
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 20: Analysis of Algorithms

2

Overview

Analysis of algorithms: framework for comparing algorithms and

predicting performance.

Scientific method.

! Observe some feature of the universe.

! Hypothesize a model that is consistent with observation.

! Predict events using the hypothesis.

! Verify the predictions by making further observations.

! Validate the theory by repeating the previous steps until the

hypothesis agrees with the observations.

3

Algorithmic Successes

N-body Simulation.

! Simulate gravitational interactions among N bodies.

! Brute force: N2 steps.

! Barnes-Hut: N log N steps, enables new research.

Discrete Fourier transform.

! Break down waveform of N samples into periodic components.

Applications: DVD players, JPEG, analysis of astronomical

data, medical imaging, nonlinear Schrödinger equation,

! Brute force: N2 steps.

! FFT algorithm: N log N steps, enables new technology.

Sorting.

! Rearrange N items in ascending order.

! Fundamental information processing abstraction.

Andrew Appel

PU '81

Freidrich Gauss

1805

Jon von Neumann
IAS 1945

4

Case Study: Sorting

Sorting problem:

! Given N items, rearrange them in ascending order.

! Applications: statistics, databases, data compression,

computational biology, computer graphics, scientific computing, ...

Hanley

name

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

Hauser

name

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

5

Insertion sort.

! Brute-force sorting solution.

! Move left-to-right through array.

! Exchange next element with larger elements to its left, one-by-one.

Insertion Sort

public static void insertionSort(double[] a) {

 int N = a.length;

 for (int i = 0; i < N; i++) {

 for (int j = i; j > 0; j--) {

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;
 }
 }
}

6

Sorting helper functions.

! Is real number x strictly less than y?

! Swap real numbers stored in a[i] and a[j].

public static boolean less(double x, double y) {

 return (x < y);

}

public static void exch(double[] a, int i, int j) {

 double swap = a[i];

 a[i] = a[j];

 a[j] = swap;

}

Helper Functions

7

Insertion Sort: Observation

Observe and tabulate running time for various values of N.

! Data source: N random numbers between 0 and 1.

! Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.

! Timing: Skagen wristwatch.

5.6 seconds400 million40,000

1.5 seconds99 million20,000

0.43 seconds25 million10,000

0.13 seconds6.2 million5,000

23 seconds

TimeComparisonsN

16 million80,000

8

Data analysis. Plot # comparisons vs. input size on log-log scale.

Regression. Fit line through data points ! a Nb.

Hypothesis. # comparisons grows quadratically with input size ! N2/4.

Insertion Sort: Experimental Hypothesis

slope

9

Insertion Sort: Prediction and Verification

Experimental hypothesis. # comparisons ! N2/4.

Prediction. 400 million comparisons for N = 40,000.

Observations.

Prediction. 10 billion comparisons for N = 200,000.

Observation.

145 seconds9.997 billion200,000

TimeComparisonsN

5.573 sec399.7 million40,000

5.648 sec401.6 million40,000

5.632 sec400.0 million40,000

5.595 sec

TimeComparisonsN

401.3 million40,000 Agrees.

Agrees.

10

Insertion Sort: Validation

Number of comparisons depends on input family.

! Ascending: N.

! Random: N2/4.

! Descending: N2/2.

11

Insertion Sort: Theoretical Hypothesis

Experimental hypothesis.

! Measure running times, plot, and fit curve.

! Model useful for predicting, but not for explaining.

Theoretical hypothesis.

! Analyze algorithm to estimate # comparisons as a function of:

– number of elements N to sort

– average or worst case input

! Model useful for predicting and explaining.

! Model is independent of a particular machine or compiler.

Difference. Theoretical model can apply to machines not yet built.

12

Insertion Sort: Theoretical Hypothesis

Worst case. (descending)

! Iteration i requires i comparisons.

! Total = 0 + 1 + 2 + . . . + N-2 + N-1 = N (N-1) / 2.

Average case. (random)

! Iteration i requires i/2 comparisons on average.

! Total = 0 + 1/2 + 2/2 + . . . + (N-1)/2 = N (N-1) / 4.

