
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 14: Modular Programming

2

Review

Data type: set of values and operations on those values.

A Java class allows us to define a data type by:

! Specifying a set of variables.

! Defining operations on those values.

Break up a program into smaller pieces.

! Class = program that defines a data type.

! Client = program that uses a data type.

3

Object Oriented Programming

Objected oriented programming (OOP).

! Programming paradigm based on data types.

! An object stores a data type value; variable name refers to object.

! "Everything" in Java is an object.

OOP enables:

! Data abstraction.

! Modular programming.

! Encapsulation.

! Inheritance.

Religious wars ongoing.

4

Modular Programming

Modular programming.

! Break a large program into smaller independent modules.

! Ex: Card, Deck, Player, Blackjack, Casino.

! Ex: Switch, Gate, Adder, ALU, FlipFlop, Decoder, Memory, TOY.

Advantages.

! Debug pieces independently.

! Divide work for multiple programmers.

! Reuse code.

Modular programming in Java.

! Define new classes in terms of old ones.

! Keep classes small.

5

Cards Data Type

Set of values.

! 2 !, 3 !, 4 ! , . . . , A ".

! Two images, for displaying front and back.

Operations.

! Initialize.

! Draw the front or back using our graphics library.

! Convert to string representation.

K ! 11

A ! 12

.

3 ! 1

4 ! 2

2 ! 0

Card #

Clubs

K # 24

A # 25

.

3 # 14

4 # 15

2 # 13

Card #

Diamonds

K $ 37

A $ 38

.

3 $ 27

4 $ 28

2 $ 26

Card #

Hearts

K " 50

A " 51

.

3 " 40

4 " 41

2 " 39

Card #

Spades

card = 37

suit = 37 / 13 = 2

rank = 37 % 13 = 11

6

Card Data Type: Java Implementation

public class Card {

 private int suit, rank;

 private String front, back;

 public Card(int card, String front, String back) {

 this.rank = card % 13;

 this.suit = card / 13;

 this.front = front;

 this.back = back;

 }

 public void drawFront() { StdDraw.spot(front); }

 public void drawBack() { StdDraw.spot(back); }

 public String toString() {

 String ranks = "23456789TJQKA";

 String suits = "CDHS";

 return ranks.charAt(rank) + "" + suits.charAt(suit);

 }

}
ith character in string

7

Sample Client

public static void main(String[] args) {

 StdDraw.create(200, 180);

 StdDraw.clear(Color.gray);

 Card c1 = new Card(27, "27.gif", "back.gif");

 StdDraw.go(100, 120);

 c1.drawBack();

 System.out.println(c1);

 Card c2 = new Card(51, "51.gif", "back.gif");

 StdDraw.go(100, 60);

 c2.drawFront();

 System.out.println(c2);

 StdDraw.show();

}

% java –classpath .:cards.jar Card

3H

AS tell Java where

to find files

Java archive contains

53 images

8

A Card Game

Bridge game (partial).

! Create a deck of cards and 4 players.

! "Shuffle up and deal."

! Display with standard graphics library.

9

A Card Game Client

public class Game {

 public static void main(String[] args) {

 Deck deck = new Deck();

 Player N = new Player("North", 300, 375);

 Player E = new Player("East ", 550, 225);

 Player S = new Player("South", 300, 75);

 Player W = new Player("West ", 50, 225);

 deck.shuffle();

 while(!deck.isEmpty()) {

 N.dealTo(deck.dealFrom());

 E.dealTo(deck.dealFrom());

 S.dealTo(deck.dealFrom());

 W.dealTo(deck.dealFrom());

 }

 StdDraw.create(810, 450);

 N.draw();

 E.draw();

 S.draw();

 W.draw();

 StdDraw.show();

 }
}

shuffle and deal

draw 4 hands

10

Deck Data Type

Set of values.

! Sequence of remaining cards.

Operations.

! Initialize a new deck of 52 cards.

! Shuffle it.

! Deal a card (and remove it from deck).

! Create a string representation of the deck.

11

Deck Data Type: Java Implementation

public class Deck {

 private Card[] cards;

 private int N;

 public Deck() {

 N = 52;

 cards = new Card[N];

 for (int i = 0; i < N; i++)

 cards[i] = new Card(i, i + ".gif", "back.gif");

 }

 public Card dealFrom() { return cards[--N]; }

 public boolean isEmpty() { return (N == 0); }

 public void shuffle() {

 for (int i = 0; i < N; i++) {

 int r = (int) (Math.random() * (i+1));

 Card swap = cards[i];

 cards[i] = cards[r];

 cards[r] = swap;
 }
 }
}

12

Player Data Type

Set of values.

! Pile of cards.

! Name.

! Location for drawing.

Operations.

! Deal a card to the player.

! Display the pile using our standard graphics library.

! Create a string representation of the player.

