geLonu Lalon

Coding
and

Information Theory

RICHARD W. HAMMING

Naval Postgraduate School

PRENTICE-HALL | Englewood Cliffs NJ 07632

i e 0B e ek a5 g st e

50 Ch. 3 | Error-Correcting Codes

If you estimate the time to locate an error in miswriting a name
against the time to add one or more characters to all the names while
writing the original program, you will see that using longer-than-mini-
mum names is probably a very wise idea—but it is unlikely that this
computation will convince many people to do so! Minimal-length names
are the source of much needless confusion and waste of time, yours and
the machine’s.

The distance function in the Hamming codes is based completely
on white noise. Sections 2.7 and 2.9 are included to emphasize that
the proper distance function to use depends in some cases on the psy-
chological distance between the names as well as more uniformly random
keystroke errors.

3.10 Summary

We have given the fundamental nature of error detection and error
correction for white noise, namely the minimum distance between mes-
sage points that must be observed. We have given methods for con-
structing codes for:

Single-error detecting min. dist. = 2
Single-error correction min. dist. =3
Single-error correction + double-error detection min. dist. = 4

Their design is easy, and they are practical to construct in software
or in hardware chips. They can compensate for weak spots in a system,
or can be used throughout an entire system, to get reliable performance
out of unreliable parts. One need not put up with poor equipment
performance, but the price is both in storage (or time of transmission)
and equipment (or time) to encode and possible correct. You do not
get something for nothing! The codes also make valuable contributions
to maintenance since they pinpoint the error, and the repairmen will
not try fixing the wrong things (meaning *“fix” what is working right and
ignore what is causing the error!). A more widespread use of the idea
of distance between messages was sketched in Section 3.9.

The use of such codes, and more highly developed codes, is rapidly
spreading as we get faster and smaller integrated-circuit components.
Increasingly, in VLSI (very large system integration) chips the code is
part of the hardware.

Chapter 4

Variable-Length Codes:
Huffman Codes

4.1 Introduction

We now turn to the topic of source encoding. The codes we have looked
at so far have all used a fixed length, and they are called block codes
from the fact that the messages are of fixed block lengths in the stream
of symbols being sent. The Morse code mentioned in Chapter 1 is an
example of a variable-length code, and we now examine variable-length
codes in more detail. The advantage of a code in which the message
symbols are of variable length is that sometimes the code is more efficient
in the sense that to represent the same information we can use fewer
digits on the average. To accomplish this, we need to know something
about the statistics of the messages being sent. If every symbol is as
likely as every other one, then the block codes are about as efficient as
any code can be (see Section 4.6). But if some symbols are more
probable than others, then we can take advantage of this to make the
most frequent symbols correspond to the shorter encodings, and the less
frequent symbols correspond to the longer encodings. This is exactly
what the Morse code does. The letter E in the English language occurs
most frequently, and corresponds to the encoded symbol “dot.”
However, variable-length codes bring with them a fundamental
problem: At the receiving end, how do you recognize each symbol of
the code? In a binary system, for example, how do you recognize the
end of one code word and the beginning of the next? If the probabilities
of the frequencies of occurrence of the individual symbols are sufficiently

51

52 Ch. 4 | Variable-Length Codes: Huffman Codes

different, then variable-length encoding can be significantly more effi-
cient than block encoding.

In this chapter we take advantage only of the frequencies of oc-
currence of the individual symbols being sent, and neglect any larger
structure the messages may have. An example of a slightly larger scale
structure is the fact that in English the letter Q is usually followed by
the letter U; in Chapter 5 we take advantage of such correlations in the
message being sent.

Exercise

A..-._ List advantages and disadvantages of variable-length codes.

4.2 Unique Decoding

We need to make clear when we are talking about the symbols to be
sent and when we are talking about the symbols used by the signaling
system. We will refer to the source symbols when we refer to the
symbols (such as the letters of the English alphabet) that are to be sent,
and to the code’s alphabet when we refer to the symbols used in sending
(such as 0 and 1 in the binary system). In general, we will assume that
the source alphabet being sent has ¢ symbols, s;, 5, . . . , §,, and that
the code’s alphabet has r symbols (r for the radix of the system).

The first property that we need is unique decodability—the received
message must have a single, unique possible interpretation. Consider
a code in which the source alphabet S has four symbols, and they are
to be encoded in binary as follows:

s, =0
s, =01
sy = 11
s, = 00

The particular received message 0011 could be one of these two:

Sa 83
51, §1, 83

0011 =

Thus the code is not uniquely decodable. Although this property of
unique decodability is not always absolutely essential, it is usually highly
desirable.

i

dec. 4.3 | Insianianeous Lodes 33
To get our thoughts clear, we make a formal definition:

Definition. The nth extension of a code is simply all possible con-
catenations of n symbols of the original source code.

This is also called the nth direct product of the code. There are g*
symbols in the nth extension. The definition is necessary because the
messages I send look to you, the receiver, as concatenations of the
encoded symbols of the source alphabet, and you need to decide which
sequence of source symbols I sent. For unique decodability, no two
encoded concatenations can be the same, even for different extensions.
Clearly, ouly if every distinct sequence of source symbols has a corre-
sponding encoded sequence that is unique can we have a uniquely de-
codabie signaling system. This is a necessary and sufficient condition,
but it is hardly usable in this form.

Exercises

4.2-1 Is the code 0, 01, 001, 0010, 0011 uniquely decodable?

4.2-2 Is the code 0, 01, 011, 111 uniquely decodable?

4.3 Instantaneous Codes

Consider the following code:

5; =0

s, = 10
s; = 110
sy = 111

Now consider how you as the receiver would decode messages sent in
this code. You would set up what is equivalent to a finite automaton,
or if you prefer, a decision tree. Starting in the initial state (Figure
4.3-1), the first binary digit received will cause a branch, either to a
terminal state s, if the digit is 0, or else to a second decision point if it
is a 1. For the next binary digit this second branch would go to the
terminal state s, if a 0 is received, and to a third decision point if it is
a 1. The third would go to the terminal state s, if the third digit is a
0, and to the terminal symbol s, if it is a 1. Each terminal state would,

e

o PR hdARe R kA

O U, 4 1 variauie-Lengiin Loaes. riujjrnan LCoues

$;=0
5,=10
$3=110

Initial state sa=111

Figure 4-3.1 Decoding tree

of course, emit its symbol and then return control to the initial state.
Note that each bit of the received stream is examined only once, and
that the terminal states of this tree are the four source symbols sy, s,
s, and s,.

In this example the decoding is instantaneous since when a complete
symbol is received, you, the receiver, immediately know this, and do
not have to look further before deciding what message symbol you
received. No encoded symbol of this code is a prefix of any other
symbol. This particular type of code is what is called a comma code
since the binary digit 0 indicates the end of a symbol, plus the fact that
in this case no symbol is longer than three digits.

