Regions

e Region: A collection of operations that are treated as a
single unit by the compiler
e Examples
¢ Basic block
¢ Procedure
. ) ¢ Body of a loop
I CO(”QJJE(S ° Properties
¢ Connected subgraph of operations
¢ Control flow is the key parameter that defines regions
¢ Hierarchically organized

e Problem
¢ Basic blocks are too small (3-5 operations)
¢ Hard to extract sufficient parallelism
¢ Procedure control flow too complex for many compiler xforms
¢ Plus only parts of a procedure are important (90/10 rule)

Regions (2) Region Type 1 — Trace
e Want e Trace - Linear collection of basic
. . . L blocks that tend to execute in 10
e Intermediate sized regions with simple control flow sequence ] \
¢ Bigger basic blocks would be ideal !! e “Likely control flow path” BB1
e Separate important code from less important ¢ Acyclic (outer backedge ok) 90 80 20
« Optimize frequently executed code at the expense of the rest * Side entrance — branch into the BB2 BB3
Soluti middle of a trace \ /
* Solution ¢ Side exit — branch out of the 80 20
» Define new region types that consist of multiple BBs middle of a trace BB4
« Profile information used in the identification e Compilation strategy 10—
. i o Compile assuming path occurs BB5 90
Sequential COI’ltI-’Ol flow (sor’Fa) 100% of the time \
* Pretend the regions are basic blocks « Patch up side entrances and 10
exits afterwards BB6
e Motivated by scheduling (i.e., |
trace scheduling) 10




Linearizing a Trace

Intelligent Trace Layout for I-Cache Performance
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Issues With Selecting Traces
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Trace Selection Algorithm

e Acyclic
e Cannot go past a backedge
e Trace length
e lLonger = better ? %
¢ Not always !
e On-trace / off-trace transitions
e Maximize on-trace
¢ Minimize off-trace
¢ Compile assuming on-trace is
100% (ie single BB)
¢ Penalty for off-trace
e Tradeoff (heuristic)
e Length

¢ Likelihood remain within the
trace
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i=0;
mark all BBs unvisited
while (there are unvisited nodes) do
seed = unvisited BB with largest execution freqg
trace[i] += seed
mark seed visited
current = seed
/* Grow trace forward */
while (1) do
next = best_successor_of(current)
if (next == 0) then break
trace[i] += next
mark next visited
current = next
endwhile
/* Grow trace backward analogously */
|++
endwhile




Best Successor/Predecessor

Class Problem 1

Node weight vs. edge weight

¢ edge more accurate

THRESHOLD

e controls off-trace
probability

e 60-70% found best

Notes on this algorithm

e BB only allowed in 1 trace

e Cumulative probability
ignored

e Min weight for seed to be
chose (ie executed 100
times)

Class Problem 2

best _successor _of ( BB)

e = control flow edge w th highest
probability | eaving BB

if (e is a backedge) then
return O

endi f

if (probability(e) <= THRESHOLD) then
return 0

endi f

d = destination of e

if (dis visited) then
return O

endi f

return d

endprocedur e
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Find the traces. Assume
athreshold probability of 60%.
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e Treat trace as a big BB

e Transform trace ignoring side
entrance/exits

o Insert fixup code
¢ AKA bookkeeping

¢ Side entrance fixup is more
painful

e Sometimes not possible so
transform not allowed
e Solution
¢ Eliminate side entrances
e The superblock is born
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Region Type 2 — Superblock Tail Duplication

e Superblock - Linear collection of ¢ To eliminate all side entrances
basic blocks that tend to \ 10 replicate the “tail” portion of the \ 10
execute in sequence /in which | trace |
control flow may only enter at BB1 « Identify first side entrance BBl
the first BB %0 80 20 « Replicate all BB from the target ~ ° 80 20
¢ "Likely control flow path” BB2 BB3 to the bottom BB2 BB3
¢ Acyclic (outer backedge ok) SN 20 ¢ Redirect all side entrances to SN 20
 Trace with no side entrances BB4 the duplicated BBs g
* Side exits still exist 10 e Copy each BB only once 10
» Superblock formation * Max code expansion = 2x-1
. pl Trace selection BBS 20 where X is the number of BB in BBS 90
- Trac : 1N the trace 1&
e 2. Eliminate side entrances . - ,
BB6 ¢ Adjust profile information BB6
| |
10 10

Superblock Formation Issues with Superblocks

e Central tradeoff
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Class Problem 3
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