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Abstract

A set X of points in R¢ is (k, b)-clusterable if X can be partitioned into k subsets (clusters) so
that the diameter (alternatively, the radius) of each cluster is at most b. We present algorithms
that by sampling from a set X, distinguish between the case that X is (k, b)-clusterable and the
case that X is e-far from being (k, b')-clusterable for any given 0 < € < 1 and for ' > b. In e-far
from being (k,b')-clusterable we mean that more than € - |X| points should be removed from X
so that it becomes (k, b')-clusterable. We give algorithms for a variety of cost measures that use
a sample of size independent of | X|, and polynomial in k and 1/e.

Our algorithms can also be used to find approzimately good clusterings. Namely, these are
clusterings of all but an e-fraction of the points in X that have optimal (or close to optimal)
cost. The benefit of our algorithms is that they construct an implicit representation of such
clusterings in time independent of | X|. That is, without actually having to partition all points
in X, the implicit representation can be used to answer queries concerning the cluster any given
point belongs to.

*An extended abstract of this work will appear in the proceedings of FOCS 2000.
fResearch supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by
the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.



1 Introduction

Clustering problems arise in many areas, and have a variety of applications (cf. [6, 24, 34, 26, 11,
39, 28, 25]). In one of its standard forms, the problem is to decide whether a given set X of n points
in d-dimensional Euclidean space can be partitioned into k subsets (clusters) so that the cost of
each cluster is at most b. The cost of a cluster can be defined as its diameter (i.e, the maximum
distance between pairs of points in the cluster), or its radius (that is, the minimum radius of a ball
containing all the points in the cluster).! If such a k-way partition exists, then we say that X is
(k,b)-clusterable (with respect to the diameter or the radius cost). Unfortunately, both decision
problems are NP-Complete for d > 2 (and variable k) [14, 29], and remain hard even when only a
certain constant approximation of the cluster size is sought [13].

In this work we consider the following relaxation of the above decision problems: For a given
approximation parameter § > 0, and distance parameter 0 < € < 1, we would like to determine
whether the set X is (k,b)-clusterable or e-far from being (k, (1 + 3)b)-clusterable. In e-far from
(k, (14 B)b)-clusterable we mean that more than an € fraction of the points in X should be removed
(or moved) so that X becomes (k, (1 + ()b) clusterable. Given this relaxation of the decision
problem, we seek algorithms that will be significantly faster than those required for solving the
exact decision problems. In particular, we ask that our algorithms observe as few points as possible
from X, and run in time sub-linear in n = |X|, or even independent of n.

We refer to algorithms that perform such relaxed (approximate) decision tasks as testing al-
gorithms: They are required to output accept if X is (k, b)-clusterable, and to output reject with
probability at least 2/3, if X is e-far from (k, (1 4+ 5)b)-clusterable. (If neither holds, the testing
algorithm may output either accept or reject). Such testing algorithms can be useful as an alterna-
tive to an exact or even approximate decision procedure when the number of points n is very large.
Even if n is not too large and there is time to run a clustering algorithm on all the points, testing
can be applied as a preliminary step in order to approximate the quality of the best achievable
clustering.

Our Results. We present and analyze testing algorithms both for the diameter cost and the
radius cost. All our algorithms run in time independent of n = | X|, and use a sample from X that
has size polynomial in k£ and e.

We describe algorithms for the Ly metric (Euclidean), as defined above, which in the case of the
radius cost easily extend to other metrics (such as L,). We also give algorithms that work under
any metric, for # = 1. With the exception of our algorithms for general metrics, all our algorithms
have the following form: They uniformly select a sample of points from X and run an exact decision
procedure for verifying whether the sample is (k, b)-clusterable. Specifically, we show:

1. For general metrics we give algorithms that work for 3 = 1. For both costs, the sample selected
is of size O(k/¢), and the running time is O(k?/¢). We also observe that any algorithm for
testing diameter clustering for 8 < 1 (under a general metric), requires a sample of size

Q(y/n/e).
~ 2d
2. For the Ly metric and the diameter cost, the sample is of size O (k—: . (%) ) A dependence

on 1/ as well as an exponential dependence on the dimension are unavoidable: We prove

!The first problem is also known as center clustering (since all points in a given cluster are at distance at most b
from the center of the bounding ball), and the second as pairwise clustering.



a lower bound of Q(3(4=1/4) on the size of the sample required for testing (for k¥ = 1 and
constant €).

