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

. dI:ST(X, X) = O. (identity) O e
« dist(x,y) = dist(y, x) (symmetry) B site
« dist(x, y) = dist(x, z) + dist(z, y) (triangle inequality)
Greedy Algorithm: A False Start Center Selection: Greedy Algorithm
Greedy algorithm. Put the first center at the best possible location Greedy algorithm. Repeatedly choose the next center to be the site
for a single center, and then keep adding centers so as to reduce the farthest from any existing center.

covering radius each time by as much as possible.
Greedy-Center-Selection(k, n, s;,s,,..,s;) {
Remark: arbitrarily bad!
c=9¢
repeat k times {
Select a site s; with maximum dist(s;, C)

0 Add s; to C
L .
] I:-I ® .I-. . L] 1): R site farthest from any center
. an greedy center 1 puE St
nl® L }
@ center
k = 2 centers m site Observation. Upon termination all centers in C are pairwise at least

r(C) apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*)< 3 r(C).

« For each site c; in C, consider ball of radius 3 r(C) around it.

« Exactly one ¢;* in each ball; let ¢; be the site paired with ¢;*.

« Consider any site s and its closest center ¢* in C*.

. dist(s, C) = dist(s, ¢;) = dist(s, ¢;*) + dist(c*, ¢c) = 2r(C*).

. Thusr(C) = 2r(C*). = \ ~

A-inequality < r(C*) since ¢* is closest center

11.4 The Pricing Method: Vertex Cover

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center
selection problem.

Remark. Greedy algorithm always places centers at sites, but is still

within a factor of 2 of best solution that is allowed to place centers
anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

22

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

weight =2+2+4 weight = 9

24

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex. Edge e
pays price p, = O to use edge.

Fairness. Edges incident to vertex i should pay < w; in total.

for each vertexi: Y p, =w,
e=(7.J)

Claim. For any vertex cover S and any fair prices p,: Y, p, = W(S).
Proof. egE Pe = 3 X Pe= pwi=wS) .

€S e=(i,)) €S
each edge e covered by sum fairness inequalities
at least one node in S for each node in S

25

Primal Dual Algorithm: Analysis

Theorem. Primal-dual algorithm is a 2-approximation.
Pf.
« Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

« Let S =set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then either i or j is not
tight. But then while loop would not terminate.

« Let S* be optimal vertex cover. We show w(S) < 2w(5*).

W(S)= Ewi = E E P = E 2 Pe = ZEpe = 2M}(S*) u

ies €S e=(i.j) i€V e=(i,j) eCF
all nodes in S are tight sSCv, each edge counted twice fairness lemma
prices = 0

27

Primal-Dual Algorithm

Primal-dual algorithm. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx (G, w) {
foreach e in E E po=w
P. = 0 e=(i,) ei '
while (Jedge i-j such that neither i nor j are tight)
select such an edge e
increase p, without violating fairness

}

S < set of all tight nodes
return S

26

11.6 LP Rounding: Vertex Cover

Algorithm Design by Eva Tardos and Jon Kleinberg « Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Weighted Vertex Cover Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with Weighted vertex cover. Integer programming formulation.

vertex weights w; = 0, find a minimum weight subset of nodes S such

that every edge is incident to at least one vertex in S. .
(ILP) min Y w;x,
ievV
S.t. X +X; = 1 (i,)HEE
10 (a 9 x; e {01} ieV
16 (8 10
6 H 9 Observation. If x* is optimal solution to (ILP), then S={i€ V: x* =1}
is a min weight vertex cover.
23 33
7 J) 32

total weight = 55

29 30

Integer Programming Linear Programming

INTEGER-PROGRAMMING. Given integers a;; and b;, find integers x; Linear programming. Max/min linear objective function subject to

that satisfy: linear inequalities.

« Input: integers c;, by, a;;.
= Output: real numbers x;.

n
zla,-jxj = b lsism
J=! n
x; =2 0 l=j=n (P) max zlcjxj
o g J=!
x; integral l=<j<n (P) max c’x n :
st Ar - b s.t j2=laijxj = b l=sism
x = 0 x; =2 0 lsjs<n

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem (even if all coefficients are
0/1 and at most two nonzeros per inequality).

