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Lecture 14:  Modular Programming
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Review

Data type:  set of values and operations on those values.

A Java class allows us to define a data type by:

! Specifying a set of variables.

! Defining operations on those values.

Break up a program into smaller pieces.

! Class  = program that defines a data type.

! Client = program that uses a data type.
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Object Oriented Programming

Objected oriented programming (OOP).

! Programming paradigm based on data types.

! An object stores a data type value; variable name refers to object.

! "Everything" in Java is an object.

OOP enables:

! Data abstraction.

! Modular programming.

! Encapsulation.

! Inheritance.

Religious wars ongoing.
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Modular Programming

Modular programming.

! Break a large program into smaller independent modules.

! Ex:  Card, Deck, Player, Blackjack, Casino.

! Ex:  Switch, Gate, Adder, ALU, FlipFlop, Decoder, Memory, TOY.

Advantages.

! Debug pieces independently.

! Divide work for multiple programmers.

! Reuse code.

Modular programming in Java.

! Define new classes in terms of old ones.

! Keep classes small.
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Cards Data Type

Set of values.

! 2 !, 3 !, 4 ! , . . . , A ".

! Two images, for displaying front and back.

Operations.

! Initialize.

! Draw the front or back using our graphics library.

! Convert to string representation.

K ! 11

A ! 12

. . . . .

3 ! 1

4 ! 2

2 ! 0

Card #

Clubs

K # 24

A # 25

. . . . .

3 # 14

4 # 15

2 # 13

Card #

Diamonds

K $ 37

A $ 38

. . . . .

3 $ 27

4 $ 28

2 $ 26

Card #

Hearts

K " 50

A " 51

. . . . .

3 " 40

4 " 41

2 " 39

Card #

Spades

card = 37

suit = 37 / 13 = 2

rank = 37 % 13 = 11
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Card Data Type:  Java Implementation

public class Card {

   private int suit, rank;

   private String front, back;

  

   public Card(int card, String front, String back) {

      this.rank  = card % 13;

      this.suit  = card / 13; 

      this.front = front;

      this.back  = back;

   }

   public void drawFront() { StdDraw.spot(front); }

   public void drawBack()  { StdDraw.spot(back);  }

   public String toString() {

      String ranks = "23456789TJQKA";

      String suits = "CDHS";

      return ranks.charAt(rank) + "" + suits.charAt(suit);

   } 

}
ith character in string
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Sample Client

public static void main(String[] args) {

   StdDraw.create(200, 180);

   StdDraw.clear(Color.gray);

   Card c1 = new Card(27, "27.gif", "back.gif");

   StdDraw.go(100, 120);

   c1.drawBack();

   System.out.println(c1);

   Card c2 = new Card(51, "51.gif", "back.gif");

   StdDraw.go(100, 60);

   c2.drawFront();

   System.out.println(c2);

   StdDraw.show();

}

% java –classpath .:cards.jar Card

3H

AS tell Java where

to find files

Java archive contains

53 images
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A Card Game

Bridge game (partial).

! Create a deck of cards and 4 players.

! "Shuffle up and deal."

! Display with standard graphics library.
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A Card Game Client

public class Game {

   public static void main(String[] args) {

      Deck deck = new Deck();

      Player N  = new Player("North", 300, 375);

      Player E  = new Player("East ", 550, 225);

      Player S  = new Player("South", 300,  75);

      Player W  = new Player("West ",  50, 225);

      deck.shuffle();

      while(!deck.isEmpty()) {

         N.dealTo(deck.dealFrom());

         E.dealTo(deck.dealFrom());

         S.dealTo(deck.dealFrom());

         W.dealTo(deck.dealFrom());

      }

      StdDraw.create(810, 450);

      N.draw();

      E.draw();

      S.draw();

      W.draw();

      StdDraw.show();

   }
} 

shuffle and deal

draw 4 hands
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Deck Data Type

Set of values.

! Sequence of remaining cards.

Operations.

! Initialize a new deck of 52 cards.

! Shuffle it.

! Deal a card (and remove it from deck).

! Create a string representation of the deck.
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Deck Data Type:  Java Implementation

public class Deck {

   private Card[] cards;

   private int N;

   public Deck() {

      N = 52;

      cards = new Card[N];

      for (int i = 0; i < N; i++)

         cards[i] = new Card(i, i + ".gif", "back.gif");

   }

   public Card dealFrom()   { return cards[--N]; }

   public boolean isEmpty() { return (N == 0);   }

   public void shuffle() {

      for (int i = 0; i < N; i++) {

         int r = (int) (Math.random() * (i+1));

         Card swap = cards[i];

         cards[i]  = cards[r];

         cards[r]  = swap;
      }
   }
}
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Player Data Type

Set of values.

! Pile of cards.

! Name.

! Location for drawing.

Operations.

! Deal a card to the player.

! Display the pile using our standard graphics library.