From this you see the basic equivalence of the existence of the
decoding tree and the instantaneous decodability; each implies the other.
Notice again that using the decoding tree means that each received
symbol is looked at only once in the decoding process.

The following code is uniquely decodable but is not instantaneous
because you do not know when one symbol is over without looking
further:

s; =0

s, = 01
s; = 011
s, = 111

(Itis the previous code with the bits reversed.) We can see the trouble—
some code words are prefixes of other words; that is, they are the same

dec. 4.4 /| Construction of Instantaneous Codes 55
as the beginning part of some other symbol. Now consider the string

0111 ... 1111

s et and

54 S4

It can only be decoded by first going to the end and then identifying
runs of three 1’s as each being an s, until the first symbol is reached.
Only then can it be identified as s,, s,, or s5. Thus you cannot decide
whether you have the word that corresponds to the prefix, or if you
must wait until more is sent to complete the word. The simplest way
to decode messages in this particular code is always to start at the back
end of the received message! This puts a severe burden on the storage
and also causes a time delay.

In view of the existence of the decoding tree, it is clearly both
necessary and sufficient that an instantaneous code have no code word s;
which is a prefix of another code word, s;. If we had to deal with a
noninstantaneous code, then the attempted decoding tree would have
a structure which instead of returning to the start would, when it realized
(finally) that it had received a complete word some time ago, emit the
proper code word and then go to an appropriate place in the tree, not
necessarily the start. As in the example above, the tree could require
potentially infinite storage.

4.4 Construction of Instantaneous Codes

It is clear that of all uniquely decodable codes, the instantaneous codes
are preferable to ones that are not, and since it will turn out (Section
4.7) that they cost us nothing extra, it is worth concentrating on them.
Let us, therefore, explore the problem of constructing them.

Given that we are to construct a code with five symbols s; in the
source code S, and that the code alphabet is binary, we can assign

s =20
s, =10
s; = 110
s, = 1110
ss = 1111

to get an instantaneous (comma) code (Figure 4.4-1).

56 Ch. 4 | Variable-Length Codes: Huffman Codes

mbudddO

mmu,_._,_._

Figure 4-4.1 Decoding tree

In this construction the use of the O for the first symbol reduced
the number of possibilities available later. Instead of this, let us use
two digits for the first two symbols, s, = 00 and s, = 01. We can now
use s; = 10. With two symbols yet to go, we cannot use s, = 11;
instead, we must try s, = 110, which leaves us with s = 111. We get
the code

s, = 00
s, = 01
s3 = 10
S4 = HHO
ss = 111

This code is clearly instantaneous since no symbol is a prefix of any
other symbol, and the decoding tree is easily constructed (Figure
4.4-2).

Which of these two codes is better (more efficient)? This depends
on the frequency of occurrence of the symbolss;. By “better” we mean,
of course, that the sent messages on the average will be shorter, more
efficient. We will investigate this more closely in Section 4.8. Evi-
dently, “efficient”” must depend on the probability of the various symbols
being used in the messages being sent.

Sec. 4.5 | The Kraft Inequality 57

sq4 =110

sg =111

Figure 4-4.2 Decoding tree

Exercises

4.4-1 Devise a similar example using six words.

4.4-2 Find probabilities that favor one or the other of the two codes in
this section. Ans. p3 + ps + psVs. Py

4.5 The Kraft Inequality

The Kraft inequality, which we now examine, gives conditions on the

existence of instantaneous codes; it tells when the lengths of the code

words permit forming an instantaneous code, but it does not discuss the

code itself.

Theorem. A necessary and sufficient condition for the existence of

an instantaneous code S of g symbols s; (i = 1, . . . , g) with encoded
wordsof lengths , =, = L, = ... =<1 is

W 1

27 =1 (4.5-1)

e

3
E
3
3
3

58 Ch. 4 | Variable-Lengtn Loaes: Hujjman Codes

where r is the radix (number of symbols) of the alphabet of the encoded
symbols.

This inequality is asserting that we cannot have too many short
encoded symbols. Most of the /; must be reasonably large.

It is easy to prove the Kraft inequality from the decoding tree,
whose existence follows from the instantaneous decodability. We pro-
ceed by induction. For simplicity consider first the binary case (see
Figure 4.5-1). For a tree whose maximum length is 1, we have either

{a) True for tree of length 1 (c) Tree of length n

{b) Assume true for length n - 1 %K'+ %K =K

Figure 4-5.1 Proof of Kraft inequality

one or two branches of length 1. Thus we have either (for one symbol)

b=
IA
it

or (for two symbols)

=1

N

3+

We next assume that the Kraft inequality is true for all trees of length
less than 1. Now given a tree of maximum length n, the first node leads
to a pair of subtrees of length at most n — 1, for which we have the
inequalities K’ = 1 and K" < 1, where K’ and K" are the values of their
respective sums. Each length /; in a subtree is increased by 1 when the
subtree is joined to the main tree, so an extra factor of % appears. We
have, therefore,

Sec. 4.5 / The Kraft Inequality 59

For radix r instead of binary, we have at most r branches at each
node—at most 7 subtrees each with an extra factor of 1/r when joined
to the main tree. Again the theorem is true.

When can an inequality occur? A moment’s inspection shows that
if every terminal node of the tree is a code word, then K = 1. 1Itis
only when some terminal nodes are not used that the inequality occurs.
But if any terminal node is not used for a binary code alphabet, the
preceding decision is wasted and that corresponding digit can be re-
moved from every symbol that passes through this node in its decoding.
Thus if the inequality holds, the code is inefficient, and how to correct
for this is immediately evident for binary trees. Thus K = 1 for binary
trees with all the terminals used. It is only for radix r > 2 that it is
reasonable to have unused terminals and hence a K less than 1. Since
the theorem gives a condition on the lengths only, the main use is in
questions of the existence of a code with a given set of lengths.

Note again that the theorem refers to the existence of such a code,
and does not refer to a particular code. A particular code may obey
the Kraft inequality and still not be instantaneous, but there will exist
codes that have the /; and are instantaneous.

In the next two examples we will assume that only the code word
lengths are given since this is what matters in the theorem, not the actual
code words. If the lengths when encoded in binary symbols are 1, 3,
3, 3, the Kraft sum will be # + 3 = %, and an instantaneous code with
those lengths is possible. One of the words of length 3 could be short-
ened to 2 bits. But if the lengths were 1, 2, 2, 3, the sum would be 3
+ 2(3) + % = %, and such an instantaneous code could not exist.

