Lecture 13: Optimization 2

COS 598C – Advanced Compilers

Prof. David August
Department of Computer Science
Princeton University

Where are we?

- Analysis
 - Control Flow/Predicate
 - Dataflow
 - SSA
- Optimization

Optimization

- Make the code run faster on the target processor
 - My favorite topic !
 - Anything goes
 - Look at benchmark kernels, what’s the bottleneck??
 - Invent your own optimizations (easier and harder than you think)
- Classes of optimization
 - 1. Classical (machine independent)
 - Reducing operation count (redundancy elimination)
 - Simplifying operations
 - Generally good for any kind of machine
 - 2. Machine specific
 - Peephole optimizations
 - Take advantage of specialized hardware features
 - 3. ILP enhancing
 - Increasing parallelism
 - Possibly increase instructions

Classical Optimizations

- Operation-level – 1 operation in isolation
 - Constant folding, strength reduction
- Dead code elimination (global, but 1 op at a time)
- Local/Global – Pairs of operations
 - Constant propagation
 - Forward copy propagation
 - Backward copy propagation
 - CSE
 - Constant combining
 - Operation folding
- Loop – Body of a loop
 - Invariant code removal
 - Global variable migration
 - Induction variable strength reduction
 - Induction variable elimination
Caveat

- Traditional compiler class
 - Sophisticated implementations of optimizations, efficient algorithms
 - Spend entire class on 1 optimization
- For this class – Go over concepts of each optimization
 - What it is
 - When can it be applied (set of conditions that must be satisfied)

Static Single Assignment (SSA)

Static Single Assignment Advantages:

- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.
- Eliminates unnecessary relationships:

 \[
 \begin{align*}
 &\text{for } i = 1 \text{ to } N \text{ do } A[i] = 0 \\
 &\text{for } i = 1 \text{ to } M \text{ do } B[i] = 1 \\
 \end{align*}
 \]

 - No reason why both loops should be forced to use same register to hold index register.
 - SSA renames second i to new register which may lead to better register allocation.
- SSA form makes certain optimizations quick and easy → dominance property.
 - Variables have only one definition - no ambiguity.
 - Dominator information is encoded in the assignments.

Dominance Property of SSA

Dominance property of SSA form: definitions dominate uses

- If \(x \) is \(i \)th argument of \(\phi \)-function in node \(n \), then definition of \(x \) dominates \(i \)th predecessor of \(n \).
- If \(x \) is used in non-\(\phi \) statement in node \(n \), then definition of \(x \) dominates \(n \).

Dead Code Elimination

Given \(d: t = x \text{ op } y \)

- \(t \) is live at end of node \(d \) if there exists path from end of \(d \) to use of \(t \) that does not go through definition of \(t \).
- If program not in SSA form, need to perform liveness analysis to determine if \(t \) live at end of \(d \).
- If program is in SSA form:
 - cannot be another definition of \(t \)
 - if there exists use of \(t \), then path from end of \(d \) to use exists, since definitions dominate uses.
 - every use has a unique definition
 - \(t \) is live at end of node \(d \) if \(t \) is used at least once
Dead Code Elimination

Algorithm:
WHILE (for each temporary \(t \) with no uses ||&|& statement defining \(t \) has no other side-effects) DO
delete statement definition \(t \)

1: \(r_1 = 5 \)
2: \(r_2 = 10 \)
3: branch \(r_3 > r_2 \)
4: \(r_2' = r_2 + 15 \)
5: \(r_4 = r_3 + X \)
6: \(r_2'' = 0 \text{ (} r_2', r_2 \text{)} \)
7: \(M[r_4] = r_2'' \)

Dead Code Elimination

- Remove any operation who’s result is never consumed
- Rules
 - \(X \) can be deleted
 - no stores or branches
 - DU chain empty or dest register not live
- This misses some dead code!!
 - Especially in loops
 - Critical operation
 - store or branch operation
 - Any operation that does not directly or indirectly feed a critical operation is dead
 - Trace UD chains backwards from critical operations
 - Any op not visited is dead

