Princeton University COS 217: Introduction to Programming Systems Spam Filter Knowledge Module: Example

Example Features File

\$ cat featuressmall
lottery
dollars
insurance
thousand
million

Example Ham Messages File

\$ cat hamtrainsmall
From lottery other

From other

From thousand million other

From other

From other

From thousand other

From other

From other

Example Spam Messages File

\$ cat spamtrainsmall
From dollars other

From other

From million dollars other

From other

From dollars other

From dollars other

From insurance other

From dollars other

Example Message Read from Stdin

From million dollars other

The "Learn" Algorithm

(1) Command the FeatureFinder object to read features from features file.

Feature	Index
lottery	0
dollars	1
insurance	2
thousand	3
million	4

(2) Command the Parser object to read messages from hamtrainsmall. Use the FeatureFinder object to compute ham feature counts. Do the same for spamtrainsmall.

For ham:

count = 8

Feature	Index	Count
lottery	0	1
dollars	1	0
insurance	2	0
thousand	3	2
million	4	1

For spam:

count = 8

Feature	Index	Count
lottery	0	0
dollars	1	5
insurance	2	1
thousand	3	0
million	4	1

(3) Guess P(ham) and P(spam).

$$P(ham) = 0.5$$

 $P(spam) = 0.5$

Note: Must sum to 1.0.

(4) Compute probabilities.

Note: Must avoid 0 probabilities. So assume the existence of two extra messages: one containing all features, and one containing no features.

For ham:

Feature	Index	Count	$P(f_i ham)$	$P(\sim f_i ham)$
lottery	0	1	(1+1)/(8+2) = .2	.8
dollars	1	0	(0+1)/(8+2) = .1	. 9
insurance	2	0	(0+1)/(8+2) = .1	. 9
thousand	3	2	(2+1)/(8+2) = .3	. 7
million	4	1	(1+1)/(8+2) = .2	.8

For spam:

count = 8 P(spam) = 0.5

Feature	Index	Count	P(f _i spam)	$P(\sim f_i spam)$
lottery	0	0	(0+1)/(8+2) = .1	.9
dollars	1	5	(5+1)/(8+2) = .6	. 4
insurance	2	1	(1+1)/(8+2) = .2	.8
thousand	3	0	(0+1)/(8+2) = .1	.9
million	4	1	(1+1)/(8+2) = .2	.8

.2

(5) Compute logarithms.

For ham:

count = 8 P(ham) = 0.5log(P(ham)) = -0.693

 $\label{eq:count_posterior} \mbox{Index Count P(f_i | ham) P(\simf_i$ | ham) log($P($f_i$ | ham)) } \mbox{log($P($\simf_i | ham))}$ lottery -1.609 -0.223 .1 .9 0 -2.303 -0.105 dollars 1 insurance 2 0 . 9 -2.303 -0.105 3 .7 2 .3 -1.204 -1.609 thousand -0.357

.8

-0.223

For spam:

million

count = 8 P(spam) = 0.5log(P(spam)) = -0.693

4

Feature	Index	Count	P(f _i spam)	P(~f _i spam)	$log(P(f_i spam)$	log(P(~f _i ham))
lottery	0	0	.1	.9	-2.303	-0.105
dollars	1	5	.6	. 4	-0.511	-0.916
insurance	2	1	.2	.8	-1.609	-0.223
thousand	3	0	.1	.9	-2.303	-0.105
million	4	1	.2	.8	-1.609	-0.223

(6) Write knowledge to the knowledge file.

For ham:

count = 8 P(ham) = 0.5 log(P(ham)) = -0.693

Feature	Index	Count	$P(f_i ham)$	$P(\sim f_i ham)$	$log(P(f_i ham)$	$log(\sim P(f_i ham))$
lottery	0	1	.2	.8	-1.609	-0.223
dollars	1	0	.1	.9	-2.303	-0.105
insurance	2	0	.1	.9	-2.303	-0.105
thousand	3	2	.3	.7	-1.204	-0.357
million	4	1	.2	.8	-1.609	-0.223

For spam:

count = 8 P(spam) = 0.5log(P(spam)) = -0.693

Feature	Index	Count	P(f _i spam)	P(~f _i spam)	log(P(f _i spam)	log(P(~f _i spam))
lottery	0	0	.1	.9	-2.303	-0.105
dollars	1	5	.6	. 4	-0.511	-0.916
insurance	2	1	.2	.8	-1.609	-0.223
thousand	3	0	.1	.9	-2.303	-0.105
million	4	1	. 2	.8	-1.609	-0.223

The "Filter" Algorithm

- (1) Command the FeatureFinder object to read features from features file.
- (2) Read knowledge from the knowledge file.

For each message in stdin...

(3) Command the Parser object to read a message. Use the FeatureFinder object to determine whether each feature is present in the message.

Feature	Index	Present(0/1)?
lottery	0	0
dollars	1	1
insurance	2	0
thousand	3	0
million	4	1

(4) Compute $log(P(ham)) + log(P(f_1|ham)) + ... + log(P(~f_n|ham))$.

Feature	Index	Present(0/1)?	$log(P(f_i ham)$	or log(P($\sim f_i ham$)
lottery	0	0		-0.223
dollars	1	1	-2.303	
insurance	2	0		-0.105
thousand	3	0		-0.357
million	4	1	-1.609	
log(P(ham)) =		-0	.693
sum =			-5	.290

(5) Compute $log(P(spam)) + log(P(f_1|spam)) + ... + log(P(~f_n|spam))$.

Feature	Index	Present(0/1)?	$log(P(f_i spam)$	or $log(P(\sim f_i spam)$
lottery	0	0		-0.105
dollars	1	1	-0.511	
insurance	2	0		-0.223
thousand	3	0		-0.105
million	4	1	-1.609	
log(P(spam)) =		-0.	693
sum =			-3.	246

(6) Compute $P(\text{spam} | f_1, \dots, f_n)$.

```
P(\text{spam} | f_1, ..., \sim f_n)
= 1 / (exp(-5.290 - (-3.246)) + 1)
= 1 / (exp(-5.290 + 3.246) + 1)
= 1 / (exp(-2.044) + 1)
= 1 / (.1295 + 1)
```

(7) Write $P(\text{spam}|f_1,...,\sim f_n)$ to stdout.

0.885

So the message probably is spam.

Copyright © 2005 by Robert M. Dondero, Jr.