3. For the Lo metric and the radius cost, the algorithm works for 8 = 0 and the sample size is
N (dk
O ().
In Items 2 and 3 we only stated the size of the sample selected by the algorithms. The running

times depend on the exact decision procedures applied, and given the difficulty of the problems is
exponential in k£ and d.

In addition to the above, our algorithms can be used to obtain approximately good clusterings.
A k-way partition P is an e-good (k,b')-clustering of X if it is a partition having cost at most b’ of
all but at most an ¢ fraction of the points in X. If X is (k,b)-clusterable, then using our testing
algorithms, it is possible to obtain in time independent of n an implicit representation of an e-good
(k, (1 + B)b)-clustering of X. Namely, given this implicit representation we can determine for any
given point x € X, the cluster it belongs to. This can be done in time O(k) per point (or even
O(log k), depending on the cost measure). For example, in the case of radius clustering, the implicit
representation is simply a set of k cluster centers. The benefit of such an implicit representation
is that it allows to answer queries of the form: “do points z,y € X belong to the same cluster?”
without actually having to partition all points. This approach was previously applied in [17] to
graph partitioning problems and a related approach was applied in [15].

Independently from our work, Mishra, Oblinger and Pitt [30] study the problem of approxi-
mately good clustering when the cost measure is the sum of distances (or distances squared) to the
cluster centers. Their algorithms use a sample of size independent of n and polynomial in 1/, d,
k and M, where the points belong to [0, M]<.

Techniques. The following approach is a common thread passing through the analysis of most
of our algorithms. Recall that our algorithms work by sampling from X. The sample is viewed as
being selected in phases, where we show that with high probability, in each phase certain progress
is made. In particular, in case X is e-far from being (k, (1 4+ (3)b)-clusterable, this progress leads
to rejection after a bounded number of phases. For example, in the case of the diameter cost and
a single cluster (k = 1), progress is measured in terms of reducing the volume of the region in R¢
which contains all points having distance at most b from every sample point.

For the radius cost under the Lo metric, our analysis uses e-nets and their relation to the VC-
dimension of families of sets. This relation was previously exploited both in the context of learning
and in the context of computational geometry.

Perspective. In this paper we approach the problem of clustering from within the framework of
Property Testing [37, 17]. In property testing the goal is to decide whether a given object (e.g.,
graph or function) has a predetermined property (e.g., connectivity or monotonicity), or is far
from having the property. The notion of being far from having the property depends on the type
of object considered. For example, if the object is a graph, then we say that it is far from having a
particular property if many edge modifications should be made so that it obtains the property. In
“many” we mean at least a certain fraction e of all edges in the graph.

Previous work in property testing has mainly dealt with properties of functions [8, 37, 36, 12,
27, 16, 9] and properties of graphs [17, 18, 19, 3, 32, 4, 7]. Recently, Alon et. al. [5] gave a testing
algorithm for membership of strings in regular languages, and Ergun et. al. [12] study problems
related to testing convexity in two dimensions.



Here we further extend the scope of property testing to the domain of clustering problems.
Our proof techniques combine geometric analysis with probabilistic analysis that is characteristic
of work in property testing. We thus hope to enrich both areas of research.

Other Related Work. Hochbaum and Shmoys [23] were the first to show that it is hard to
approximate the cost of an optimal clustering to within a factor of 2 for a general distance function.
They also give a 2-approximation algorithm for the problem [22, 23]. As noted above, Feder and
Greene [13] show that constant approximation is also hard for Ly and L., metrics (where the
specific constants depend on the metric and cost measure used). An approximation factor of 2 can
be achieved efficiently for all geometric variants we consider [20, 13]. For the radius cost, and under
both Lo and Ly metrics, Agrawal and Procopiuc [1] give an algorithm for finding a clustering
having cost at most (1 + ) larger than optimal in time O (n -log k + (k/ﬂ)o(dzkl_l/d)). For more
information on clustering, see [10, 2, 33] and references within.

