6. Dynamic Programming

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
« Dynamic programming = planning over time.
« Secretary of Defense was hostile to mathematical research.
« Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

Areas.

« Bioinformatics.

« Control theory.

« Information theory.

« Operations research.

« Computer science: theory, graphics, AL, systems,

Some famous dynamic programming algorithms.
=« Unix diff for comparing two files.
=« Viterbi for hidden Markov models.
« Smith-Waterman for sequence alignment.
« Bellman-Ford for shortest path routing in networks.
« Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
« Consider jobs in ascending order of finish time.

« Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

» Time

Weighted Interval Scheduling

Weighted interval scheduling problem.
« Job j starts at S;. finishes at fj, and has weight or value v .
» Two jobs compatible if they don't overlap.
» Goal: find maximum weight subset of mutually compatible jobs.

» Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...=<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

» Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution o the problem consisting
of job requests 1,2, ..., .

« Case 1: OPT selects job j.
- can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j- 1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) .

optimal substructure

e
« Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
() {max{vj+OPT(p(), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: n, s;,..,S, fl,m,fn, Vi, Vy
Sort jobs by finish times so that £, <= £, = ... = £ .
Compute p(1), p(2), .., p(n)

Compute-Opt (j) {

if (3 = 0)
return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
needed.

Input: n, s;,..,S, fl,m,fn, Vi, Vy

Sort jobs by finish times so that £, <= £, = ... = £ .
Compute p(1), p(2), .., p(n)

for 3 =1 ton
M[j] = empty <« global array
M[j] =0

M-Compute-Opt (j) {
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt (p(j)), M-Compute-Opt(j-1))
return M[j]

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(h log n) time.
« Sort by finish time: O(n log n).
« Computing p(*): O(n) after sorting by start time.

« M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[§]
- (ii) fills in one new entry M[j] and makes two recursive calls

« Progress measure @ = # nonempty entries of M[].
- initially ® = 0, throughout @ < n.
- (i) increases ® by 1 = at most 2n recursive calls.

« Overall running time of M-Compute-opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution (n)

Find-Solution(j) {

if (j = 0)
output nothing

else if (vy + M[p(j)] > M[j-1])
print j
Find-Solution (p(j))

else
Find-Solution (j-1)

= # of recursive calls = n = O(n).

Automated Memoization

Automated memoization. Many functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

(defun F (n) static int F(int n) {
(if if (n <= 1) return n;
(<= n 1) else return F(n-1) + F(n-2);
n }

(+ (F (- n1)) (F (-n 2)))))
Java (exponential)

Lisp (efficient)

F(40)

/\

F(39) F(38)

S P
F(38) F@37) F(37) F(36)
VRN VAR VAR VRN
F(37) F(36) F(36) F(35) F(36) F(35) F(35) F(34)
/\N /N /N /N /N /N /\ /N

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, sy,..,s, £,,..,£ vy,.,v,

Sort jobs by finish times so that f;, = £, = ... = £ .
Compute p(1), p(2), .., p(n)

Iterative-Compute-Opt {
M[0] = O
for j =1 ton
M[j] = max(v; + M[p(j)1, M[j-1])

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
« Foundational problem in statistic and numerical analysis.

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (xy, yq), (X2, Y2) , . . ., (X5, ¥p) with

v X< Xp<

< x,,, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accun;acy and

parsimony?

t

number of lines

goodness of fit

« Given n points in the plane: (xy,y1), (X2,¥2), (Xp. Yn)-
« Find aline y = ax + b that minimizes the sum of the squared error:

SSE = S (v, —ax,—b)?
i=1

Solution. Calculus = min error is achieved when

a=n2ixiyi -(E,-x,-)(E,-y,-) b=2iyi —“E,-xi
Z Eixi2 - (zixi)z ’ n

Segmented Least Squares

Segmented least squares.
=« Points lie roughly on a sequence of several line segments.
=« Given n points in the plane (x4, yq), (X2, ¥2) , . . ., (X,, ¥p) With
= X1< X< .. < Xy, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
. Tradeoff function: E +c L, for some constant ¢ > 0.

20

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, pj.1 , - . . . p}.
« e(i, j) =minimum sum of squares for points p;, pi.y, p;.

To compute OPT(j):
» Last segment uses points p;, pi.1, pj for some i.
« Cost = e(i, j) + c + OPT(i-1).

0 if j=0
OPT(j)= lm_in. { e(i,j) + c+ OPT(i-1)} otherwise
<isj

6.4 Knapsack Problem

Algorithm Design by Eva Tardos and Jon Kleinberg + Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Segmented Least Squares: Algorithm

INPUT: n, Py,-,Py, ©

Segmented-Least-Squares () {
M[0] = O
for j =1 ton
for i =1 to j
compute the least square error e;; for
the segment p;,.., P

for =1 ton
M[j] =min; _; .4 (e;5 + c + M[i-1])

return M[n]

Running time O(I’\3) L canbe improved to O(n?) by pre-computing various statistics

« Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

22

Knapsack Problem

Knapsack problem.

« Given nobjects and a "knapsack."

