Regions

e Region: A collection of operations that are treated as a
single unit by the compiler
e Examples
¢ Basic block
¢ Procedure
.) ¢ Body of a loop
I CO(”QJJE(S ° Properties
¢ Connected subgraph of operations
¢ Control flow is the key parameter that defines regions
¢ Hierarchically organized

e Problem
¢ Basic blocks are too small (3-5 operations)
¢ Hard to extract sufficient parallelism
¢ Procedure control flow too complex for many compiler xforms
¢ Plus only parts of a procedure are important (90/10 rule)

Regions (2) Region Type 1 — Trace
e Want e Trace - Linear collection of basic
. . . L blocks that tend to execute in 10
e Intermediate sized regions with simple control flow sequence] \
¢ Bigger basic blocks would be ideal !! e “Likely control flow path” BB1
e Separate important code from less important ¢ Acyclic (outer backedge ok) 90 80 20
« Optimize frequently executed code at the expense of the rest * Side entrance — branch into the BB2 BB3
Soluti middle of a trace \ /
* Solution ¢ Side exit — branch out of the 80 20
» Define new region types that consist of multiple BBs middle of a trace BB4
« Profile information used in the identification e Compilation strategy 10—
. i o Compile assuming path occurs BB5 90
Sequential COI’ltI-’Ol flow (sor’Fa) 100% of the time \
* Pretend the regions are basic blocks « Patch up side entrances and 10
exits afterwards BB6
e Motivated by scheduling (i.e., |
trace scheduling) 10

Linearizing a Trace

Intelligent Trace Layout for I-Cache Performance

—1 L 10 (entry count)
' | BBL | |
80 1 20 (side exit)
90 (entry/ .| BB2 | | BB3
exit count : /
) : 8 l : 20 (side entrance)
BB4 | |
10 (side exit)
90 BB5
/§/1()(si de entrance)
BB6 |

Issues With Selecting Traces

10 (exit count)

' | BB | ! Intraprocedural code placement |
; 1_,7 Procedure positioning i tracel |
! i Procedure splittin l l
i | BB2 | ! P : =
— R
| | BB4 trace 2|
= m
| BB6
IS R trace 3
°
< S
o
BB3 °
i o
BB5 Therest
Trace view Procedure view

Trace Selection Algorithm

e Acyclic
e Cannot go past a backedge
e Trace length
e lLonger = better ? %
¢ Not always !
e On-trace / off-trace transitions
e Maximize on-trace
¢ Minimize off-trace
¢ Compile assuming on-trace is
100% (ie single BB)
¢ Penalty for off-trace
e Tradeoff (heuristic)
e Length

¢ Likelihood remain within the
trace

\10

BB1

80 20

B

BB3

B4

B2
80N~ 20
B

1(?/

BBS

10

90

BB6

10

i=0;
mark all BBs unvisited
while (there are unvisited nodes) do
seed = unvisited BB with largest execution freqg
trace[i] += seed
mark seed visited
current = seed
/* Grow trace forward */
while (1) do
next = best_successor_of(current)
if (next == 0) then break
trace[i] += next
mark next visited
current = next
endwhile
/* Grow trace backward analogously */
|++
endwhile

Best Successor/Predecessor

Class Problem 1

Node weight vs. edge weight

¢ edge more accurate

THRESHOLD

e controls off-trace
probability

e 60-70% found best

Notes on this algorithm

e BB only allowed in 1 trace

e Cumulative probability
ignored

e Min weight for seed to be
chose (ie executed 100
times)

Class Problem 2

best _successor _of (BB)

e = control flow edge w th highest
probability | eaving BB

if (e is a backedge) then
return O

endi f

if (probability(e) <= THRESHOLD) then
return 0

endi f

d = destination of e

if (dis visited) then
return O

endi f

return d

endprocedur e

\ 100

Find the traces. Assume
athreshold probability BB1
of 60%. 20 80
BB2 BB3
2N /30
BB4
51 49
BB5 BB3

10
\ 41
450 BB6 BB6
“
10

49

BB6

Traces are Nice, But ...

| 200
BB1

60 A0
/

BB2 B

BB4 BB5

B3
2 TNe s TN
25 BB

6

o5 BB7

15

BB8
[100

Find the traces. Assume
athreshold probability of 60%.

100

e Treat trace as a big BB

e Transform trace ignoring side
entrance/exits

o Insert fixup code
¢ AKA bookkeeping

¢ Side entrance fixup is more
painful

e Sometimes not possible so
transform not allowed
e Solution
¢ Eliminate side entrances
e The superblock is born

90

\10

BB1

80 20

BB2 BB3

8& /20
BB4

1(V

BB5 90

10

Region Type 2 — Superblock Tail Duplication

e Superblock - Linear collection of ¢ To eliminate all side entrances
basic blocks that tend to \ 10 replicate the “tail” portion of the \ 10
execute in sequence /in which | trace |
control flow may only enter at BB1 « Identify first side entrance BBl
the first BB %0 80 20 « Replicate all BB from the target ~ ° 80 20
¢ "Likely control flow path” BB2 BB3 to the bottom BB2 BB3
¢ Acyclic (outer backedge ok) SN 20 ¢ Redirect all side entrances to SN 20
 Trace with no side entrances BB4 the duplicated BBs g
* Side exits still exist 10 e Copy each BB only once 10
» Superblock formation * Max code expansion = 2x-1
. pl Trace selection BBS 20 where X is the number of BB in BBS 90
- Trac : 1N the trace 1&
e 2. Eliminate side entrances . - ,
BB6 ¢ Adjust profile information BB6
| |
10 10

Superblock Formation Issues with Superblocks

e Central tradeoff

10 0 : o 0
] \ = e Side entrance elimination s =
BB1 E BB1 é ° Compiler complexity E BB1 é
5 ? o Compiler effectiveness 5 ?
- L 20 - 1 20
%0 80 20 80 - JBz\\ « Code size increase 80 - }32\\
She BB3 64.8 | | . [BB3 « Apply intelligently 048 o | L2
80N~ 20 80 i 20 l « Most frequently executed BBs 80 2 |
BB4 || BB4 | . | BBa are converted to SBs 1| BB4 | g | BBY
10 [T 3872 o Set upper limit on code A D]
BBS 172 : , expansion 172 : ,
% ’ L 1.0 - 1.10x are typical cod ’ L
| T ¢ 1.0 - 1.10x are typical code ! L
10N, | i expansion ratios from SB | i
BB6 1| BB6 | i | BBE formation 1| BB6 | | BBE
] I SR S i - L e Irva —
10 238 25.2 28 2

Class Problem 3

‘ 100

BB1
20 80 Create the superblocks, trace

threshold is 60%
BB2 BB3
ZN /ao
BB4

51 49

0 BB5 BB6
! / 41
B7

450 B BB8

L] 41
10

49