Organization. In Section 2 we introduce the notations and definitions that are used in the
paper. In Section 3 we discuss testing when the underlying distance function is a general metric.
In Sections 4 and 5, we present the algorithms that work under the Lo metric, for the diameter
cost and the radius cost, respectively. In Section 4 we also give our lower bound for the diameter
cost. Results for one dimension are given in Section 6.

2 Preliminaries

We denote by dist(z,y) the distance between two points z,y. We follow the standard practice of
assuming that the distance between a pair of points can be computed in constant time. Since most
of this paper deals with the Ly metric, in what follows we refer to the FEuclidean distance. Thus, if
z,y € R that is z = (z1,...,24) and y = (y1,...,¥aq), then the Euclidean distance between z and
y is dist(z,y) © /X (0 — 3:)”

Given a subset S C X, denote by d(S) the diameter of S, that is, the maximum distance
between any two points in S. Denote by r(S) the radius of the smallest ball containing S. That
is, 7(S) = minycpa maxges dist(z,y). The point y € R for which the minimum radius is achieved
is the center of the minimum bounding ball of S.

Let P = (X',...,X*) be a partition of X. The diameter of the partition P is defined as
D(P) = max; d(X7). The radius of P is defined as R(P) = max; r(X7).

For such a k-way partition P of X, we consider the following two cost measures:

1. DIAMETER CosT: Cost(P) = D(P).
2. Rapius CosT: Cost(P) = R(P).

Hence, a set X is (k,b)-clusterable according to one of the above cost measures if there ezists
a k-way partition P = (X',..., X*) of X such that Cost(P) < b. The set is e-far from being
(k, (1 + B)b)-clusterable for a given 0 < e <1 and 3 > 0, if for every subset Y C X of size at most
(1 —€)|X|, and for every k-way partition Py = (Y'!,...,Y*) of Y, we have Cost(Py) > (1 + 3)b.

Since all our algorithms have one-sided error, we shall use the following definition of testing
algorithms for clustering. We say that an algorithm is a Diameter- Clustering (Radius-Clustering)



Tester if given access to points in a set X C R¢ and parameters k, b, €, and 3, the algorithm
accepts X if it is (k,b)-clusterable with respect to the diameter cost (radius cost), and rejects X
with probability at least 2/3 if it is e-far from being (k, (1 + 3)b)-clusterable.

3 Testing of Clustering Under General Metrics

We begin by describing an algorithm for testing diameter clustering when the underlying distance
function is any metric and § = 1. The algorithm distinguishes between the case in which X is
(k,b)-clusterable, and the case in which X is e-far from (k,2b)-clusterable, under the assumption
that the distances between points in X obey the triangle inequality. The basic idea of the algorithm
is to try and find points in X that are representatives of different clusters. That is, their pairwise
distances are greater than the allowed diameter b. In case X is (k, b)-clusterable then there can be
at most k such representatives. On the other hand, as we show in the analysis of the algorithm, if
X is e-far from (k,b)-clusterable, then with probability at least 2/3 the algorithm will find k + 1
such representatives. The algorithm for the radius cost as well as its analysis, are very similar.
Furthermore, a certain refinement of this idea serves as a basis for the analysis of some of our other
algorithms.

Algorithm 1 (general metric, diameter cost, k > 1, 8 = 1)

1. Let repy be an arbitrary point in X (a representative for the first cluster).
2. i < 1; find-new-rep < TRUE.
3. while i < k + 1 and find-new-rep = TRUE do

(a) Uniformly and independently select a sample of size In(3k)/e.

(b) If there exists a point x in the sample, such that dist(z,rep;) > b for every j < i, then
i <1+ 1 and rep; = z.

(c) Else (all points in the sample are at distance at most b from some rep;), find-new-rep
+ FALSE.

4. If i < k then accept, otherwise, reject.

Since there are at most k iterations of the while loop, and in each iteration the algorithm
computes at most k - In(3k) /e distances, the running time of the algorithm is O(k? log k/e)

Theorem 1 Algorithm 1 is a diameter-clustering tester for =1 under any metric.