13

Player Data Type: Java Implementation

public class Player {

 private Card[] cards;

 private int N = 0;

 private int x, y;

 private String name;

 public Player(String name, int x, int y) {

 this.name = name;

 this.x = x;

 this.y = y;

 this.cards = new Card[52];

 }

 public void dealTo(Card c) { cards[N++] = c; }

 public void draw() {

 StdDraw.go(x, y);

 for (int i = 0; i < N; i++) {

 cards[i].drawFront();

 StdDraw.goForward(17);

 }

 }

}

inter-card spacing

14

Layers of Abstraction

Relationships among data types.

Game

PlayerDeck Player PlayerPlayer

CardCard Card...

Stringint int String

CardCard Card...

Stringint int String

String int int

15

Sorting the Hands

Goal: display each hand in "sorted" order.

16

Sorting the Hands

Goal: display each hand in "sorted" order.

! Need method less in Card to compare cards.

! Need method sort in Player to sort hand.

public boolean less(Card c) {

 if (suit < c.suit) return true;

 else if (suit > c.suit) return false;

 else if (rank < c.rank) return true;

 else return false;

}

public void sort() {

 for (int i = 0; i < N; i++) {

 for (int j = i; j > 0; j--) {

 if (cards[j-1].less(cards[j])) {

 Card swap = cards[j];

 cards[j] = cards[j-1];

 cards[j-1] = swap;
 }
 }
 }
}

Card.java

Player.java

insertion sort

descending order

17

"I Doubt It"

public boolean less(Card c) {

 return (rank < c.rank);

}

Card.java

"I Doubt It" order

18

A Bridge Experiment

Determine strength of bridge hand.

! Face cards and aces.

! Uneven suit distribution.

! Ex: 3! 7! 8! 9! 2# 9# Q# A# 3" 6" 9" K" A"

15 points: (0) + (2 + 4) + (2) + (3 + 4)

! Need method rank in Card to check for aces.

! Need method suit in Card to count cards in each suit.

public int rank() { return rank; }

public int suit() { return suit; }

Card.java

! # $ "
1Jack

2Void Suit

3King

2Queen

PointsEach Occurrence

4Ace

2Singleton Suit

1Singleton Suit

19

Counting Points

public int points() {

 int sum = 0;

 for (int i = 0; i < N; i++) {

 int rank = cards[i].rank();

 if (rank == 12) sum = sum + 4;

 else if (rank == 11) sum = sum + 3;

 else if (rank == 10) sum = sum + 2;

 else if (rank == 9) sum = sum + 1;

 }

 int[] suits = new int[4];

 for (int i = 0; i < N; i++)

 suits[cards[i].suit()]++;

 for (int j = 0; j < 4; j++) {

 if (suits[j] == 0) sum = sum + 2;

 else if (suits[j] == 1) sum = sum + 1;

 }

 return sum;

}

high card points

voids and singletons

Player.java

20

Experiment

public class BridgeExperiment {

 public static void main(String[] args) {

 Histogram hist1 = new Histogram(38);

 Histogram hist2 = new Histogram(48);

 while (true) {

 Deck deck = new Deck();

 deck.shuffle();

 Player N = new Player("North", 300, 375);

 Player E = new Player("East ", 550, 225);

 Player S = new Player("South", 300, 75);

 Player W = new Player("West ", 50, 225);

 while(!deck.isEmpty()) {

 N.dealTo(deck.dealFrom());

 E.dealTo(deck.dealFrom());

 S.dealTo(deck.dealFrom());

 W.dealTo(deck.dealFrom());

 }

 hist1.add(N.points());

 hist2.add(N.points() + S.points());

 }
 }
}

max points

21

Histogram Data Type

public class Histogram {

 private int[] freq;

 private Draw draw;

 public Histogram(int N) {

 freq = new int[N + 1];

 draw = new Draw(512, 512);

 }

 public void add(int i) {

 freq[i]++;

 draw();

 }

 public void draw() {

 . . .

 draw.go(x, y);

 . . .

 }

}

freq[i] = # occurrences of i

data between 0 and N

separate turtle for each histogram

Draw object

22

Histograms of Points in a Bridge Hand

23

Summary

Modular programming.

! Break a large program into smaller independent modules.

! Ex: Card, Deck, Player, Game, Casino,

Debug and test each piece independently (unit testing).

! Each class can have its own main.

! Spend less overall time debugging.

Divide work for multiple programmers.

! Software architect specifies data types.

! Each programmer writes, debugs, and tests one.

Reuse code.

! Ex: reuse Histogram with gambler's ruin.

! Ex: reuse Card, Deck to make blackjack or poker game.

24

Announcements

Thinking about majoring in Computer Science?

Or doing the Certificate in Applications of Computing?

Then: visit the all-new “Life in the Computer Science Department: A

Guide for the Humble Undergraduate”:

! http://www.cs.princeton.edu/ugradpgm/life.html

! a handy FAQ that answers many many questions

And/Or: Come talk to me

AND CERTAINLY attend at least one of:

! C.S. open house for BSE freshmen Tuesday March 29, Friend

Convocation Room, 5:45 (PM!): tours, demos, pizza (AB’s welcome)

! C.S. open house for AB sophomores Tuesday April 5, C.S. Tea Room,

4 PM (but no pizza, and maybe fewer demos) (BSE’s welcome)