Constant Folding

- Simplify 1 operation based on values of src operands
 - Constant propagation creates opportunities for this
- All constant operands
 - Evaluate the op, replace with a move
 - \(r_1 = 3 * 4 \rightarrow r_1 = 12 \)
 - \(r_1 = 3 / 0 \rightarrow ??? \) Don’t evaluate excepting ops !, what about floating-point?
 - Evaluate conditional branch, replace with BRU or noop
 - if (1 < 2) goto BB2 \(\rightarrow \) BRU BB2
 - if (1 > 2) goto BB2 \(\rightarrow \) convert to a noop
- Algebraic identities
 - \(r_1 = r_2 + 0, r_2 - 0, r_2 | 0, r_2 ^ 0, r_2 << 0, r_2 >> 0 \)
 - \(r_1 = r_2 \)
 - \(r_1 = 0 * r_2, 0 / r_2, 0 & r_2 \)
 - \(r_1 = 0 \)
 - \(r_1 = r_2 * 1, r_2 / 1 \)
 - \(r_1 = r_2 \)
 - \(r_3 = r_2 + r_1 \)

Strength Reduction

- Replace expensive ops with cheaper ones
 - Constant propagation creates opportunities for this
- Power of 2 constants
 - Multiply by power of 2, replace with left shift
 - \(r_1 = r_2 * 8 \rightarrow r_1 = r_2 << 3 \)
 - Divide by power of 2, replace with right shift
 - \(r_1 = r_2 / 4 \rightarrow r_1 = r_2 >> 2 \)
 - Remainder by power of 2, replace with logical and
 - \(r_1 = r_2 \text{ REM} 16 \rightarrow r_1 = r_2 & 15 \)
- More exotic
 - Replace multiply by constant by sequence of shift and adds/subs
 - \(r_1 = r_2 * 6 \)
 - \(r_{100} = r_2 << 2; r_{101} = r_2 << 1; r_1 = r_{100} + r_{101} \)
 - \(r_1 = r_2 * 7 \)
 - \(r_{100} = r_2 << 3; r_1 = r_{100} - r_2 \)
Class Problem

Optimize this applying
1. constant folding
2. strength reduction
3. dead code elimination

r1 = 0

r4 = r1 | -1
r7 = r1 * 4
r6 = r1

r3 = 8 / r6
r3 = 8 * r6
r2 = r2 + r1
r6 = r7 * r6
r1 = r1 + 1

store (r1, r3)

Simple Constant Propagation

Given d: t = c, c is constant
Given u: x = t op b

• if program not in SSA form:
 – need to perform reaching definition analysis
 – use of t in u may be replaced by c if d reaches u and no other definition of t
 reaches u

• if program is in SSA form:
 – d reaches u, since definitions dominate uses, and no other definition of t
 exists on path from d to u
 – d is only definition of t that reaches u, since it is the only definition of t.

 * any use of t can be replaced by c
 * any \(\phi \)-function of form \(v = \phi(c_1, c_2, \ldots, c_n) \), where \(c_i = c \), can be replaced by
 \(v = c \)

Constant Propagation

• Forward propagation of moves of the form
 • \(rx = L \) (where L is a literal)
 • Maxmially propagate
 • Assume no instruction encoding restrictions

• When is it legal?
 • SRC: Literal is a hard coded constant, so never a problem
 • DEST: Must be available
 • Guaranteed to reach
 • May reach not good enough

r1 = 5
r2 = r1 + r3
r7 = r1 + r4
r8 = r1 + 3
r9 = r1 + r11

Local Constant Propagation

• Consider 2 ops, X and Y in a BB, X is before Y
 • 1. X is a move
 • 2. src1(X) is a literal
 • 3. Y consumes dest(X)
 • 4. There is no definition of dest(X) between X and Y
 • 5. No danger between X and Y
 • When dest(X) is a Macro reg, BRL destroys the value

r1 = 5
r2 = \(_x \)
r3 = 7
r4 = r4 + r1
r1 = r1 + r2
r1 = r1 + 1
r3 = 12
r8 = r1 - r2
r9 = r3 + r5
r3 = r2 + 1
r10 = r3 - r1
Global Constant Propagation