Proof: We first observe that the algorithm rejects only if it finds k£ + 1 points whose pairwise
distances are all greater than b. Therefore, if X is (k,b)-clusterable, then the algorithm never
rejects. Hence, from now on assume that X is e-far from (k, 2b)-clusterable, and we show that the
algorithm rejects with probability at least 2/3. That is, we show that with probability at least 2/3,
in every iteration a new representative is found, resulting in k£ + 1 representatives.

Consider any particular iteration. We say that a point z € X is a candidate representative with
respect to repq, ..., rep; if it has distance greater than b from each of these points. We claim that as
long as 7 < k, there must be more than en such candidate representatives. Assume in contradiction



that there are at most en such points. Then we could remove these points from X, and for every
other point y € X, assign y to a cluster j such that dist(y,rep;) < b. By the triangle inequality,
the diameter of each resulting cluster is at most 2b, which contradicts our assumption concerning
X. Now, if we uniformly select In(3k)/e points from X, then the probability that no candidate
representative is selected is less than (1 — €)"(3%)/¢ < exp(—e(In(3k)/e) = ﬁ The probability that
this occurs in any iteration is at most 1/3, and the theorem follows. W

Finding an approximately good clustering. Suppose X is (k,b)-clusterable and so the al-
gorithm terminates with at most K representatives rep;,...,rep;. By the above analysis, with
probability at least 2/3, the algorithm does not terminate as long as the number of candidate
representatives with respect to repy,...,rep; is greater than en. This implies that with probability
at least 2/3, the final representatives have the following property: They define an implicit repre-
sentation of a partition having diameter at most 2b of all but at most an e-fraction of the points
in X. That is, excluding the at most en points that are candidate representatives (i.e., that are at
distance greater than b from the at most k representative rep,...,rep;), every other point z € X
can be assigned to some cluster j for which dist(z, repj) <'b. The time required to find the cluster
a given point belongs to is O(k).

A Lower Bound for 8 < 1. If all that is known about the distance function between points in
X is that it obeys the triangle inequality, then the above result is tight in the following sense. It
is not possible to test for diameter clustering for 8 < 1 using a sample of size independent of n or
even of size o(y/n). To see why this is true consider a metric that is defined by a complete graph
on N = 2n vertices with the following weights (distances) on the edges. There exists a perfect
matching between the vertices such that each edge in the matching has weight 2, and every other
edge has weight 1. If X corresponds to any subset of size n of the vertices such that no two vertices
in X are matched, then X is (1,1)-clusterable. On the other hand, if X contains more than en
pairs of matched vertices, then it is e-far from (1,2 — §)-clusterable for any § > 0. However, in order
to distinguish between the two cases with non-negligible probability, the algorithm has to sample

Q(y/n/e) vertices.

Testing Radius Clustering Under General Metrics. The algorithm for radius clustering is
the same as Algorithm 1 except that a point is selected as a new representative only if it is at
distance greater than 2b from each representative selected so far. By the triangle inequality, if X is
(k, b)-clusterable then there can be at most k representatives. On the other hand, if X is e-far from
(k, 2b)-clusterable, then as long as i < k there must be more than en candidate representatives (as
the previous representatives can serve as cluster centers). Hence the analysis of the radius-clustering
algorithm follows the same lines as that of the diameter-clustering algorithm. Furthermore, as in
the case of diameter clustering, here too we can use the representatives found by the algorithm to
induce an approximately good clustering of X.

4 Testing of Diameter Clustering Under the L, Metric

4.1 Thecasek =1

We start by studying the problem of testing for a single cluster. In the next subsection we generalize
the algorithm presented here and its analysis to any number of clusters k.



Algorithm 2 (L, metric, diameter cost, k=1, d>1,0< 3<1)

d
1. Uniformly and independently select m = © <% -d®?1og(1/) (%) ) points in X.

2. If the distance between every pair of points in the sample is at most b then accept, otherwise
reject.

Step 2 of the algorithm can clearly be done in time O(m?). If d < 3 the problem can be solved
in time O(mlogm) [35].

Theorem 2 Algorithm 2 is a diameter-clustering tester for k = 1 under the Lo metric.

We shall use the following lemma. For an illustration see Figure 4.1.