« Item i weighs w; > O kilograms and has value v;> 0.
» Knapsack has capacity of W kilograms.

« Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40.

1 1 1
W= 11 2 6 2
3 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

24

Dynamic Programming: False Start Dynamic Programming: Adding a New Variable

Def. OPT(i) = max profit subset of items 1, .., i. Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.
. Case 1: OPT does not select item i. « Case 1: OPT does not select item i.
- OPT selects best of { 1,2, ..., i-1} - OPT selects best of {1, 2, ..., i-1} using weight limit w
. Case 2: OPT selects item i. « Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to - new weight limit = w - w;
reject other items - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

- without knowing what other items were selected before i, we
don't even know if we have enough room for i

0 if i=0
OPT(i,w)=4OPT(i-1,w) if w;>w
Conclusion. Need more sub-problems! max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise
25 26
Knapsack Problem: Bottom-Up Knapsack Algorithm
W+1 >

Knapsack. Fill up an n-by-W array.

[0l ilz]alalole]7]alsliolu]
¢ @ o 0o 0 0 0 0 0 0 0 0 O

Input: n, wy,..,Wy Vi,..,Vy

o w0 tow 1y o1 o1 HEEEEEEE
MO, w] = 0 et (tzy ol ¢ 7 7 7 7 7 7 7 7 7
for 121 ton {1,23) 0 1 6 7 7 [18]19 24 25 25 25 25
forw=1toW {1,2,34) 0 1 6 7 7 18 22 24 28 29 29 40
if (w; > w)
i e - i1,] {1,2,345) 0 1 6 7 7 18 22 28 29 34 34 40
else
M[i, w] = max {M[i-1, w], v, + M[i-1, w-w;]}
return M[n, W] 1 1 1
OPT: {4,3} 2 6 2
value = 22 + 18 = 40 W= 11 3 18 5
4 22 6
5 28 7

27 28

Knapsack Problem: Running Time

Running time. ©(n W).
« Not polynomial in input size!
« "Pseudo-polynomial.”
« Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial

algorithm that produces a feasible solution that has value within 0.01%
of optimum. [Section 11.8]

29

RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

EX: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA A/ A A
N /
Ay 6—c
1 / \
C---6—U—A—A 6
/ ' ' ' |
6 i i i
U A—U—U A
RS | | ~Ng—
A c—6—cCc—uU
| ' ' ' ' G
c 6—C—6—A—G--C
N 7 I I
6
A--U
I
6

complementary base pairs: A-U, C-G

6.5 RNA Secondary Structure

Algorithm Design by Eva Tardos and Jon Kleinberg « Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b)) } that satisfy:
« [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-6, or G-C.
« [No sharp turns.] The ends of each pair are separated by at least
4 intervening bases. If (b, b;)E€ S, theni<j-4.
« [Non-crossing.] If (b, bJ-) and (b, b)) are two pairs in S, then we
cannot have i< k< j<I.

Free energy. Usual hypothesis is that an RNA molecule will form the
secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure
S that maximizes the number of base pairs.

32

RNA Secondary Structure: Examples

Examples.

6—6

/ AN

4 U

N\ /
c---6
I
A---U
I I
U---A

base pair

Jl—ll

AUGUGGCCAU

ok

AUGGGG CAU

— 4

sharp turn

AGUUGGCCAU

crossing

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring bb

« Casel Ifi=j-4
- OPT(i, j) = O by no-sharp

wi--by

turns condition.

- Case 2. Base b is not involved in a pair.

- OPT(i, j) = OPT(i, j-1)

» Case 3. Base b; pairs with b, for some i <1< j-4.

- non-crossing constraint decouples resulting sub-problems

- OPT(i, j) = 1+ max, { OPT(i, t-1) + OPT(t+1, j-1) }
t

take max over t such that i < t < j-4 and
by and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

33

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bib,...b;.

match b; and b,

Difficulty. Results in fwo sub-problems.

« Finding secondary structure in: b;b,...b; ;.
« Finding secondary structure in: b,,b,,,...b, ;.

«— OPT(t-1)

<«— need more sub-problems

34

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A. Do shortest intervals first.

RNA (b, ,..,b.) {

for k =5, 6, .., n-1
for i =1, 2, .., n-k
j=1i+k
Compute M[i, j]
P\

return M[1, n]

Running time. O(n3).

using recurrence

4 ofo

3 0

2

1 /!
6 7 8 9

36

Dynamic Programming Summary

Recipe.
« Characterize structure of problem.
« Recursively define value of optimal solution.
« Compute value of optimal solution.
« Construct optimal solution from computed information.

Dynamic programming techniques.

« Binary choice: weighted interval scheduling.

« Multi-way choice: segmented least squares.

« Adding a new variable: knapsack.

= Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

37

String Similarity

How similar are two strings?

= ocurrance

- il - BEEEE
- 3 - HBEA -

5 mismatches, 1 gap

o

= occurrence

o

C.U r run C

OCCUI“I"hCE

o
®

1 mismatch, 1 gap

c.ur‘r‘.ance

occur‘r‘e.nce

(o]

0 mismatches, 3 gaps

39

6.6 Sequence Alignment

Algorithm Design by Eva Tardos and Jon Kleinberg « Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Edit Distance

Applications.