Let us apply the theorem to yet another example. Suppose that
we pick the radix r = 3 and want words of lengths 1, 2, 2, 2, 2, 2, 3,
3, 3, 3. The Kraft inequality gives on the left side 3 + 5(3) + 4() =
%, so we cannot hope to find an instantaneous code with these con-
straints. If we drop the last code word of length 3, the sum would be
exactly 1 and we can find such a code. To find an instantaneous code
with these lengths, we proceed systematically: s, = 0,s, = 10,s; = 11,
54 = 12,55 = 20,86 = 21,5, = 220, s = 221, 5o = 222. In this con-
struction we have followed the decoding tree (Figure 4.5-2), and have
systematically increased the ternary (base 3) number equivalents of the
codes so that the argument is easily followed. The reader should realize
that the three symbols 0, 1, and 2 are arbitrary and are not numbers.
Thus any interchanges of the three symbols at any stage would leave
the code essentially the same; it merely interchanges the order of the
branches at a node. Indeed, one could interchange the order at one
node without doing so at another and still have an equivalent code.

oesi e«

60 Ch. 4/ Variable-Length Codes: Huffman Codes

Figure 4-5.2 Decoding tree

Exercises

4.5-1 Does the infinite-length commacode /; = 1,5, = 2,... I, = k,
... satisfy the Kraft inequality? (Use r = 2.)

4.5-2 Generalize Exercise 4.5-1 to radix r.

4.5-3 Carry out the computation of K for a comma code.

4.6 Shortened Block Codes

Returning for the moment to the earlier block codes, if we had exactly
2™ code words in a binary system (" in a radix r system), we could use
m digits to represent each symbol. But suppose that we do not have
an exact power of the radix but still want the maximum length to be as
short as possible. To see what can happen, consider the case of five
symbols. Of the eight binary symbols

000
001
010
011
100
101
110
111

dec. 4.0 / Shortened Block Codes 61

we can drop any three. But if we drop 001, 011, and 101, we can
shorten three branches of the decoding tree and still have instantaneous
decodability. We will have

s; = 00
5, = 01
s3 = 10
sy = 110
ss = 111

(See Figure 4.6-1.) Instead of this choice, we can drop 001, 010, and
011 and shorten only one branch of the tree to the code.

Figure 4-6.1 Decoding tree

S5
s; =0
s, = 100
53 = 101
sy = 110
ss = 111

62 Ch. 4 / Variable-Length Codes: Huffman Codes

(See Figure 4.6-2.) In both cases there now are no unused terminals
and therefore K = 1. We will call these shortened block codes; they
are essentially block codes with small modifications.

Figure 4.6-2

Exercises

4.6-1 Discuss the case of two symbols in a ternary base.

4.6-2 Discuss the case of five symbols in the ternary base.

4.7 The McMillan Inequality

The Kraft inequality applies to instantaneous codes, which are a special
case of uniquely decodable codes. McMillan showed that the same
inequality applies to uniquely decodable codes. The underlying idea
of the proof of the necessity is that very high powers of a number greater
than 1 grow rapidly. If we can tightly bound this growth, then we know
that the number is not greater than 1. The proof of the sufficiency
follows from the fact that we can do it for instantaneous codes which
are special cases of uniquely decodable codes.

The necessity part of the proof begins by taking the nth power of
the Kraft expression

Sec. 4.8 / Huffman Codés 63

When we expand the left-hand term we find that we have a sum of many
terms to various powers: the exponents running from n, the lowest
possible power, to nl, the highest, where [is the length of the longest
symbol. Thus we have the expression

!NZ
w,_uM‘In

k=n

where N, is the number of code symbols (of radix r) of length k. Since
the code is uniquely decodable, N, cannot be greater than r*, which is
the number of distinct sequences of length k in our code alphabet of
radix r. Therefore, we have the bound

nl \»
N;MMJMMiI:LﬂHAi
k=nt

(The + 1 comes from the fact that both end terms in the sum are counted.)
This is the inequality we need, since for any x > 1 a sufficiently large
n makes the number x” > nl. But n can be chosen as large as we please,
and it follows therefore that the number K (the Kraft sum) must be
=1

From this we see that there is very little to gain from avoiding
instantaneously decodable codes and using the more general uniquely
decodable codes; both have to satisfy the same Kraft inequality on the
lengths of the encoded symbols.

4.8 Huffman Codes

Now for the first time we will make use of the probabilities of the various
symbols being sent. As in the Morse code, we want the most frequent
symbols to have the shortest encodings. If the probability of the ith
symbol is p; and its length is /;, then the average length of the code is

q
L, = M pil;
i=1

With no loss in generality the p; may be taken in decreasing order.
If the lengths [; are not in the opposite order, that is, we do not have
both

| A 2 Z R

64 Ch. 4 / Variable-Length Codes: Huffman Codes

and

Lh=bL=h=...=]
then the code is not efficient in the sense that we could have a shorter
average length by reassigning the code representations of the symbols
S1 82 83, - - - 5 Sg- To prove this assertion, suppose that for m < n we
have both conditions (for some m and n)

Dm = Pn and lL,>1,

In computing Eo average length, we have, among others, the two terms
Oid: p.l. + Paln

By interchanging the encoded symbols for s,, and s, we get the corre-
sponding terms

New: pul, + Pubn

Subtracting the Old from the New we have the ormlmn due to this
reassignment:

New — Old: Nww:AN: - Ev + ﬁ:ANS - :v = AN»S - h:vQ: - NSV <0

From the foregoing assumptions this is a negative number; we will de-
crease the average code length if we interchange the encoded symbols
for s,, and s,. We therefore assume that the two running inequalities
both hold. , V

We begin our examination of Huffman coding with encoding into
the binary alphabet. In Section 4.11 we look at the base r alphabet.
We will use “source symbol” for the input s; and “code alphabet” for
the alphabet into which we are encoding.

The first thing to prove is that the two least frequent source symbols
of an efficient code have the same encoded lengths. Suppose that the
maximum coded symbol has length /. If there is only one of such length,
then since the code is instantaneous, any shorter coded symbol of length
I — 1 (or shorter) is not a prefix of the maximum-length coded symbol.
Therefore, the last part of the longest symbol could be dropped with
no loss of information in decoding. Thus the two longest symbols must
have the same length, and because of the running inequalities, they must
be the two least probable.