E F G H I J D C B A

A C D F H J E B I G

i

i

13

Insertion Sort: Theoretical Hypothesis

Theoretical hypothesis.

Validation. Theory agrees with observations.

Remark. Supercomputer can't rescue a bad algorithm.

1/6 N3/2N2 / 4Average

N

N2 / 2

Comparisons

NA

NA

StddevAnalysis

Worst

Best

1 second

1 day

Million

instant

instant

Thousand Billion
Comparisons

Per Second
Computer

3 centuries107laptop

2 weeks1012super

14

Quicksort

Quicksort.

! Partition array so that:

– some partitioning element a[m] is in its final position

– no larger element to the left of m

– no smaller element to the right of m

C. A. R. Hoare, 1960

Q U I C K S O R T I S C O O L

15

Quicksort

Quicksort.

! Partition array so that:

– some partitioning element a[m] is in its final position

– no larger element to the left of m

– no smaller element to the right of m

partitioning element

partitioned array

" L # L

Q U I C K S O R T I S C O O L

I C K I C OQ U S O R T S OL

16

Quicksort

Quicksort.

! Partition array so that:

– some partitioning element a[m] is in its final position

– no larger element to the left of m

– no smaller element to the right of m

! Sort each "half" recursively.

Q U I C K S O R T I S C O O L

I C K I C OQ U S O R T S OLC C I I K UO O O Q R S S T

partitioning element

sort each piece

17

Quicksort: Java Implementation

Quicksort.

! Partition array so that:

– some partitioning element a[m] is in its final position

– no larger element to the left of m

– no smaller element to the right of m

! Sort each "half" recursively.

public static void quicksort(double[] a, int left, int right) {

 if (right <= left) return;

 int i = partition(a, left, right);

 quicksort(a, left, i-1);

 quicksort(a, i+1, right);

}

18

Quicksort : Implementing Partition

Q. How to partition in-place efficiently?

public static int partition(double[] a, int left, int right) {

 int i = left - 1;

 int j = right;

 while(true) {

 while (less(a[++i], a[right]))

 ;

 while (less(a[right], a[--j]))

 if (j == left) break;

 if (i >= j) break;

 exch(a, i, j);

 }

 exch(a, i, right);

 return i;

}

swap with partitioning element

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index where crossing occurs

19

Quicksort: Observation

Observe and tabulate running time for various values of N.

! Data source: first N words of Charles Dicken's life work.

! Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.

Remark. Takes 1.8 seconds to generate input of size 8 million!

4.2 sec240 million8 million

2.0 sec120 million4 million

0.96 sec55 million2 million

0.47 sec26 million1 million

0.23 sec9.5 million400,000

0.10 sec

TimeComparisonsN

4.5 million200,000

20

Quicksort: Preliminary Hypothesis

Experimental hypothesis. Number of comparisons ! 30N.

21

Quicksort: Prediction and Verification

Experimental hypothesis. Number of comparisons ! 30N.

Prediction. 120 million comparisons for N = 4 million.

Observations.

Prediction. 600 million comparisons for N = 20 million.

Observations.

11.1 sec638 million20 million

60.6 sec

TimeComparisonsN

3.6 billion100 million

2.02 sec116.8 million4 million

2.07 sec116.7 million4 million

2.04 sec

TimeComparisonsN

112.9 million4 million

Agrees.

Not quite.

22

Quicksort: Theoretical Hypothesis

Average case. (random)

! Number of comparisons ! 2 N ln N (stddev ! 0.65N).

! Number of exchanges ! 1/3 N ln N.

Worst case. Number of comparisons ! 1/2 N2.

Validation.

! Random shuffle before sorting to eliminate worst case.

! Alternate: partition on random element.

! Theory now agrees with observations.

Lesson. Great algorithms can be more powerful than supercomputers.

N = 1 billion

2 weeks

3 centuries

Insertion Quicksort
Comparisons

Per Second
Computer

3 hours107laptop

instant1012super

23

Order of Growth

squares!Exponential algorithm is not usually practical.2N

When N doubles,

running time
DescriptionComplexity

quadruples
Quadratic algorithm practical for use only on
relatively small problems.