- Consider 2 ops, X and Y in different BBs
 - 1. X is a move
 - 2. src1(X) is a literal
 - 3. Y consumes dest(X)
 - 4. X is in a_in(BB(Y))
 - 5. Dest(x) is not modified between the top of BB(Y) and Y
 - 6. No danger betw X and Y
 - When dest(X) is a Macro reg, BRL destroys the value

Class Problem

Optimize this applying
1. constant propagation
2. constant folding
3. strength reduction
4. dead code elimination

Forward Copy Propagation

- Forward propagation of the RHS of moves
 - r1 = r2
 - ...
 - r4 = r1 + 1 \rightarrow r4 = r2 + 1

Benefits
- Reduce chain of dependences
- Eliminate the move

Rules (ops X and Y)
- X is a move
- src1(X) is a register
- Y consumes dest(X)
- X.dest is an available def at Y
- X.src1 is an available expr at Y

Backward Copy Propagation

- Backward propagation of the LHS of moves
 - r1 = r2 + r3 \rightarrow r4 = r2 + r3
 - ...
 - r5 = r1 + r6 \rightarrow r5 = r4 + r6
 - ...
 - r4 = r1 \rightarrow noop

Rules (ops X and Y in same BB)
- dest(X) is a register
- dest(X) not live out of BB(X)
- Y is a move
- dest(Y) is a register
- Y consumes dest(X)
- dest(Y) not consumed in (X...Y)
- dest(Y) not defined in (X...Y)
- There are no uses of dest(X) after the first redefinition of dest(Y)
CSE – Common Subexpression Elimination

- Eliminate recomputation of an expression by reusing the previous result
 - \(r_1 = r_2 * r_3 \)
 - \(\rightarrow r_{100} = r_1 \)
 - ...
 - \(r_4 = r_2 * r_3 \rightarrow r_4 = r_{100} \)
- Benefits
 - Reduce work
 - Moves can get copy propagated
- Rules (ops X and Y)
 - X and Y have the same opcode
 - src(X) = src(Y), for all srcs
 - expr(X) is available at Y
 - if X is a load, then there is no store that may write to address(X) along any path between X and Y
 - If op is a load, call it redundant load elimination rather than CSE

Class Problem

- Optimize this applying
 1. constant propagation
 2. constant folding
 3. strength reduction
 4. dead code elimination
 5. forward copy propagation
 6. backward copy propagation
 7. CSE

Constant Combining

- Combine 2 dependent ops into 1 by combining the literals
 - \(r_1 = r_2 + 4 \)
 - ...
 - \(r_5 = r_1 - 9 \rightarrow r_5 = r_2 - 5 \)
- First op often becomes dead
- Rules (ops X and Y in same BB)
 - X is of the form \(rx \) \(+ \) K
 - dest(X) \(!=\) src1(X)
 - Y is of the form \(ry \) \(+ \) K
 - Y consumes dest(X)
 - src1(X) not modified in (X...Y)

Operation Folding

- Combine 2 dependent ops into 1 complex op
 - Classic example is MPYADD
 - \(r_1 = r_2 * r_3 \)
 - ...
 - \(r_5 = r_1 + r_4 \rightarrow r_5 = r_2 * r_3 + r_4 \)
- First op often becomes dead
- Borders on machine dependent opti (often it is !!)
- Rules (ops X and Y in same BB)
 - X is an arithmetic operation
 - dest(X) \(!=\) any src(X)
 - Y is an arithmetic operation
 - Y consumes dest(X)
 - X and Y can be merged
 - src(X) not modified in (X...Y)
Constant Combining

- Combine 2 dependent ops into 1 by combining the literals
 - \(r_1 = r_2 + 4 \)
 - ...
 - \(r_5 = r_1 - 9 \rightarrow r_5 = r_2 - 5 \)
- First op often becomes dead
- Rules (ops X and Y in same BB)
 - X is of the form \(rx + \cdot K \)
 - dest(X) \(!=\) src1(X)
 - Y is of the form \(ry + \cdot K \)
 (comparison also ok)
 - Y consumes dest(X)
 - src1(X) not modified in (X...Y)