C l\
l’ w
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S

Figure 1: An illustration for the proof of Lemma 1.

Lemma 1 Let C be a circle of radius at most b. Let s and t be any two points on C, and let o be
a point on the segment connecting s and t, such that dist(s,0) > b. Consider the line perpendicular
to the line through s and t at o and let w be its (closer) meeting point with the circle C. Then
dist(w, 0) > dist(o,t)/2.

Proof: Denote by £ = dist(o,t) and ¢ = dist(w,0). We place the center of the circle C at the
origin (0,0), and set the y axis to be parallel to the line connecting s and ¢. Let r < b be the
radius of C. If we denote the y coordinate of ¢ by 7, then its z coordinate is @ = /72 — n2. Given
the distances between the points (and the orientation of the coordinate system), the point o is at
coordinates (a,n — £), and the point w at (a + £, — £). Since w is on the circle, we must have

(a+0) +(n—072=1? (1)

U=1\/r2—(n—10)2 -« (2)

If we now substitute a = /72 — 12 we get

¢ = \/TQ—(n—E)Q—\/ﬂ—nQ

which implies that




= (=0 - (* =)
VT = O+ T

_ n° — (n—€)?
Vit = =02+ r? -1’
B £(2n —¢)
IRV UV Tk
£(2n—¢)

> 2r
Since s and t are both on the circle and dist(s,t) = dist(s,0) + dist(o,t) > b+ £, we have that
2n > b+ £. Hence, since r < b, we obtain that ¢ > £/2 as claimed. H

Proof of Theorem 2 for d = 2. We start by proving the theorem for two dimensions, and then
show how it generalizes to any d dimensions. Clearly if X is (1,b)-clusterable then the algorithm
accepts. We thus focus on proving that if X is e-far from being (1, (1 + )b)-clusterable then the
algorithm rejects with probability at least 2/3.

We shall view the sample as being selected in p = 27/3% phases, where in each phase O (log(p)/¢)
points are selected (uniformly and independently). We shall show that with high probability over
the choice of the sample, in each phase certain progress is made. The progress is such that after at
most p phases, the diameter of all sample points is greater than b (causing the algorithm to reject).
For each 1 < j < p, let U; denote the union of all points selected in the first j phases. We shall
need the following definitions.

Definition 1 e For any given point x € R2, let C, denote the circle of radius b centered at .

o For a given (finite) set T C R2, let I(T) denote the intersection of all circles Cy of points
zeT.

e For any region R in R2, let A(R) denote the size (area) of R.

By the above definition, for each phase j, every point y € I(U;) is at distance at most b from every
point in the sample selected so far. If in phase j + 1 a new sample point z falls outside I(U}), then
the algorithm rejects, as this means that the new point is at distance greater than b from some
sample point. Otherwise, z € I(U;), and we consider the decrease in the area of the intersection
caused by the addition of z. That is, A(I(U;)) — AI(U; U{z})) = A(I(U;) \ Cy)-

Definition 2 We say that a point x € X is influential with respect to I(U;) if x & I(U;) or if x
causes a significant decrease in the area of I(U;). Namely, if the area A(I(U;)\ Cy) that is removed
from the intersection, is greater than (8b)?/2.

We claim that if X is e-far from being (1, (1 + 3)b)-clusterable, then for every 1 < j < p—1,
in phase j + 1 there are at least en points in X that are influential with respect to I(U;). Subject
to this claim, if the sample in each phase is of size at least In(3p)/¢, then the probability that an
influential point is not selected in a fized phase, is at most

(1 —e)"CP/¢ < exp(—1n(3p)) = 1/(3p) -

Hence, the probability that for some phase no influential point is selected is less than 1/3.



Thus, assume from now on that for every 1 < j < p — 1, the sample selected in phase j + 1
contains an influential point z with respect to I(U;). As stated above, if x ¢ I(U;) then the
algorithm rejects. Otherwise, z decreases the area of I(U;) by at least (3b)?/2. However, since the
area of the initial circle (defined by the first sample point) is 7b?, then the number of phases in
which such a decrease can occur is at most p = 27/32.