« Basis for Unix diff.

« Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970, Smith-Waterman 1981]
« Gap penalty ; m:sma'rch.penalfy G-
« Cost = sum of gap and mismatch penalties.

76| | c FARAVINE c By Becroaccracgr
‘BB : - cB ccteaclTA @

Qqc+ Ogr+ Oagt 20 20+ ap

40

Sequence Alignment

Goal: Given two strings X = x; X, ... X, and Y =y, y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each
item occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i <i', but j> .

cost(M) = Eax’_y/ + y o+ Y 6

() EM i:x;unmatched j:y; unmatched
mismatch gap
X1 X; X3 X4 Xs Xo
EX: CTACCG VS. TACATG. Sl RN RS NG . 6
Soli M = X5-Yq, X3-Y2, X4-Y3, X5-Y4, Xe-Y
2710237720 M7 13: 257140 26160
- RN - RG
Yi Y2 Y3 Ya Y5 Ve

Sequence Alignment: Algorithm

Sequence-Alignment(m, n, X;X,...X,, Y:Y¥,..-Ya, O, @) {
for i =0 tom
M[0, i] = id
for j =0 ton
M[j, 0] = 38

for i =1 tom
for j =1 ton
M[i, j] = min(a[x; y;] + M[i-1, j-1],
S + M[i-1, 3jl,
d + M[i, j-1])
return M[m, n]

Analysis. ®(mn) time and space.
English words or sentences: m, n < 10.
Computational biology: m = n=100,000. 10 billions ops OK, but 10GB array?

43

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of alighing strings x; X, ... x;and y; y, . .

« Case 1: OPT matches x;-y;.
- pay mismatch for x-y; + min cost of aligning two strings
Xy Xz ... Xipandy;Ya ... Yjq
« Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; X, ... x;;and y;y, ..

- Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; X, ... x;and y; y; . .

jo if i=0
ey, +OPT(i-1, j-1)
OPT(i, j)={ min { 0+OPT(i-1, j) otherwise
0+OPT(i, j-1)
id if j=0

6.7 Sequence Alignment in Linear Space

42

Algorithm Design by Eva Tardos and Jon Kleinberg « Copyright © 2005 Addison Wesley - Slides by Kevin Wayne

Sequence Alignment: Linear Space Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space? Edit distance graph.
« Let f(i, j) be shortest path from (0,0) to (i, j).
Easy. Optimal value in O(m + n) space and O(mn) time. « Observation: f(i, j) = OPT(i, j).

. Compute OPT(i, +) from OPT(i-1, -).
« No longer a simple way to recover alignment itself.

Theorem. [Hirschberg, 1975] Optimal alignment in O(m + n) space and € Yi
O(mn) time. € @

« Clever combination of divide-and-conquer and dynamic programming.

. Inspired by idea of Savitch from complexity theory.

Y2 Y3 Ya Ys Ye

Xy

Xz

e ®

45 46

Sequence Alignment: Linear Space Sequence Alignment: Linear Space

Edit distance graph. Edit distance graph.
« Let f(i, j) be shortest path from (0,0) to (i, j). « Let g(i, j) be shortest path from (i, j) to (m, n).
« Can compute f (¢, j) for any j in O(mn) time and O(m + n) space. = Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)
J
£ Y1 Y2 Y3 Ya Ys Yo £ Y1 Y2 Y3

Ya Ys Ye
- @— - @

\

X, S X, @46—

T Xy '
S

%4 S %, ()

47

Xz

48

Sequence Alignment: Linear Space Sequence Alignment: Linear Space

Edit distance graph. Observation 1. The cost of the shortest path that uses (i, j) is
. Let g(i, j) be shortest path from (i, j) to (m, n). (i, §) + g(i, j).

« Can compute g(¢, j) for any j in O(mn) time and O(m + n) space.

£ Y1 Y2 Y3 Ya Ys Yo £ Y1 Y2

- @ - @—

\
.) .
N XZ

49

Y3 Ya Ys Ye

Sequence Alignment: Linear Space Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2). « Align Xq and y, .

Conquer: recursively compute optimal alignment in each piece.

n/2 n/2

£ Y1 Y2 Y3 Ya Ys Yo € Y1 Y2

\ - @

Xy q X1 @

N XZ

x5 —® X5 (-1}

Y3 Ya Ys Ye

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) = 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - q, n/2). In next slide, we save log h factor.

53

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
= O(mn) time to compute f(+, n/2) and g (+, n/2) and find index q.
T(q, n/2) + T(m - q, n/2) time for two recursive calls.

Choose constant ¢ so that:
T(m, 2)
T2, n)
T(m, n)

Base casesim=2orn=2.
Inductive hypothesis: T(m, n) = 2cmn.

T (m,n)

W N A

cm
cn
cmn + T(q, n/2)+ T(m-q, n/2)

T(q,n/2)+T(m-q,n/2)+cmn
2cqn/2+2c¢(m—-q)n/2 +cmn
cqn +cmn - cqn + cmn

2cmn

54