Operation Folding

- Combine 2 dependent ops into 1 complex op
 - Classic example is MPYADD
 - \(r_1 = r_2 \times r_3 \)
 - ...
 - \(r_5 = r_1 + r_4 \rightarrow r_5 = r_2 \times r_3 + r_4 \)
- First op often becomes dead
- Borders on machine dependent opti (often it is !!)
- Rules (ops X and Y in same BB)
 - X is an arithmetic operation
 - dest(X) \(!=\) any src(X)
 - Y is an arithmetic operation
 - Y consumes dest(X)
 - X and Y can be merged
 - src(X) not modified in (X...Y)

Loop Optimizations

- The most important set of optimizations
 - Because programs spend so much time in loops
- Optimize given that you know a sequence of code will be repeatedly executed
- Optis
 - Invariant code removal
 - Global variable migration
 - Induction variable strength reduction
 - Induction variable elimination

Recall Loop Terminology

- \(r_1, r_4 \) are basic induction variables
- \(r_7 \) is a derived induction variable

![Loop Termination Diagram](image)

- \(r_1 = 3 \)
 - \(r_2 = 10 \)
- \(r_4 = r_4 + 1 \)
 - \(r_7 = r_4 \times 3 \)
- \(r_2 = 0 \)
- \(r_3 = r_2 + 1 \)
- \(r_1 = r_1 + 2 \)
- store \((r_1, r_3)\)
- loop preheader
- loop header
- exit BB
- backedge BB
Invariant Code Removal

- Move operations whose source operands do not change within the loop to the loop preheader
 - Execute them only 1x per invocation of the loop
- Rules
 - X can be moved
 - src(X) not modified in loop body
 - X is the only op to modify dest(X)
 - for all uses of dest(X), X is in the available defs set
 - for all exit BB, if dest(X) is live on the exit edge, X is in the available defs set on the edge
 - if X not executed on every iteration, then X must provably not cause exceptions
 - if X is a load or store, then there are no writes to address(X) in loop

Global Variable Migration

- Assign a global variable temporarily to a register for the duration of the loop
 - Load in preheader
 - Store at exit points
- Rules
 - X is a load or store
 - address(X) not modified in the loop
 - if X not executed on every iteration, then X must provably not cause an exception
 - All memory ops in loop whose address can equal address(X) must always have the same address as X

Class Problem

Optimize this applying
1. loop invariant removal
2. global variable migration
+ other opts

- r2 = 10
- r7 = r4 * r8
- r5 = load(r10)
- r3 = 1 / r6
- r3 = r4 * r8
- r3 = r3 + r2
- r2 = r2 + 1
- store(r10,r3)
- r2 = r2 + 1
- store(r10,r3)
- store (r1, r3)

Induction Variable Strength Reduction

- Create basic induction variables from derived induction variables
- Rules
 - X is a *, <, <=, + or – operation
 - src1(X) is a basic ind var
 - src2(X) is invariant
 - No other ops modify dest(X)
 - dest(X) != src(X) for all srcs
 - dest(X) is a register

- r5 = r4 - 3
- r4 = r4 + 1
- r7 = r4 * r9
- r6 = r4 << 2
Induction Variable Elimination

- Remove unnecessary basic induction variables from the loop by substituting uses with another BIV
- Rules (same init val, same inc)
 - Find 2 basic induction vars x,y
 - x,y in same family
 - incremented in same places
 - increments equal
 - initial values equal
 - x not live when you exit loop
 - for each BB where x is defined, there are no uses of x between first/last defn of x and last/first defn of y

Induction Variable Elimination (2)

- 5 variants discussed in Mahlke thesis
 - 1. Trivial – induction variable that is never used except by the increments themselves, not live at loop exit
 - 2. Same increment, same initial value
 - 3. Same increment, initial values are a known constant offset from one another
 - 4. Same increment, know nothing about relation of initial values
 - 5. Different increments, know nothing about initial values
- The higher the number, the more complex the elimination
 - Also, the more expensive it is
 - 1,2 are basically free, so always should be done
 - 3-5 require preheader operations

Class Problem

Optimize this applying
Induction var strength red
Induction variable elim

ILP Optimization

- Traditional optimizations
 - Redundancy elimination
 - Reducing operation count
- ILP (instruction-level parallelism) optimizations
 - Increase the amount of parallelism and the ability to overlap operations
 - Operation count is secondary, often trade parallelism for extra instructions (avoid code explosion)
- ILP increased by breaking dependences
 - True or flow = read after write dependence
 - False or (anti/output) = write after read, write after write
Register Renaming