The proof of the encoding properties, as well as the method of
encoding, is a reduction at each stage to a shorter code. We simply

Sec. 4.8 | Huffman Codes 65

combine the two least probable symbols of the source alphabet into a
single symbol whose probability is equal to the sum of the two corre-
sponding probabilities. Thus we have to encode a source alphabet of
one less symbol. Repeating this step by step, we get down to the
problem of encoding just two symbols of a source alphabet, which is
easy—merely use 0 and 1. Now in going backward one of these two
symbols is to be split into two symbols, and this can be done by ap-
pending a second digit 0 for one of them and 1 for the other. In the
next stage of going back, one of these three symbols is to be split into
two symbols in the same way. And so it goes. For one special case
given below, Figure 4.8-1 shows the reduction process, and Figure

§i Pi

1 0.4 0.4 04 ~ 0.6

s2|1 02 0.2 <] 04 Xo.u
3| 02 0.2 VA 0.2

54 01 | ~02
S 0.1

Original First Second ~ Third
reduction reduction reduction

Figure 4-8.1 Reduction process

Si]

$1)1 - 04]1 04 |1 04 (1 06 |0
I 4

s2|01 - 02{01 0.2 | 01 0.4 8\\ 04 11

I~o.”7 ¥
$3 (000 —— 0.2|000 o.M/ So\/o.n 01
4
$4 {0010 = 0.1}0010___ 0.2 001
-
55 {0011 = 0.1] 0011

————

Figure 4-8.2 Splitting process

v Stk T Y WRUBETLENEUE LUUED. TTUJJITIUNL L OUES

4.8-2 shows the corresponding splitting (expansion) process. The gen-
eral case should be obvious from this.

How do we know that this process generates an efficient code?
Suppose that there were a shorter code with code length L’ with

L' <L

Let us compare the two decoding trees. In an efficient binary code, all
the terminals are occupied and there are no ““dead branches.” (A dead
branch would enable us to shorten the code by deleting the correspond-
ing binary digit in all the terminals that pass through this useless decision
point.)

If there are only two symbols of maximum length in a tree, they
must have their last decision node in common, and they must be the
two least probable symbols. Before we reduce a tree, the two symbols
contribute

N&Aﬁ& + Nuel uv

and after the reduction they contribute
Q& - HVAE& + ﬁeluv

so that the code length is reduced by

Nua + Nu&lu

If there are more than two symbols of the maximum length, we can use
the following proposition: Symbols having the same length may be in-
terchanged without changing the average code length. Using this, we
can bring the two least probable symbols so that they share their final
decision node. Thus after the reduction, we have shortened the code
by the amount

Nua + Nu&lp

Therefore, in either code we shorten the code and decrease the average
code length by the same amount.

We apply this to both the decoding trees we are comparing. Since
both are decreased by the same amount, the amount of inequality be-
tween their lengths is preserved. Repeated application of this will re-
duce both trees to two symbols. In the Huffman code the length is 1;
for the other it must be less than 1, which is impossible. Therefore,
for binary codes the Huffman code is the shortest possible code.

Sec. 4.8 /| Huffman Codes 67

The encoding process is not unique in several respects. First, the
assignment of the 0 or 1 symbols to the two source symbols at each
splitting stage is arbitrary, but this produces only trivial differences.
Second, when two probabilities are equal, it appears to be a matter of
indifference which we put above the other in the table, although the
resulting codes can have different lengths of words. However, in both
cases the average length of the encoding of messages in these codes will
be the same.

As an example of two different Huffman encodings of the same
source, let

p =04
p, = 0.2
ps = 0.2
ps = 0.1
ps = 0.1

If at each stage we put the merged states as low as possible, then in
Figure 4.8-1 we get lengths (1, 2, 3, 4, 4) and the average length is

L =0.4(1) + 0.2(2) + 0.2(3) + 0.1(4) + 0.1(4) = 2.2
On the other hand, if we push the merged states up as high as pos-
sible (Figure 4.8-3), we will get lengths (2, 2, 2, 3, 3) and the average
length is

L = 04(2) + 02Q2) + 0.2(2) + 0.13) + 0.1(3) = 2.2

5 i

$1/ 00 —— 0.4 00 0.4| 00 04 |1 06| 0
$2/10 =— 0.2}10 02|01 o)S 04| 1
$3| 11 - 02|11 c.ﬁ 10 o.u\ o1

=N

$4|010 - 0.1 \So 0.2

55(011 —=— o.q on

Figure 4-8.3 Alternative coding

v ke T Y WIMDICSLENIEHIE LOULy. T1Ufjman coaes

Both codes have the same efficiency (average length) but not the same
set of lengths of the symbols.

Which one of these two codes should we choose? A very reason-
able choice is the one whose average length would vary least over the
ensemble of messages. We therefore compute the variances in the two

Ccasces:

Var(l) = 0.4(1 — 22> + 022 — 2.2)* + 0.2(3 — 2.2)
+ 0.1(4— 2.2)? + 0.1(4— 2.2)>= 1.36
Var(Il) = 0.42— 2.2)* + 0.2(2— 2.2)? + 0.2(2 — 2.2)?

+ 0.1(3 — 2.2)>+ 0.13 — 2.2)? = 0.16

Thus the second code has significantly less variability in use on finite-
length messages, and is therefore probably the preferable code. It is
true that always moving a combined state as high as possible will give
a minimum variance code, although we do not prove it here. By moving
a merged symbol higher than it should be, we can greatly reduce the
variance for a small increase in the average length.

Exercises

-4.8-1 Give the Huffman code for p, = 1, p, = }, and p; = &.

4.8-2 Give the Huffman code for p, = 4, p, = 4, p; = 4, p, = %, and
Ps = B.

4.8-3 Give the Huffman code for p, = 3, p, = %, p; = %, ps = %, and
Ps = 16

4.8-4 Give the Huffman code for p, = %, p, = %, ps = %, and p, =
1

40 .

4.9 Special Cases of Huffman Coding

There are a number of interesting cases of Huffman coding to look at.
First, if all the symbols are equally likely and if there are exactly g = 2™
source symbols, then the (binary) Huffman code will be a block code

dec. 4.¥ 1 dpecial Cases of Huffman Coding 69

[

| 1]

[T

I v m:...mqnunﬁv._n L .I'c_ooxooam

2m
of pq-1+*Pq > p 1 > shortened block code

Figure 4-9.1

with all symbols having the same length m (see Figure 4.9-1). If there
are not exactly 2" source symbols we will get a shortened block code
(Section 4.6).

The second case is more interesting. Suppose that the two least
probable symbols have their probabilities such that their sum is greater
than the most probable symbol; thatis, p,_, + p, > p,. Inthe Huffman
process (see Figure 4.9-1) the corresponding symbol word will go to the
top. It then follows that the next two least probable symbols will com-
bine and will go to the top, and so on. If the number of original symbols
q is an exact power of 2, then the repeated combining process into the
final code of two symbols will have each symbol go through the same
number of splitting steps, and each symbol will acquire the same number
of binary digits in the expansion process. Thus again we will have a
block code. If q is not an exact power of 2, then, of course, there are
small modifications to the foregoing process, and we get a shortened
block code (Section 4.6). «

It is only when the probabilities of the source symbols of the message
are very different that we get a significant economy from the Huffman
encoding process. This is what we would expect if we but thought a
bit—only when there are large differences in the probabilities of oc-
currence does the variable length of the code symbols pay off.