In order to complete the proof Theorem 2 (for d = 2), we must show that for every 1 < j < p—1,
there are at least en points in X that are influential with respect to I(U;). Assume contrary to the
claim that there are at most en influential points with respect to some I(U;). Then we can remove
these (at most) en influential points from X. The points that remain in X all belong to I(Uj), and
as the following lemma shows, they form a cluster of diameter at most (1 + )b, in contradiction
to our assumption on X.

Lemma 2 Let T be any finite subset of R2. Then for every z,y € I(T) such that x is non-
influential with respect to T, dist(z,y) < (1 + B)b.

Proof: It is clear of course that if y € C, then dist(z,y) < b. Therefore, let y € I; \ Cy. Consider
the line through z and y, and let o be the point where it intersects with C,. Then,

dist(z,y) = dist(z, 0) + dist(o,y)-

Clearly dist(z,0) = b. Thus, we want to show that dist(o,y) < (b.

Let us draw the tangent to C, at o and let z and w be the first two points it meets on
the boundary of I;. The points y,w,z define a triangle 7', whose height is A = dist(o,y). Let
£y = dist(w, 0), and £ = dist(z,0). Thus, the length of the base of the triangle S is £; + £5. Let
A(T) denote the area of T'. Since T' C I; \ Cy, and z is non-influential, then

h(€y + £3) < (8b)?
2 - 2
We will now show that A < ¢ + £2, and from this conclude that A < 8b as required.

We prove that #; > h/2. Let C; be the circle on which w sits, and let s and ¢ be the intersection
points of the line connecting z and y with the circle C; (see Figure 2).

We have, dist(o,t) > h and dist(s,0) > b. We can thus apply Lemma 1, and get that

A(T) = (3)

¢, = dist(w, 0) > dist(o,t)/2 > h/2.

In an analogous way we can show that £ > h/2. This implies that h < 2min(4y,4y) < 41 + £s.
By Equation (3) we can conclude that:

h(fl +£2) < (,Bb)2.

<
- 2 2

h2
2
|

Extending the Proof to Higher Dimensions. For each sample point = let B, denote the
d-dimensional ball of radius b centered at z. Let I(U;) be the intersection of all balls centered at
points selected in phases 1 to j, and let V(I(U;)) denote the volume of the intersection. Let Vj



Figure 2: An illustration for the proof of Lemma 2. The circles C,, and C; are as defined in the proof. The
circles Cy and C3 denote additional circles defined by points in the sample.

denote the volume of the d-dimensional unit ball. Here we shall say that a point z is influential
with respect to I(U;) if = ¢ I(U;), or if the volume removed by z is at least

V({I{U)) -V{I{U;U{z})) = VI({Uj)\ By)

(Bb) - Vy_y
d-24-1

Since the volume of the initial ball of radius b (defined by the first sample point) is V- b%, then the
number p of phases required is at most

st () o (4))

Once again, the following lemma, completes the proof of Theorem 2 for any d > 2.

Lemma 3 Let T be any finite subset of R?. Then for every z,y € I(T) such that x is non-
influential with respect to T, dist(z,y) < (1 + G)b.

Proof: Let y € I; \ B;. Consider the line through = and y, and let o be the point where it
intersects with B;. Then,
dist(z, y) = dist(z, 0) + dist(o,y),

where dist(z,0) = b. Again we show that h = dist(o,y) < (b.

Consider some plane that passes through the line defined by  and y. Draw in this plane the line
tangent to B, at o. Let z and w be the first two points that this line meets on the boundary of I;.
Notice, that any such plane intersects each of the d-dimensional balls defining I; in a circle of radius
at most b. Thus, we can again use Lemma 1, and prove (as in Lemma 2), that dist(z,0) > h/2 and
dist(w, 0) > h/2. This will be true for any plane passing through the line defined by z and y.