- Remove dependences caused by variable re-use
 - Re-use of source variables
 - Re-use of temporaries
 - Anti, output dependences
- Create a new variable to hold each unique life time
- Very simple transformation with straight-line code
 - Make each def a unique register
 - Substitute new name into subsequent uses

```
a: r1 = r2 + r3
b: r3 = r4 + r5
c: r1 = r7 * r8
d: r7 = r1 + r5
e: r1 = r3 + 4
f: r4 = r7 + 4
```

Global Register Renaming

- Straight-line code strategy does not work
 - A single use may have multiple reaching defs
- Web = Collection of defs/uses which have possible value flow between them
 - Identify webs
 - Take a def, add all uses
 - Take all uses, add all reaching defs
 - Take all defs, add all uses
 - repeat until stable soln
 - Each web renamed if name is the same as another web

Rename with Copy

- Renaming within a web
 - The worst case is a web spans all defs/uses
 - Want to enable some of the defs within the web to be reordered or executed in parallel
- Xform
 - Rename def
 - Rename uses for which def is the the only reaching def
 - Insert copy
 - orig_dest = new_dest

Predicate Promotion

- Predicate promotion or predicate speculation
 - Remove dependence between CMPP and predicated operation
 - Modify predicate of an operation to an ancestor predicate
 - Operation executes more often than it should, "speculated"
- x = ... if p1 \rightarrow if p2
 - Where p2 is an ancestor of p1
 - Legal if x not live on p2 – p1
 - And, ops will not cause a spurious exception

```
r1 = r2 + r3
r7 = 0
p1.p2 = CMPP.UN.UC(r1 < r5)
r4 = r5 * r6 if p1
r7 = r8 + r9 if p2
r10 = r4 + 4 if p1
r11 = r7 + 1 if T
```
Back Substitution

- Similar to rename with copy
 - Promotion alone not legal because a live value destroyed
- Rename destination, can promote to any ancestor
 - Might as well choose True
 - Substitute uses for which def is the only reaching def
- Insert copy of old_dest = new_dest if original_ped
- Again, must ensure operation will not cause a spurious exception

- Generation of expressions by compiler frontends is very sequential
 - Account for operator precedence
 - Apply left-to-right within same precedence
 - Back substitution
 - Create larger expressions
 - Iteratively substitute RHS expression for LHS variable
 - Note – may correspond to multiple source statements
 - Enable subsequent optis
 - Optimization
 - Re-compute expression in a more favorable manner

- Promotion everything to its highest predicate w/o renaming
- Promote any defs of r1, r2 that remain predicated to True using promotion with renaming

y = a + b + c – d + e – f;
r7 = 0
p1, p2 = CMPP.UN.UC(r1 < r5)
r7 = load(r8) if p2
r12 = r7 + 1 if p2
r10 = r4 + 4 if p1
r11 = r7 + 1 if T
r1 = r2 + r3
r7 = 0
p1, p2 = CMPP.UN.UC(r1 < r5)
r17 = load(r8) if T
r7 = r17 if p2
r12 = r17 + 1 if p2
r10 = r4 + 4 if p1
r11 = r7 + 1 if T
r1 = r2 + r3
r7 = 0
p1, p2 = CMPP.UN.UC(r1 < r5)
r17 = load(r8) if T
r7 = r17 if p2
r12 = r17 + 1 if p2
r10 = r4 + 4 if p1
r11 = r7 + 1 if T
r9 = r1 + r2
r10 = r9 + r3
r11 = r10 - r4
r12 = r11 + r5
r13 = r12 - r6
Subs r12:
r13 = r11 + r5 - r6
Subs r11:
r13 = r10 - r4 + r5 - r6
Subs r10
r13 = r9 + r3 - r4 + r5 - r6
Subs r9
r13 = r1 + r2 + r3 - r4 + r5 - r6
Subs r12:
r13 = r11 + r5 - r6
Subs r11:
r13 = r10 - r4 + r5 - r6
Subs r10
r13 = r9 + r3 - r4 + r5 - r6
Subs r9
r13 = r1 + r2 + r3 - r4 + r5 - r6
r1 + r2 + r3 - r4 + r5 - r6
r1 + r2
r3 - r4
r5 - r6
r13