For example, if the probabilities p; have great variability,

n

3w w M.P ?G-:
k=j+1

for all j, then a comma code will emerge. In words, equation (4.9-1)

says that each probability is at least as great as two-thirds of the sum

of all the probabilities that follow.*

*Koh Wee Jin observed that (4.9-1) can be improved to p; = M P

k=j+2

102 Ch. 5 | Miscellaneous Codes

One way of avoiding resynchronization problems is to use a parallel
channel. Another way, when using serial transmission, is to embed the
message in a longer block with synchronization pulses at both ends.
This, of course, wastes capacity, but it does catch spurious pulses.

With the current low cost of accurate crystal clocks it is common
practice to use clock pulses either from a single clock, or by keeping
several clocks in synchronization, so that both the sender and the re-
ceiver have the same timing pulses.

The topic is-not of enough general interest to do more than point
out the problem and the obvious solutions. Many other methods of
code compression can be found in Ref. [DG].

Chapter 6

Entropy and Shannon’s
First Theorem

6.1 Introduction

Up to this point we have been concerned with coding theory; now we
begin information theory. Coding theory answers the questions of (1)
how to design codes for white noise (mainly), and (2) how to compress
the message when the probabilities (structure) of the messages are known.

We now need a general method for measuring the structure of the
source. To do this we introduce the concept of entropy. While entropy
was used long ago in many physical situations, and the concept in in-
formation theory bears a strong resemblance to the classical definition,
we shall study entropy on its own merits in this particular field, and not
get involved in the various suggestive analogies. For us, entropy is
simply a function of a probability distribution p;. For some analogies,
see Refs. [Ga], [Gu], and [ME].

Information theory combines noise protection and efficient use of
the channel into a single theory. However, the simple model of channel
noise (white noise) is sometimes unrealistic, and we will occasionally
treat more general patterns of errors. This leads to the important con-
cept of channel capacity, which is taken up in Chapter 8.

The result we are headed for is Shannon’s main theorem in Chapter
10, which gives a relationship between the channel capacity C (to be
defined in Chapter 8) and the maximum rate of signaling possible. We
will prove the remarkable theorem that we can come arbitrarily close
to the maximum rate of signaling and also achieve an arbitrarily low
rate of error. In a sense this achieves both Huffman-type compression

103

104 Ch. 6 | Entropy and Shannon’s First Theorem

and Hamming-type noise protection in the same code. Unfortunately,
the proof is not constructive, so that while information theory sets the
bounds on what can be done, it does not teli us how to achieve them.
Yet, as we said in Section 1.2, the theory is very useful.

In this chapter we prove a very special case of the main theorem,
namely the noiseless coding theorem, where we ignore the problem of
noise. When this theorem and its proof are understood, the proof of
the main theorem will appear a bit clearer—once a lot of preliminary
mathematical results are covered in Chapter 9.

6.2 Information

Suppose that we have the source alphabet of g symbols s, 8, . . . , Sg»
each with its probability p(s;) = py, p(s2) = P2 - - - » p(sy) = pg
When we receive one of these symbols, how much information do we
get? For example, if p; = 1 (and, of course, all the other p; = 0), then
there is no “surprise,” no information, since you know what the message
must be. On the other hand, if the probabilities are all very different,
then when a symbol with a low probability arrives, you feel more sur-
prised, get more information, than when a symbol with a higher prob-
ability arrives. Thus information is somewhat inversely related to the
probability of occurrence.

We wish to construct this function I(p), which measures the amount
of information—surprise, uncertainty—in the occurrence of an event
of probability p. We assume three things about I(p).

1. I(p) = 0 (a real nonnegative measure).
2. I(p,p,) = Kp,) + I(po) for independent events (additive).
3. I(p) is a continuous function of p.

The second of these conditions is known as the Cauchy functional
equation for the function I(p), meaning that it serves to define I(p).

If p, and p, are both the same number p, not necessarily the same event,
then

I(p®) = I(p) + I(p) = 2I(p)

Now if p; = p and p, = p?, then we have

Kp* = Kp) + I(p?) = 3(p)

Sec. 6.2 | Information 105

and in general we have

Kp™) = nl(p)

We recognize that the standard law of exponents for positive integers
applies to the function I(p). Following this clue we adapt for our needs
the usual exponent extension to fractional values. We set

1/n

=y, P=Yy

and hence

1) = ™)

or, after some further manipulation,
m
1™y = — 1)

Thus for the rational numbers the function of I(p) obeys the same
formula as the log function. Assumption 3 of continuity allows us to
extend this to all numbers (0 < p = 1), rational or irrational. Thus we
have

I(p) = klogp

for some constant k and some base of the log system. From the first
assumption it is natural to pick the constant k as —1, and we have,
finally, ’

1
I(p) = —logp = _omm

for some base of the log system.

Let us examine and illustrate this additive property 2 that we as-
sumed, since it plays so central a role in deriving the measure of sur-
prise. Consider the simultaneous and independent toss of a coin and
roll of a die. We feel that each outcome (coin and die) has no influence
on the outcome of the other. The coin has two equally likely outcomes
and the die has 6. The product space of the two independent trials has
12 equally likely outcomes. If ¢; is the outcome of the coin and d; is

e

106 Ch. 6 | Entropy and Shannon’s First Theorem

the outcome of the die, then the derived formula of I(p) is

I(cd) = I(c) + I(d)
log& = log} + log &

which is, of course, true.

The words “uncertainty,” “surprise,” and “information” are re-
lated. Before the event (experiment, reception of a message symbol,
etc.) there is the amount of uncertainty; when the -event happens there
is the amount of surprise; and after the event there is the gain in the
amount of information. All these amounts are the same.

This is an engineering definition based on probabilities and is not
a definition based on the meaning of the symbols to the human receiver.
The confusion at this point has been very great for outsiders who glance
at information theory; they fail to grasp that this is a highly technical
definition that captures only part of the richness of the usual idea of
information.

What base of the log system shall we use? Itis simply a matter of
convention since any set of logs is proportional to any other set. This
follows directly from the fundamental relationship for logs:

log, x = = (log, b) log, x

It is convenient to use the base 2 logs; the resulting unit of infor-
mation is called a bit (binary digit). If we use base e, as we must
whenever we get into the calculus, then the unit of information is called
a nat. Finally, sometimes the base 10 is used and the unit is called a
Hartley, after R. V. L. Hartley, who first proposed the use of the
logarithmic measure of information.

We are using the word “bit” in two different ways, both as a digit
in the number base 2 and as a unit of information. They are not the
same, and we shall be careful to say “bit of information” when we mean
that definition and there could be confusion.