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

32

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min Y w;x
iEV
S.t X +X; = 1 (,))EE
X = 0 ieV

i

Observation. Optimal value of (LP) is < optimal value of (ILP).

(S
(S

Note. LP is not equivalent fo vertex cover.

Q. How can solving LP help us find a small vertex cover? 3
A. Solve LP and round fractional values.

33

Weighted Vertex Cover

Good news.
« 2-approximation algorithm is basis for most practical heuristics.
- can solve LP with min cut = faster
- primal-dual schema => linear time (see book)
« PTAS for planar graphs.
« Solvable in poly-time on bipartite graphs using network flow.

Bad news. [Dinur-Safra, 2001] If P = NP, then no p-approximation for
p < 1.3607, even with unit weights.
t

10V5 -21

35

Weighted Vertex Cover

Theorem. If x* is optimal solutionto (LP),thenS={ieV :x* = 3}is
a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

« Consider an edge (i, j) € E.

.« Since x*; + x*J- = 1, either x*;= % or x*J- =%+ = (i, j) covered.
Pf. [S has desired cost]

« Let S* be optimal vertex cover. Then

W= Ewix: = %Ewi
i€ §* i€ES i€ES

f f

LP is a relaxation x* =

Nk

34

11.7 Load Balancing Reloaded

Algorithm Design by Eva Tardos and Jon Kleinberg « Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
» Job j must run contiguously on an authorized machine in M; € M.
» Job j has processing time t;.
« Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine i isL; = % 5 ;-

Def. The makespan is the maximum load on any machine = max; L;.

Generalized load balancing. Assign each job to an authorized machine
to minimize makespan.

37

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* = L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

39

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = fime machine i spends processing job .

(I[P) min L
s. t. Ex,-j = foralljE€J
i
>x; < L foralli e M
J
X € {0,¢;} foralljeJandi€EM;
x; =0 forallj € Jand i & M;
LP relaxation.
(LP) min L
s. t. E.x"j = t; foralljes
1
>x; = L foralieM
J
X = 0 foralljEJandiEM,;
x; = 0 foralljEJandi& M,

38

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be an extreme point solution to LP. Let G(x) be the
graph with an edge from machine i o job j if x;;> 0. Then, 6(x) is acyclic.

Pf. (we prove contrapositive)
« Let x be a feasible solution to the LP such that G(x) has a cycle.

» Define {x--:s G, j)eC {x,-IFE G, j)EC
Vi =

y
.. 3 = ..
Xij @ J) % C v Xij @ j) $ C

« The variables y and z are feasible solutions
to the LP.

« Observe x = 3y + 32z.

« Thus, x is not an extreme point. =

40

Generalized Load Balancing: Rounding

Rounded solution. Find extreme point LP solution x. Root forest 6(x)
at some arbitrary machine node r.

« If job jis aleaf node, assign j to its parent machine i.

« If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job | is assigned fo machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

O job

[] machine JA [\ I
eTT—
OO0 OO Emere

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
« Let J(i) be the jobs assigned to machine i.
« By Lemma 6, the load L; on machine i has two components:

- leaf nodes Lemma 5 LP Lemma1(LP is a relaxation)
Etj= Ex[j sExiisLsL*
j e Ja j e Ji) jieJ T
Jj is a leaf Jj is a leaf
optimal value of LP
Lemma 2
- Pﬂr'em'(i) tparent(i) < L*

. Thus, the overall load L; < 2L*. =

43

Generalized Load Balancing: Analysis

Lemma 5. If job jis aleaf node and machine i = parent(j), then x;; = ;.
Pf. Sinceiis aleaf, x;; = O for all j = parent(i). LP constraint
guarantees ; x;; = t;. =

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

[\ [Each leal Is assigned
AOANO S0 0 [Ens e
NN AN AN NN AN

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Possible to solve LP using max flow techniques. (see text)

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
« Job j takes 1;; time if processed on machine i.
= 2-approximation algorithm via LP rounding.
= No 3/2-approximation algorithm unless P = NP.

42

44

11.8 Knapsack Problem

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Knapsack Problem

Knapsack problem.

« Given nobjects and a "knapsack."

« Item i has value v; > 0 and weighs w;> 0. +~— we'll assume w;= W
« Knapsack can carry weight up to W.

« Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40.

1 1 1
2 6 2
W=l 3 18 5
4 22 6
5 28 7

47

Polynomial Time Approximation Scheme

PTAS. (1 + ¢)-approximation algorithm for any constant ¢ > 0.
« Load balancing. [Hochbaum-Shmoys 1987]
« Euclidean TSP. [Arora 1996]

FPTAS. PTAS that is polynomial in input size and 1/¢.

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. FPTAS for knapsack problem via rounding and scaling.

46

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w;, nonnegative
values v;, a weight limit W, and a target value V, is there a subset S C X

such that:
Swo o= W

€S

Sv, =V

€S

SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
U, is there a subset S C X whose elements sum to exactly U?

Claim. SUBSET-SUM = p KNAPSACK.
Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:

Vi=W;=1UY; Su = U
i€s
V=W=U 3Su = U

i€s

48

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
« Case 1: OPT does not select item i.

- OPT selects best of 1, ..., i-1 using up to weight limit w
. Case 2: OPT selects item i.

- new weight limit = w - w;

- OPT selects best of 1, ..., i-1 using up to weight limit w - w;

0 if i=0
OPT(i,w)=1 OPT(i-1,w) if w;>w
max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise

Running time. O(n W).
« W = weight limit.
« Not polynomial in input sizel

Knapsack: FPTAS

Intuition for approximation algorithm.
= Round all values up to lie in smaller range.
« Run dynamic programming algorithm on rounded instance.
« Return optimal items in rounded instance.

1 134,221 1 1 2 1

2 656,342 2 2 7 2

3 1,810,013 5 =) 3 19 5

4 22217800 6 4 23 6

5 28343199 7 5 29 7
w=11 w=11

original instance rounded instance

49

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
« Case 1: OPT does hot select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v

« Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v,

- OPT selects best of 1, ..., i-1 that achieves exactly value v
0 if v=0
o if i=0,v>0
OPT(i,v)= . .
OPT(i-1,v) if vi>v

min{ OPT(i-1,v), w;+ OPT(i-1,v-v)} otherwise

V¥=<ny,

% s
Running time. O(n V*) = O(n2v,,).
« V* = optimal value = maximum v such that OPT(n, v) = W.
= Not polynomial in input size!

50

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: ¥, =[%l 0, ¥ =[V‘ l

- Vpax = largest value in original instance
- ¢ = precision parameter

-8 = scaling factor=e v, /n

max

Observation. Optimal solution to problems with V or ¥ are equivalent.

Intuition. V close to v so optimal solution using Vis nearly optimal;
V small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / ¢).
«» Dynamic program II running time is O(n*7,,), where

52

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v, = {%] 0

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution then (1+8&)Y v, = Y v,
i€S i€ S*

Pf. Let S* be any feasible solution satisfying weight constraint.

2 v, = E v, always round up
ie st ies*
< 2 . solve rounded instance optimally
i
ies
< 2 (v;+ 0) never round up by more than 6
i
ies
= Yv,+ no IS <n
i€S DP alg can take v,
= (+9 3V N0 = €V, Vinax < Zics Vi

ies

53

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no (2 - ¢) approximation algorithm
for k-center problem for any ¢ > 0.

Pf. We show how we could use a (2 - €) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
. Let 6=(V,E), k be aninstance of DOMINATING-SET.
. Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (u v)EE
-d(u,v)=1if (u,v)¢E
« Note that G' satisfies the triangle inequality.
« Claim: G has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
« Thus, if G has a dominating set of size k, a (2 - £)-approximation
algorithm on G' must find a solution C* with r(C*) = 1 since it
cannot use any edge of distance 2.

55

Extra Slides

Algorithm Design by Eva Tardos and Jon Kleinberg « Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Knapsack: State of the Art

This lecture.
« "Rounding and scaling" method finds a solution within a (1 + ¢)
factor of optimum for any ¢ > 0.
« Takes O(n® / &) time and space.

Ibarra-Kim (1975), Lawler (1979).
. Faster FPTAS: O(nlog (1/¢)+ 1/ ¢*) time.
« Idea: group items by value into "large" and "small" classes.
- run dynamic programming algorithm only on large items
- insert small items according to ratio v; / w;
- clever analysis

56