Tree Height Reduction

- Re-compute expression as a balanced binary tree
 - Obey precedence rules
 - Essentially re-parenthesize
 - Effects
 - Height reduced (n terms)
 - n-1 (assuming unit latency)
 - ceil(log2(n))
 - Number of operations remains constant
 - Cost
 - Temporary registers "live" longer
 - Watch out for
 - Always ok for integer arithmetic
 - Floating-point – may not be!!
Fancier Tree Height Reduction

- Take advantage of literals
- Reassociate to maximize opportunities for combining literals at compile time
- Reduces amount of computation

After back subs:
\[r_{13} = r_1 + 4 + r_2 - 3 + r_3 - 6 \]
Resassociate:
\[r_{13} = (r_1 + r_2 + r_3 + (4 - 3 - 6)) \]
Simplify:
\[r_{13} = r_1 + r_2 + r_3 - 5 \]
Balance:
\[r_1 + r_2 \]
\[r_3 - 5 \]
\[+ \]
\[r_{13} \]

Apply distributive property
- \(a(b+c) = ab + bc \)
- Or the reverse
- Danger
 - Generate more operations
 - Lots of possibilities

Account for latency in balancing process
- Want latencies balanced, not the number of operations
- Multiply = 3, add = 1
- Account for operand arrival time
 - Delay use of late arriving operands

After back subs:
\[r_{13} = r_1 * r_3 + r_1 * r_4 + r_2 * r_3 + r_2 * r_4 \]

Class Problem

Assume: + = 1, * = 3

<table>
<thead>
<tr>
<th>operand</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrival times</td>
<td>r1</td>
<td>r2</td>
<td>r3</td>
<td>r4</td>
<td>r5</td>
<td>r6</td>
</tr>
</tbody>
</table>

\[r_{10} = r_1 * r_2 \]
\[r_{11} = r_{10} + r_3 \]
\[r_{12} = r_{11} + r_4 \]
\[r_{13} = r_{12} - r_5 \]
\[r_{14} = r_{13} + r_6 \]

Back substitute
Re-express in tree-height reduced form
Account for latency and arrival times

Optimizing Unrolled Loops

Loop:
\[r_1 = \text{load}(r_2) \]
\[r_3 = \text{load}(r_4) \]
\[r_5 = r_1 * r_3 \]
\[r_6 = r_5 + r_5 \]
\[r_2 = r_2 + 4 \]
\[r_4 = r_4 + 4 \]

if \(r_4 < 400 \) goto loop

Unroll = replicate loop body \(n-1 \) times.

Hope to enable overlap of operation execution from different iterations

Not possible!
Register Renaming on Unrolled Loop

\begin{align*}
\text{loop:} & \quad r1 = \text{load}(r2) \\
r3 & = \text{load}(r4) \\
r5 & = r1 + r3 \\
r6 & = r6 + r5 \\
r2 & = r2 + 4 \\
r4 & = r4 + 4 \\
\text{if} \ (r4 < 400) & \text{ goto loop}
\end{align*}

\begin{align*}
\text{iter1} & \\
r1 &= \text{load}(r2) \\
r3 &= \text{load}(r4) \\
r5 &= r1 + r3 \\
r6 &= r6 + r5 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\\n\text{iter2} & \\
r11 &= \text{load}(r2) \\
r13 &= \text{load}(r4) \\
r15 &= r11 + r13 \\
r16 &= r16 + r15 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter3} & \\
r21 &= \text{load}(r2) \\
r23 &= \text{load}(r4) \\
r25 &= r21 + r23 \\
r26 &= r26 + r25 \\
r2 = r2 + 4 \\
r4 &= r4 + 4 \\
\text{if} \ (r4 < 400) & \text{ goto loop}
\end{align*}

Register Renaming is Not Enough!