! Create a string representation of the player.
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Player Data Type:  Java Implementation

public class Player {

   private Card[] cards;

   private int N = 0;

   private int x, y;

   private String name;

   public Player(String name, int x, int y) {

      this.name = name;

      this.x = x;

      this.y = y;

      this.cards = new Card[52];

   }

   public void dealTo(Card c) { cards[N++] = c; }

   public void draw() {

      StdDraw.go(x, y);

      for (int i = 0; i < N; i++) {

         cards[i].drawFront();

         StdDraw.goForward(17);

      }

   }

}

inter-card spacing
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Layers of Abstraction

Relationships among data types.

Game

PlayerDeck Player PlayerPlayer

CardCard Card...

Stringint int String

CardCard Card...

Stringint int String

String int int
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Sorting the Hands

Goal:  display each hand in "sorted" order.
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Sorting the Hands

Goal:  display each hand in "sorted" order.

! Need method less in Card to compare cards.

! Need method sort in Player to sort hand.

public boolean less(Card c) {

   if      (suit < c.suit) return true;

   else if (suit > c.suit) return false;

   else if (rank < c.rank) return true;

   else                    return false;

}

public void sort() {

   for (int i = 0; i < N; i++) {

      for (int j = i; j > 0; j--) {

         if (cards[j-1].less(cards[j])) {

            Card swap  = cards[j];

            cards[j]   = cards[j-1];

            cards[j-1] = swap;
         }
      }
   }
}

Card.java

Player.java

insertion sort

descending order
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"I Doubt It"

public boolean less(Card c) {

   return (rank < c.rank);

}

Card.java

"I Doubt It" order
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A Bridge Experiment

Determine strength of bridge hand.

! Face cards and aces.

! Uneven suit distribution.

! Ex:  3! 7! 8! 9! 2# 9# Q# A# 3" 6" 9" K" A"

15 points:  (0)  +  (2 + 4)  +  (2)  +  (3 + 4)

! Need method rank in Card to check for aces.

! Need method suit in Card to count cards in each suit.

public int rank() { return rank; }

public int suit() { return suit; }

Card.java

! # $ "
1Jack

2Void Suit

3King

2Queen

PointsEach Occurrence

4Ace

2Singleton Suit

1Singleton Suit
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Counting Points

public int points() {

   int sum = 0;

   for (int i = 0; i < N; i++) {

      int rank = cards[i].rank();

      if      (rank == 12) sum = sum + 4;

      else if (rank == 11) sum = sum + 3;

      else if (rank == 10) sum = sum + 2;

      else if (rank ==  9) sum = sum + 1;

   }

   int[] suits = new int[4];

   for (int i = 0; i < N; i++)

      suits[cards[i].suit()]++;

   for (int j = 0; j < 4; j++) {

      if      (suits[j] == 0) sum = sum + 2;

      else if (suits[j] == 1) sum = sum + 1;

   }

   return sum;

}

high card points

voids and singletons

Player.java
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Experiment

public class BridgeExperiment {

   public static void main(String[] args) {

      Histogram hist1 = new Histogram(38);

      Histogram hist2 = new Histogram(48);

      while (true) {

         Deck deck = new Deck();

         deck.shuffle();

         Player N = new Player("North", 300, 375);

         Player E = new Player("East ", 550, 225);

         Player S = new Player("South", 300,  75);

         Player W = new Player("West ", 50,  225);

         while(!deck.isEmpty()) {

            N.dealTo(deck.dealFrom());

            E.dealTo(deck.dealFrom());

            S.dealTo(deck.dealFrom());

            W.dealTo(deck.dealFrom());

         }

         hist1.add(N.points());

         hist2.add(N.points() + S.points());

      }
   }
} 

max points
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Histogram Data Type

public class Histogram {

   private int[] freq;

   private Draw draw;

   public Histogram(int N) {

      freq = new int[N + 1];

      draw = new Draw(512, 512);

   }

   public void add(int i) {

      freq[i]++;

      draw();

   } 

   public void draw() {

      . . .

      draw.go(x, y);

      . . .

   } 

} 

freq[i] = # occurrences of i

data between 0 and N

separate turtle for each histogram

Draw object
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Histograms of Points in a Bridge Hand
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Summary

Modular programming.

! Break a large program into smaller independent modules.

! Ex:  Card, Deck, Player, Game, Casino, . . . .

Debug and test each piece independently (unit testing).

! Each class can have its own main.

! Spend less overall time debugging.

Divide work for multiple programmers.

! Software architect specifies data types.

! Each programmer writes, debugs, and tests one.

Reuse code.

! Ex:  reuse Histogram with gambler's ruin.

! Ex:  reuse Card, Deck to make blackjack or poker game.
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Announcements

Thinking about majoring in Computer Science?

Or doing the Certificate in Applications of Computing?

Then: visit the all-new “Life in the Computer Science Department: A

Guide for the Humble Undergraduate”:

! http://www.cs.princeton.edu/ugradpgm/life.html

! a handy FAQ that answers many many questions

And/Or: Come talk to me

AND CERTAINLY attend at least one of:

! C.S. open house for BSE freshmen Tuesday March 29, Friend

Convocation Room, 5:45 (PM!): tours, demos, pizza (AB’s welcome)

! C.S. open house for AB sophomores Tuesday April 5, C.S. Tea Room,

4 PM (but no pizza, and maybe fewer demos) (BSE’s welcome)