N2

does not changeConstant algorithm is independent of input size.1

increases by a
constant

Logarithmic algorithm gets slightly slower as N
grows.

log N

doubles
Linear algorithm is optimal if you need to
process N inputs.

N

slightly more
than doubles

Linearithmic algorithm scales to huge problems.N log N

Asymptotic running time.

! Estimate time as a function of input size N.

! Ignore lower order terms and leading coefficients.

– when N is large, terms are negligible

– when N is small, we don't care

! Ex: 6N3 + 17N2 + 56 is asymptotically proportional to N3.

Donald Knuth

24

Scientific Method

Scientific method applies to estimate running time.

! Experimental analysis: not difficult to perform experiments.

! Theoretical analysis: may require advanced mathematics.

! Small subset of mathematical functions suffice to describe running

time of many fundamental algorithms.

for (int i = 0; i < N; i++)

 ...
N

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 ...

N2

while (N > 1) {

 N = N / 2;

 ...

}

log2N

public static void f(int N) {

 if (N == 0) return;

 f(N-1);

 f(N-1);

 ...

}

2N

public static void g(int N) {

 if (N == 0) return;

 g(N/2);

 g(N/2);

 for (int i = 0; i < N; i++)

 ...

}

N log2N

25

Computational Complexity of Problems

Computational complexity. Framework to study efficiency of

algorithms for solving a particular problem X.

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of any algorithm for X.

Optimal algorithm. Algorithm with best cost guarantee for X.

Example 1: X = sorting.

! Measure costs in terms of comparisons.

! Upper bound = N log2
 N with mergesort.

! Lower bound = N log2
 N - N log2 e.

! Optimal algorithm = mergesort.

quicksort usually faster, but

mergesort never slow

applies to any comparison-based

algorithm (see COS 226)

lower bound ~ upper bound

26

Sorting Case Study: mergesort

Mergesort.

! Divide array into two halves.

A L G O R I T H M S

divideA L G O R I T H M S

Jon von Neumann, 1945

27

Sorting Case Study: mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half separately.

sort

A L G O R I T H M S

divideA L G O R I T H M S

A G L O R H I M S T

28

Sorting Case Study: mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half separately.

! Merge two halves to make sorted whole.

Q. How to merge efficiently?

merge

sort

A L G O R I T H M S

divideA L G O R I T H M S

A G L O R H I M T S

A G H I L M O R S T

29

Computational Complexity of Problems

Computational complexity. Framework to study efficiency of

algorithms for solving a particular problem X.

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of any algorithm for X.

Optimal algorithm. Algorithm with best cost guarantee for X.

Example 2: X = Euclidean TSP.

! Measure cost in terms of arithmetic operations.

! Upper bound = 2N by dynamic programming.

! Lower bound = N.

! Optimal algorithm = ask again in 50 years.

Essence of computational complexity: closing the gap.

N! by brute force

30

Summary

How can I evaluate the performance of my algorithm?

! Computational experiments.

! Theoretical analysis.

What if it's not fast enough?

! Understand why.

! Buy a faster computer.

! Find a better algorithm in a textbook.

! Discover a new algorithm.

May not apply to some
problems.

Makes "everything" run
faster.

Applicability

Dramatic quantitative
improvements possible.

$ or less.

Better AlgorithmBetter MachineAttribute

$$$ or more.Cost

Incremental quantitative
improvements.

Improvement

31

Summary

Sobering philosophical thoughts.

! In theory, most problems are undecidable.

! In practice, most remaining problems are intractable.

! Analysis of algorithms helps us improve the ones we use.

32

Announcements

Your Very Last Exam

! Wed April 27, 7:30 PM, right here

! Closed book, but

! You can bring one cheatsheet

– both sides of one (8.5 by 11) sheet, handwritten by you

! P.S. No calculators, laptops, Palm Pilots, talking watches, etc.

Helpful review session

! Tuesday April 26, 7:30 PM, COS 105

! Not a canned presentation

! Driven by your questions