It is easy to convert logs from one base to another using

fog2 = 030103 . .. log, 10 = 3.32193 . ..
logoe = 0.43429 ... log, 10 = 2.30259 . ..
log,2 = 0.69315... logae = 1.44270 . . .

Sec. 6.3 | Entropy 107

We have just found one solution to the Cauchy functional equation,
namely I(p) = log, (1/p). Is this solution unique, to within the base
of the log system? Suppose that there were another solution to the
derived functional equation

I(p™) = nl(p)
Call it g(p). Hence we have the equation
g(p") = ng(p)

Now take the difference of the two solutions and allow for the constant
of proportionality C, which depends on the base

1 1
g(pr) - C _o@m =njgp) - C _om~m

Next, pick C as (po # 0, 1)

log,(1/po)

This choice makes the right-hand side of the equation above equal to
zero at p,. Now for any number z there is an n such that (assuming p,
neither 0 nor 1)

z = pg
Hence the left-hand side of the equation becomes

1
g(z) = Clog; Z

and the solution is essentially unique. The continuity assumption covers
the two values of p that were omitted, namely 0 and 1.

6.3 Entropy

If we get I(s;) units of information when we receive the symbol s;, how
much do we get on the average? The answer is that since p; is the
probability of getting the information I(s;), then on the average we get

avosri g P AIEME ASIVWIILI VLY D 2 MO REILUILIIL
for each symbol s;,

1

pd(s) = p;log, —

2 mv_.

From this it follows that on the average, over the whole alphabet of
symbols s;, we will get

S pilog, -
; 108, —
..nﬂﬁ WNF

Following custom, we label this important quantity (for radix r)

H(S) = 3 pilog, @ a.u-:

and call it the entropy of the signaling system S having symbols s; and
probabilities p;,. Of course,

H/(S) = Hy(S) log,2

This is the entropy function for a distribution when all that is con-
sidered are the probabilities p; of the symbols s;. In Section 6.10 we will
consider the entropy of a Markov process.

Corresponding to each distribution P = (p,, p,, . . . , p;) of symbols
s;, there is a single number called the entropy and labeled H(S). This
is analogous to the usual idea of an average of a distribution—the
average is a single number which, in some sense, summarizes the dis-
tribution. The entropy H(S) is the weighted average of the logs of the
reciprocals of the probabilities of the distribution. The entropy is a
single measure of a distribution; it is the average information of the
alphabet S.

As an alternative approach to the entropy function, consider that
in a long message of N symbols (from the alphabet §) you expect Np,
of the first symbol; Np, of the second, and so on. The probability P
of a message of length N with these numbers of symbols is exactly

I

P

Np1) (N} N
3 Evﬁw p2) .wm Pq)

—ﬁﬂvlﬁ%& A EME&H_Z

Sec. 6.3 | Entropy 109

Hence the information is

1 < 1
log P HZ‘M_F._om m

and the information per symbol of the alphabet S is

HS) =3 As log wv

P

which is again the entropy (as it should be).

It is important to realize that a remark like “Consider the entropy
of the source” can have no meaning unless a model of the source is
included. Using random numbers as an example, you have formulas
for generating pseudorandom numbers. Suppose that we had a table
of such numbers. If you do not recognize that they are pseudorandom
numbers, then you would probably compute the entropy based on the
frequencies of occurrence of the individual numbers. Since pseudoran-
dom-number generators do a good job of simulating random numbers,
you would also find that each new number came as a complete surprise.
But if you knew the structure of the formula used to generate the table,
you would, after a few numbers, be able to predict perfectly the next
number—there would be no surprise. Your estimate of the entropy
of a source of symbols therefore depends on the model you adopt of
the structure of the symbols.

The entropy function (6.3-1) involves only the distribution of the
probabilities—it is a function of a probability distribution p; and does
not involve the s;. For example, if the probabilities are 0.4, 0.3, 0.2,
and 0.1, then from the table of Appendix B, column 3, we have

1

log —
p p mﬁ
0.4 0.52877
0.3 0.52109
0.2 0.46439
0.1 0.33219

Sum 1.84644

The ‘entropy of this distribution is therefore 1.84644 (approximately).
Although we should write the entropy function H(S) as a function of

110 Ch. O/ Entropy and dhannon’'s First 1heorem

p log w
1.0
0.9 -
0.8 -
0.7 -
064
0.5-
0.4-
0.3
0.2
0.1

P

o.o T T T 1 U U U ¥ 1 i
0.1 02 03 04 05 06 0.7 08 09 1.0

1
plog, &

Figure 6-3.1

P, we will continue to refer to the alphabet S and write H(S), although
occasionally we will write H(P), when there are only two events, with
probabilities p and (1 ~ p).

The function of p log,(1/p) is graphed in Figure 6.3-1. From

4 _owlh _ow_o e=1lo @l_omm
dp p m»ﬁ dp p m«ﬁ g2 22 2
We see both the infinite slope at p = 0 and that the maximum occurs
at p = l/e, where the derivative is zero.

We also need the property (since it is equated to zero, we can

ignore the factor log, 2)

lim (xlog,x) =0

x—0

To prove this, we write it as

. log, x
x_—|~=vo H\k

Sec. 6.3 / Entropy 111

and apply 'Hopital’s rule by differentiating both numerator and de-
nominator separately:

1/x
. Ax Yoy C =
Jim \ Typ) = Mim (=x) =0
As another example of the entropy of a distribution, consider the
source alphabet § = {s, s,, 53, 54}, where p, = %, p, = %, p; = &, and
Ps = t. With r = 2 we have the entropy

Hy(S) = $log,2 + log, 4 + tlog, 8 + log, 8
M1+ @2+ @3+ 3)3

= 1% bits of information

>m one application of the idea of entropy, consider the toss of a
coin when both sides are considered to be equally likely.

1(s;)
Hy(S)

log, ()7 = log, 2 = 1
D) + O)(sy) = 1

The distribution consisting of just two events is very common. If
p is the probability of the first symbol (event), then the entropy function
is

1 1
Hy(P) = p log, ’ + (1 — p) log, -7
and is tabulated in the last column of the table in Appendix B. The
graph of this function is given in Figure 6.3-2. Note that at p = 0 and
p = 1 it has a vertical tangent, since

d 1 1
dp p log, mv + (1 — p) log, 1=
1 1
= — _— —_— —_— a———
og, p 1 - log, =7 + 1]log, e
1 1
= log, m - log, r— vv

An application similar to the coin is the roll of a well-balanced die
(singular of dice). We have

-1
1
I(s;) = log, 6 = log, 6

114 . U/ Couropy and dnannon s rurst 1neorem

Hip)

1.0 4
0.9-
0.8
0.7
0.6 -
0.5
0.4
0.3
0.2
0.1

p

°.° |) L] ¥ T T T T Y T
0.1 0.2 03 04 05 06 07 08 09 10

Figure 6-3.2 Entropy function for two probabilities

and the entropy is

I

H(S) = 6[¢I(s;)] = log, 6

2.5849 . . . bits of information

As we see from this example, whenever all the probabilities are equal,
the average over the alphabet is the same as the information for any
one event.