Therefore, a (d — 1)-dimensional ball of radius h/2 is contained in the intersection of I; \ B,
with the (d — 1)-dimensional hyperplane tangent to B, at o. Thus, the cone of height & whose base
is this (d — 1)-dimensional ball of radius h/2 is contained in I; \ B,. The volume of this cone is

h(h/2)d’1Vd_1
d
and since z is non-influential we have
h(h/2)4 1 Vy_4 < (Bb)4 - Va1
d - d-2d-1

Thus, h < b as required. W

4.2 General k

The algorithm for k£ > 1 is a generalization of the algorithm for k£ = 1.
Algorithm 3 (L, metric, diameter cost, k > 1,d>1,0< 3<1)
: : k2 log k 2% L
1. Uniformly and independently select m = © o d- (3) points in X.

2. If there ezists a k-way partition P of the sample for which D(P) < b, then accept. Otherwise,
reject.

Verifying whether there exists a k-way partition of m points having diameter at most b can
be done in time (O(m))%**[38]. The basic observation is that we may consider only partitions for
which the convex hulls of the different clusters are disjoint. This is true since given a minimum
diameter partition for which some point in cluster i belongs to the convex hull of cluster ', we can
move this point from cluster 7 to cluster i without increasing the diameter. Thus, in Step 2 the
algorithm enumerates all such partitions of the sample and computes their diameter. This is done
by considering all choices of (g) hyperplanes among the O(m¢*t!) hyperplanes that separate the m
sample points, and then merging subsets of points that fall in the resulting regions into k clusters.

Theorem 3 Algorithm 3 is a diameter-clustering tester under the Ly metric.
We start by extending the notion of influential points.

Definition 3 Let Ps = (S',...,S*) be a partition of a subset S C X. We say that a point = is
influential with respect to Ps if either z ¢ UF_, I(S?) (that is, = is at distance greater than b from
some point in every S*), or for every S*:

(Bb)? - Vy_s
d- 201

(that is, the volume of 1(S*) is reduced significantly by x for every S*). Let Y (Ps) C X denote the
set of all points that are influential with respect to Pg.

V(I(S)\ By) >

Claim 4 Suppose X is e-far from (k, (1+ B)b)-clusterable, and let Ps = (S',...,S*) be a partition

of some S C X. Then for any given 0 < & < 1, with probability at least 1 — §, a uniformly and
independently selected sample of size s > M contains at least one point y € Y (Ps).
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Proof: By Lemma 3, if X is e-far from (k, (1 4+ §)b)-clusterable, then necessarily |Y (Ps)| > en.
Otherwise, we could remove all influential points and assign each other point z € X to a cluster ¢
such that z is non-influential with respect to S*. This would result in a k-way partition of all but
at most an € fraction of the points in X, that has diameter at most (1 + 3)b.

In(1/4)

Therefore, the probability that a sample of size s > will not contain any point in Y (Ps)

is at most (1 —€)® < exp(—e- s) =0, as desired. W

Proof of Theorem 3: Once again, if X is (k, b)-clusterable, then the algorithm always accepts.
We thus focus on the case in which X is e-far from being (k, (1 + 3)b)-clusterable.

As in the proof of Theorem 2, we view the sample as being selected in phases. Let p =
O(Vd - (2/6)%) be the number of phases sufficient for the k = 1 case, and let p(k) = k- (p + 1) be
the number of phases used here in the analysis of k > 1. Let m; be the size of the sample selected

in the j’th phase, where E’;ﬁ? m; = m. Let U; denote the union of all samples selected in the first
J phases. Thus, U = Uy, is the complete sample.

Our goal is to show that with probability at least 2/3 over the choice of the sample, for every
partition P of Uy we have D(P) > b. To this end we define a family of influential partitions. For
each phase j there is a sub-family of influential partitions that correspond to that phase. These are
partitions of subsets of U;. We show that with probability at least 2/3, for every phase j and every
influential partition p corresponding to that phase, the sample selected in the next phase contains
an influential point for P. This will imply that after at most p(k) = k(p + 1) phases, the diameter
of each influential partition, and consequently of every partition of the sample, is greater than b.

We define the influential partitions in an inductive manner. In the initial phase (phase 0) there
is a single influential partition of a sample of size 1 (i.e., my = 1). Suppose that for each influential
partition P = (S1,..., S¥) in phase j — 1, the j’th sample contains a point from Y (P), and let us
denote this point by y(P). (If there is more than one such point then y(P) is defined as the one
having the smallest index.) Then in phase j we shall have the k influential partitions

(S* U {y(P)},S?%,...,8%)---(8',...,8% 1 Sk U {y(P)})

This implies that the total number of influential partitions in phase j is at most k7.

