Linked vs. Sequential Allocation

Lecture 15: Linked Structures

"The name of the song is called 'Haddocks' Eyes." "

Goal: process a collection of objects.

"Oh, that's the name of the song, is it?" Alice said, Sequential allocation: put object one after another.
frying to feel interested. . TOY: consecutive memory cells.
"No, you don't understand," the Knight said, looking a « Java: array of objects.

little vexed. "That's what the name is called. The

name really is ‘The Aged Aged Man." "
Y 9ec 79 Linked allocation: include in each object a link to the next one.

= TOY: link is memory address of next object.
« Java: link is reference to next object.

"Then I ought to have said 'That's what the song is
called' ?" Alice corrected herself.

"No, you oughtn't: that's quite another thing! The

song is called 'Ways and Means," but that is only what o
it's called, you know!" Key distinctions.

"Well, what is the song, then?" said Alice, who was by . S.equenhal allc?cahon. r'aru%om access, f|>.<ed suz.e.
+his time completely bewildered. « Linked allocation: sequential access, variable size.

"T was coming to that," the Knight said. "The song
Lewis Caroll really is 'A-sitting On A Gate,' and the tune's my own
Through the Looking Glass invention."

COS126: General Computer Science + http://www.cs.Princeton. EDU/~cos126 2

Linked Lists Linked List Demo

Linked list of strings. E

. A recursive data structure.

« A string plus a pointer to another linked list (or empty list).
dd I
» Unwind recursion: linked list is a sequence of strings.

co "Alice" <+
a
List a = new List()) c1 null
Linked lists in Java. a.name = "Alice"; List iy c2 0
. Easy to define as a Java class. SR e B b :_-“:"E = “"‘111?'_ . €3 "Carol"
. Areference toastring. private String name; b o = vmept s 07 b ca c9
A ref h . private List next; el
. reference to another List. } b.next = a; List = €9 cs 0
. Use special value nu1l to terminate list. UEEE @ = nen W) ce 0
c.name = "Carol";
Ccmext=b; < °
C
List | €3 — 0
co "Bob"
List x c b a ca co —
3 3 3 2 cB 0
Carol —> Bob — Alice —» null Carol —» Bob —» Alice —» null registers main memory

Traversing a List

Paradigm for traversing a null-terminated linked list.

for (List x = ¢; x !'= null; x = x.next) {

System.out.println (x.name) ;

}

X
L 2

Carol —» Bob —» Alice —» null

% java List

Stack and Queue ADTs

Fundamental data type.
« Set of operations (add, remove, test if empty) on generic data.
« Intent is clear when we insert.
= Which object do we remove?

Stack.
= Remove the object most recently added. ("last in first out")
« Analogy: cafeteria trays, surfing Web.

Queue.
= Remove the object least recently added. (“first in first out")
« Analogy: Registrar's line.

Multiset.
= Remove any object.
« Law professor calls on arbitrary student.

Queue
Queue operations.
= engeuue Insert a new object onto queue.
« dequeue Delete and return the object least recently added.
« isEmpty TIs the queue empty?

public static void main(String[] args) {

Queue q = new Queue() ;

q.enqueue ("Vertigo") ;

g.enqueue ("Just Lose It");

g.enqueue ("Pieces of Me");

q.enqueue ("Pieces of Me") ;

System.out.println(q.dequeue()) ;

g.enqueue ("Drop It Like It's Hot");

while(!'q.isEmpty())
System.out.println (q.dequeue()) ;

A simple queue client

NND)

(DIHU4ND HOD

More Applications of Queues

Real world applications.
« iTunes playlist.
« Echo filter to store last ten waves.
= Dispensing requests on a shared resource (printer, processor).
« Asynchronous data transfer (file IO, pipes, sockets).
« Data buffers (iPod, TiVo).
= Graph processing (stay tuned).

Simulations of the real world.
. Traffic analysis of Lincoln tunnel.
« Waiting ftimes of customers in McDonalds .
= Determining number of cashiers to have at a supermarket.

Queue: Linked List Implementation

Linked list implementation.

= Maintain linked list of elements.

. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

first last

now —» is —» the —> time

Queue: Linked List Implementation

Linked list implementation.
« Maintain linked list of elements.
. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Insert.

e last

%

now —» is —>» the —> time

x.item = "for";
last.next = x;
last = x;

Queue: Linked List Implementation

Linked list implementation.

= Maintain linked list of elements.

. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Insert.

first last x
3 4 3
now —» is —» the —> time for

List x = new List();

last.next = x;
last = x;

Queue: Linked List Implementation

Linked list implementation.
« Maintain linked list of elements.
. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Insert.

e last X
2 1 4 2
now —» is —» the —» fime —> for

List x

x.item = "for"i

last = x;

new List() ;

Queue: Linked List Implementation

Linked list implementation.

= Maintain linked list of elements.

. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Insert.

first last
3 3
now —» is —» the — time —> for

List x = new List();
x.item = "for";
last.next = x;

Queue: Linked List Implementation

Linked list implementation.
« Maintain linked list of elements.
. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Delete.
e last
2 1 4
now —» is —» the —» fime —> for
val now

first = first.next;
return val;

20

Queue: Linked List Implementation

Linked list implementation.

= Maintain linked list of elements.

. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Delete.

e last
2 3
now —» is —» the — time —> for

val now Strini val = first.itemi

return val;

Queue: Linked List Implementation

Linked list implementation.
« Maintain linked list of elements.
. Let first be reference to first node on list.
. Let 1ast be reference last node on list.

Delete.
first last
2 14
now — is —» the — time — for
val o String val = first.item;
first = first.next;

22

Queue: Linked List Implementation

23

Binary Trees

Binary tree.
« Organize homogeneous collection of values (all same type).
« Associate two pointers with each value.
« Use pointers to access each branch of the tree.

root

dad mom

24

Binary Tree: Java Implementation

Java implementation of a binary tree of strings is:
. Areference to the string.
. Areference to the left Tree.
. Areference to the right Tree.

4

=
[EIEI L]

25

Parse Tree Demo

null null

null null null null

26

Parse Tree Evaluation: Java Implementation

Parse tree.
« Abstract representation of expression.

=« Applications: compilers, computational linguistics.

Evaluating a parse tree.

((10 * 12) + (7))
« If string is an integer return it.

= 127
« Else, evaluate both subtrees recursively and return sum or product.

public class ParseTree {
private String s;

€@ represent data as a string, e.g., "+" or "1234"
private ParseTree left;

@ |eft subtree
private ParseTree right; € right subtree

public int eval() {
if (s.equals("+")) return left.eval() + right.eval();

else if (s.equals("*")) return left.eval() * right.eval();
else return Integer.parselnt(s);
}

® convert from string to integer

Preorder Traversal

How do we print out the information?
« Print string.

« Print left subtree recursively.
=« Print right subtree recursively.

No parentheses!

((4 +5) + (6 *7)) *8

public String toString() {
if (s.equals("+") || s.equals("*"))
return s + " " + left + " " + right;
else

return s;

Preorder traversal: *

+ + 4 5 * 6 7 8
27 28
Parse Tree Construction Other Types of Trees
How do we read it back in and create the ftree? Other types of trees. /
« Read string from standard input. . /K
« If +or > operator, construct left and right subtrees recursively. .
. . . bin 1ib etc u
=« Unix file hierarchy.
oublic Parsetres() (constructon %
s = StdIn.readString() ; aaclarke csl26 zrnye
if (s.equals("+") || s.equals("*")) {
left = new ParseTree() ;
right = new ParseTree() ;
} files grades submit
} m
mandel stock tsp
% java ParseTree
*++45%*678
408

((4 +5) + (6 7)) *8

29

%\

Point. java TSP.java tspl3509. txt

30

Other Types of Trees

Other types of trees.

« Phylogeny tree.

gut bacteria
trees
mushrooms
fish
mammals
birds
dragonflies

beetles

Other Types of Trees

Other types of trees.

« GUI containment hierarchy.

JPanel (custom content pane)

=| Converter = — IFrame : JPanel
JPanel —J Metric System {ConversionPanel) {ConversionPanel)
Textfield—msia |l weters - F_____l____1 ’_____I_______|
15Tider) |
IConboBox Jpanel JComboBox JComboBox Jpanel
Jpanel — L US. System (custorn) (custorn)
ITextField —m100 I Yards v i
1STider |V Jslider ITextField
JTextField Jslider
e \—I ’ (DecinalField) ’ ‘ (DecinalField) |

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview /anatomy.html

Binary Search Tree

33

Other Types of Trees

Other types of trees.
. Family tree.
« Parse free.
=« Unix file hierarchy.
« Phylogeny tree.
« GUI containment hierarchy.
=« Binary search trees.
= NCAA basketball tournament.
= Barnes-Hut tree for fast N-body simulation.

35

Conclusions

Sequential allocation: supports indexing, fixed size.
Linked allocation: variable size, supports sequential access.

Linked structures are a central programming abstraction.
« Linked lists.
« Binary trees.

‘Haddocks' Eyes'

) K; 'The Aged
Aged Man'
0 o O ‘Ways and Means' v~)
&\ \./\‘

'A-sitting On A Gate'

Alice should have done this!

36

Announcements
Thinking about majoring in Computer Science?
Or doing the Certificate in Applications of Computing?
Then: visit the all-new "Life in the Computer Science Department: A
Guide for the Humble Undergraduate”:

« http://www.cs.princeton.edu/academics/ugradpgm/life.html
« a handy FAQ that answers many many questions

And/Or: Come talk to me

AND CERTAINLY attend at least one of:
« C.S. open house for BSE freshmen Tuesday March 29, Friend
Convocation Room, 5:45 (PMI): tours, demos, pizza (AB's welcome)
« C.S. open house for AB sophomores Tuesday April 5, C.S. Tea Room,
4 PM (but no pizza, and maybe fewer demos) (BSE's welcome)

37