A final example of the computation of the entropy of a distribution
is the entropy of Zipf’s law (Section 4.9), where the frequency of the
kth item is proportional to 1/k. Thus for N items, we have the prob-
abilities

1k
ﬁw"%' QGHH.NV...,ZV
N

where

x
Ll
-

s
Z
1
Mz
&=

oec. 0. 1 Bniropy 180

The entropy for the N items is

N
Hy(N) - »M_ Di log; pi

N Uk 1
= IM w.ﬂ log, AMV — log, Sy

1

11&1 1
= Iﬂ M M A_OWN k - log, hzv
1 (& N1

_ 1 log, k 1
=5, Mm X +_om~sz~U\ﬂ

= == + log, Sy

where

.Wm =1
N..u "Q

Sy=S8va1 t 35

then

is easily computed.

We have Table 6.3-1 (corresponding to Table 4.9-1).

The entropy function of a distribution summarizes one aspect of a
distribution much as the average in statistics summarizes a distribution.
The entropy has properties of both the arithmetic mean (the average)

w——

aaw CAbe U LIUP Yy W DU O 4 ML L ur i

TABLE 6.3-1 Entropy of Zipf’s Law

N Entropy Huffman L,(N)
2 0.918 1.00
4 1.792 1.80
8 2.618 2.68
16 3.403 3.43
32 4.149 4.17
64 4.864 4.89
128 5.553 5.60
256 6.222 6.26
512 6.873 6.90
1024 7.511 7.54

and the geometric mean. We have

H(S) = 2, pilog, | =

I

M log; | —

q H\:

log, : -

i=1 i

which is a weighted geometric mean.

Exercises

6.3-1 How many bits of information do we get from one draw of a card
from a deck of 52 cards?

6.3-2 Forp, = 4,p, = },ps = 4, ps = §, ps = &, and ps = %, compute
the entropy. Ans. § + ¥ log 3 = 2.34177

6.4 Mathematical Properties of the Entropy Function

The entropy function measures the average amount of uncertainty, sur-
prise, or information that we get from the outcomé of some situation,
say the reception of a message or the outcome of some experiment. It
is therefore an important function of the probabilities of the individual
events that can occur. Thus in designing an experiment we usuaily wish

MULL VLT ARSI UL 1 U IED U I LIHUPY L RILiurn 10

1.0 1
0.8 1
0.6 4
0.4 4
0.2 -

———t—t —t—t—t—
02 0.2 04 06 0810 1.2 14 18 18 20

-0.4 4
-0.64
-08-
-1.0,
1.2
-1.4-
-1.64
-1.8 -

Figure 6-4.1 Bound on log, x function

to maximize the amount of information we expect to get; we wish to
maximize the entropy function. To do this we need to at least partially
control the probabilities of the individual outcomes of the experiment;
we need to “design the experiment” suitably. The maximum entropy
is increasingly used as a criterion in many situations. Therefore, the
entropy function is worth some study for its own sake, independent of
the particular applications we will make of it.

The entropy function has a number of mathematical properties that
are very useful, and we examine them before getting deeper into the
theory. A first property of the log, x function can be seen from Figure
6.4-1.

Fitting the tangent line at the point (1, 0), we find that the slope

B cn

Fe LT b U 1 LABIUPY WG IR O & RO R e

d(log, x)
&k 1

X

=1

Il

so that the tangent line is

I
f—
)

|
—
S’

y -0

or

I
=

|
-

y

Thus we have for all x greater than zero the useful inequality
log. x=x -1 (6.4-1)

or

log;, x=(x — 1) log, e

The equality holds only at the point x = 1.
The second result we need is the fundamental relationship between

two probability distributions. Let the first probability distribution be
x; with of course = x; = 1, and the second probability distribution be
y; with correspondingly £ y; = 1. Consider, now, the expression in-
volving both distributions

< i i
$ 1 (2) - 21y § i (2)
i=1

X; _omN =1 X;

Using the previous relation (6.4-1), we get

Ma__omn 1 MxAI_.I v

_om0 2 x;

_omm 2

—Om« M Q. - Nuv

5 (30 - 3a) -0

_omm

DEL. VLT 7 auniernuiLue £IUpErRes o) ine cniropy runcion 117

Converting back to logs base 2, we have the fundamental Gibbs ine-
quality

q .v~
> x; log, Lv =0 (6.4-2)
i=1

X;

Note that the equality holds only when all the x; = y;.

It is natural to ask for the conditions on a probability distribution
that lead to the maximum entropy (the minimum clearly occurs when
one p; = 1 and all the others = 0). We have

Hy(S) = M D _omwwu with M pi=1

We begin by considering the quantity

g 1
..M_ pilog, (=) — log, g M pi

i i=1

i

Hy(S) — log, q

S pitog, (=
..nuF. 08, ap;

Using the Gibbs inequality (6.4-2) with y, = 1/q, we have
HyS) —log, g =0
Therefore,
Hy(S) =<log, q (6.4-3)
For equality in (6.4-3) we must have all the p; = 1/q.

For an alternative derivation of this important result, we use the
Lagrange multipliers, and consider the function

Mu._omuﬁ..v + A MF|~V

_oma 7

\.AN&TEN. .. .ﬁ&v

m\ _ H .

e e i

mpormen ey 0

aavw e U AN Uy MIEW ANMILIEU I L A eT e s s ey

Since everything in this equation is a constant, it follows that each
p; is the same constant. If all the p; are equal, each has the value 1/g,
where, as usual, the distribution has ¢ members. Thus the maximum
entropy is

Hy(S) = log, q

For any other distribution than the equally likely distribution, the en-
tropy is less than log; g.

Based on this result, we now ask: What book has the maximum
information? Of course, the answer depends on the size of the book,
the size of the type font, the variety of the type font, and so on.
Supposing these to be fixed; then the answer is obviously, the book with
uniformly random letters! Each letter will come as a complete surprise!

This shows how far the formal engineering definition of information
is from the usual human meaning of information. Yes, the definition
of information that Shannon made is proper for computing machines,
for the telephone system, and for communication systems, but flies in
the face of the normal human meaning of information. It was the failure
to notice that the definition is appropriate for machines and for machine-
like situations, but is not appropriate for what we normally mean by
“information,” that led to so many misapplications of information theory
in the early days. Now that we understand the limitations of the def-
inition we are better able to apply information theory usefully. The
very limitation of the definition to machines is what makes the definition
so useful in such situations—the definition eliminates much that is vague,
uncertain, and confusing. By limiting the theory to a sharp definition,
we can get sharp, useful results in many situations. Perhaps it would
have been better had Shannen called it communication theory, but the
title information theory is often appropriate.