\begin{align*}
\text{loop:} & \quad r1 = \text{load}(r2) \\
r3 & = \text{load}(r4) \\
r5 & = r1 + r3 \\
r6 & = r6 + r5 \\
r2 & = r2 + 4 \\
r4 & = r4 + 4 \\
\text{if} \ (r4 < 400) & \text{ goto loop}
\end{align*}

\begin{align*}
\text{iter1} & \\
r11 &= \text{load}(r2) \\
r13 &= \text{load}(r4) \\
r15 &= r11 + r13 \\
r16 &= r16 + r15 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter2} & \\
r11 &= \text{load}(r2) \\
r13 &= \text{load}(r4) \\
r15 &= r11 + r13 \\
r16 &= r16 + r15 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter3} & \\
r21 &= \text{load}(r2) \\
r23 &= \text{load}(r4) \\
r25 &= r21 + r23 \\
r26 &= r26 + r25 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{if} \ (r4 < 400) & \text{ goto loop}
\end{align*}

Accumulator Variable Expansion

- **Accumulator variable**
 - \(x = x + y \) or \(x = x - y \)
 - where \(y \) is loop variant!!
- **Create n-1 temporary accumulators**
- **Each iteration targets a different accumulator**
- **Sum up the accumulator variables at the end**
- **May not be safe for floating-point values**

\begin{align*}
\text{loop:} & \quad r16 = r26 = 0 \\
r1 &= \text{load}(r2) \\
r3 &= \text{load}(r4) \\
r5 &= r1 + r3 \\
r6 &= r6 + r5 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter1} & \\
r11 &= \text{load}(r2) \\
r13 &= \text{load}(r4) \\
r15 &= r11 + r13 \\
r16 &= r16 + r15 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter2} & \\
r21 &= \text{load}(r2) \\
r23 &= \text{load}(r4) \\
r25 &= r21 + r23 \\
r26 &= r26 + r25 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter3} & \\
r6 &= r6 + r16 + r26 \\
\text{if} \ (r4 < 400) & \text{ goto loop}
\end{align*}

Induction Variable Expansion

- **Induction variable**
 - \(x = x + y \) or \(x = x - y \)
 - where \(y \) is loop invariant!!
- **Create n-1 additional induction variables**
- **Each iteration uses and modifies a different induction variable**
- **Initialize induction variables to \(\text{init, init+step, init+2*step, etc.} \)**
- **Step increased to \(n*\text{original step} \)**
- **Now iterations are completely independent!!**

\begin{align*}
\text{loop:} & \quad r12 = r2 + 4, r22 = r2 + 8 \\
r14 = r4 + 4, r24 = r4 + 8 \\
r16 = r26 = 0 \\
\text{iter1} & \\
r11 &= \text{load}(r2) \\
r13 &= \text{load}(r4) \\
r15 &= r11 + r13 \\
r16 &= r16 + r15 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter2} & \\
r21 &= \text{load}(r2) \\
r23 &= \text{load}(r4) \\
r25 &= r21 + r23 \\
r26 &= r26 + r25 \\
r2 &= r2 + 4 \\
r4 &= r4 + 4 \\
\text{iter3} & \\
r6 &= r6 + r16 + r26 \\
\text{if} \ (r4 < 400) & \text{ goto loop}
\end{align*}
Better Induction Variable Expansion

- With base+displacement
 addressing, often don’t need
 additional induction variables
- Just change offsets in each
 iterations to reflect step
- Change final increments to \(n \) *
 original step

Class Problem

```plaintext
loop:
  r1 = load(r2)
  r5 = r1 * r3
  r6 = r6 + r5

iter1
  r11 = load(r2+4)
  r13 = load(r4+4)
  r15 = r11 * r13
  r16 = r16 + r15

iter2
  r21 = load(r2+8)
  r23 = load(r4+8)
  r25 = r21 + r23
  r26 = r26 + r25
  r2 = r2 + 12
  if (r4 < 400) goto loop
  r6 = r6 + r16 + r26

loop:
  r1 = load(r2)
  r5 = r6 + 3
  r6 = r5 + r1
  r2 = r2 + 4
  if (r2 < 400) goto loop

Optimize the unrolled
loop

Renaming
Tree height reduction
Ind/Acc expansion
```