A simple, familiar application of this principle—that the uniform
distribution contains the most information—is given by the standard
grading system of A, B, C, D, and F. Setting aside F as having special
properties, namely that the student must take the course again, if we
want to communicate the maximum amount of information with the
grading system, then we should use all the other grades equally often.
Of course, we may want especially to distinguish the very best, and give
comparatively few A’s. This is, however, giving a different meaning
to information than we have defined. The common habit in graduate
schools of giving only A’s and B’s is a plain waste of signaling capacity.
The extreme of one probability being 1 and all the others therefore
being O is the case of a constant signal. There is no information trans-
mitted. “The constant complainer is soon ignored.”

dec. 0.> | Entropy and Coding 119

In dealing with a new situation it is often useful to look at the
extremes that can arise. For entropy of a distribution H,(S) we get the
least value, for one extreme, p, = 1, and all other p; = 0—no surprise:

Hy(1,0,0,...,0)=0

As we proved, the maximum occurs when all the probabilities are equal,
namely

11 _v
H{-,—-,...,-]| =
2 74 q 2q

6.5 Entropy and Coding

We now prove a fundamental relationship between the average code
length L and the entropy H(S). Given any instantaneous code it has
some definite code word lengths /; represented in some radix r. From
the Kraft inequality (4.5-1), we have

k=3 (1) =1 (6.5-1)

We now define the numbers Q; (pseudo probabilities):

-k
0= ‘ (6.5-2)

where, of course,

The Q; may be regarded as a probability distribution. Therefore, we
can use the fundamental Gibbs inequality (6.4-2),

q
M p; log, |©|_v =0
i=1 p:

Upon expanding the log term into a sum of logs, we notice that one

o

120 Ch. 6 | Entropy and Shannon’s First Theorem

term leads to the entropy function,

q 1 q 1
mnavn M P_omw lv M M F._omw Am

1

Using (6.5-2) in the right-hand side, we obtain

q
M plog, K — log, r™%)

i=1

IA

q
=log, K + M pililogy r
i=1

By the Kraft inequality K < 1, so that log, K = 0. Dropping this term
can only strengthen the inequality. We have, therefore,

q
HyS) = 2, (pd)log,r = Llog, r
=1

or
H(S) <L (6.5-3)

where L is the average code word length,
9
L= pil (6.54)
i=1

This is the fundamental result that we need; the entropy supplies
a lower bound on the average code length L for any instantaneous
decodable system. By the McMillan inequality of Section 4.7, it also
applies to any uniquely decodable system. ‘

For efficient binary codes K = 1 and we have log, K = 0. There-
fore, the inequality occurs (in the binary case) only when

pi# Qi =27"

Table 6.3-1 shows how Huffman coding approaches the entropy for the
Zipf distribution.

Sec. 6.6 /| Shannon—Fano Coding 121
6.6 Shannon-Fano Coding

In Section 6.5 we assumed that the code word lengths /; were given.
Suppose, as is more likely, that the probabilities p; are given. Huffman
coding gives the lengths, but that method makes each length depend on
the whole set of probabilities.

Shannon-Fano coding is less efficient than is Huffman coding, but
has the advantage that you can go directly from the probability p; to

the code word length /;. Given the source symbols sy, 55, . . . , 5, and
their corresponding probabilities p,, p,, . . . , p,, then for each p;, there
is an integer /; such that
log, AWV = [, <log, Am.v +1 (6.6-1)
pi P

since the two extreme values just span a unit length. Removing the

logs, we get
Hv L A r
—_— =< re A —
Di P

Take the reciprocal of each term. We obtain

1 Pi
=l=]>=
pi A%:V r

Since T p; = 1, when we sum this inequality, we get

HNMAvaW (6.62)

i=1 \r.

which gives the Kraft inequality. Therefore, there is an instantaneous
decodable code having these Shannon-Fano lengths.

To get the entropy of the distribution of p;, we multiply the equation
(6.6-1) by p; and sum:

q q
H(S) = 3 pilog,~ = 3 pli <H(S) + 1

i=1 Pi i=1
In terms of the average length L of the code (6.5-4), we have

H(S) <L < H(S) + 1 (6.6-3)

122 Ch. 6/ Entropy and Shannon’s First Theorem

Thus for Shannon-Fano coding we again have the entropy as a lower
bound on the average length of the code. It is also part of the upper
bound. It is not as easy to directly find an upper bound for Huffman
coding (Chapter 4), but since Huffman coding is optimal, it is at least
as good as Shannon—Fano.

How do we find the actual code symbols? We simply assign them
in order. For example, from the probabilities

PL=DPr=1% P3=ps=Ps=Ds=14

we get the Shannon-Fano lengths,

We then assign
s, = 00 53 = 100
s, =01 s, = 101
110
111

©@
¥
[

Se

We are assured by the Kraft inequality, which we showed that Shannon—
Fano coding obeys, that there are always enough symbols to assign for
an instantaneous code. Our orderly assignment leads readily to the
decoding tree and the prefix condition is met.

This shows that we can do fairly well even with Shannon-Fano
coding, but it is interesting to see how the left-hand inequality arises.
First, if each probability p; were exactly equal to the reciprocal of a
power of the radix r, then we would have equality for this assignment
of code word lengths—the average word length would be exactly the
entropy. To get the code words we simply assign rary numbers in
increasing sequence and of the required lengths.

6.7 How Bad Is Shannon—-Fano Coding?

Since Huffman coding is optimal, and we have temporarily descended
to the less-than-optimal (at times) Shannon-Fano coding, it is reason-
able to ask “How bad is Shannon-Fano coding?”” Consider the fol-
lowing examples.

Sec. 6.7 | How Bad Is Shannon—Fano Coding? 123

For a source alphabet s,, s, with probabilities

1 1
p=l-5 pm=yx «=2)

we get

H
_o |M_0NHH
m» AP WN

Thus /, = 1. But for /,, we have

log, Fv =log,2*=k =1,

Hence where the Huffman encoding gives both code words one binary
digit, Shannon—Fano has s,, a 1-bit word, and s,, a k-bit word.

Before getting too worried about this inefficiency, let us compute
the average word length. Clearly, Huffman has

h:”H

For Shannon-Fano, we have

1 1 k-1
N\mmﬂuwl.wlk +kmnvﬂw+ .N|wv

We have the table

k H+»N»H

2 1+4=125

3 1+41=125

4 1+ & = 1.1875
5 1+4=1125

6 1+ & = 1.078125

etc.

———