We now apply Claim 4 to each one of the £/~! influential partitions in phase j — 1 (that have
diameter at most b). If
(j — 1) Ink + In(3p(k))
€

mj:

then with probability at least 1 — #(k)’ the j’th sample in facts contains a point y(P) € Y (P) for

every influential partition P in phase j — 1. Setting

p(k) 2
N PR -logk+p(k)10gp(k)>
xm oo

- 0 (’“2 lfgk d- (2/5)2d>

we get that with probability at least 2/3, the j’th sample contains a point y(P) € Y (P) for every
phase j and every influential partition P from phase 7 — 1.

Assume the above event in fact holds and so in particular the influential partitions are well
defined. We now show that this implies that after at most p(k) phases, the diameter of every
partition of the sample must be greater than b.

11



Consider any partition P = (U;(k), ,Uk( )) of Upx), and let P; = (U1 . Uk) be its restric-

tion to Uj. That is, U =U! p(k) NU;. We claim that there must exist a sequence of influential
partitions P, .. (k), where P (S yen Sk) so that the following holds. For every i, SZ C UZ

and for some 1, S; = S;_l U {y( ]_1)}. This follows immediately by induction on j: The base of
the induction, j = 0 is clear. We assume it is true for j — 1, and prove it for j. Let 1 <17 < k be
such that y(P;_1) € U. Then welet P; = (S1_y,...,Si_, U{y(Pj_1)},...,Sk), which by definition
of the influential partitions is a 1nﬂuent1al partition.

Let us fix the above sequence of influential partitions. Since there are p(k) = k - (p + 1) phases,
there must be some 1 < ¢ < k such that in at least p+1 phases ji, ..., jp+1, S;-t = SZ 1 U{y(Pj—1)}
(the first such phase will cause S}, to be non- -empty). But by our analysis of the k =1 case, this
implies that d(S, ) > b. Since S}, C U’ b(k)> We have that d(U’(k)) > b, and so D(P) > b. Since
the above holds for every partition P of U = Uy, the theorem follows. W

4.3 Finding an Approximately Good Clustering

Similarly to what was shown in the previous section, if X is (k,b)-clusterable, then the testing
algorithm can be used to find an implicit representation of an approximately good (k, (1 + §)b)-
clustering of X. Here the process is slightly more complex.

Recall that for a set T of points in #¢, I(T') denotes the intersection of all d-dimensional balls
B, having radius b that are centered at points z € T'.

Definition 4 Let Ps = (S',...,S*) be a partition of a subset S C X. A point z € X is good with
respect to Ps if there exists an inder 1 < i < k such that x € I(S?) and dist(z,y) < (1 + B)b for
every y € I(S%). Otherwise, x is bad with respect to Ps.

A partition Pgs is a-bad for a given 0 < a < 1, if the number of bad points with respect to Pg
is greater than an. Otherwise, Ps is a-good.

Observe that given a subset S C X and a partition Pg of S that is e-good, Pg can be used to
induce an e-good (k, (1 + 5)b) clustering of X. Also note that by Lemma 3 if a point z is bad with
respect to a partition Pg, then z must be influential with respect to Ps.

Algorithm 4 (Approximately good clustering, diameter cost)

1. Call Algorithm 3 with a sample of size m = O d5/2 k2 <2) log( )
B epB
2. Let P be the k-way partition of the sample that is found by Algorithm 3 (if such a partition
is found).

3. View the sample as being selected in p(k) = O(k - Vd - (2/B)?) phases, where U; denotes the
union of all samples selected in the first j phases, and |U;| = (% (d k? - log M)). Let
Pj be the restriction of P to U;. That is, if P = (U*,...,U¥), then P; = (U'NU;, ..., UNU;).

4. Take an additional sample of size ©(log(p(k))/e€), and count the number of bad points in this
additional sample with respect to each partition Pj.2

2Checking whether a point is bad with respect to a given partition can be done by linear programming.
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5. Select the restriction Py that has the smallest number of bad points in the sample and use it to
induce the partition of X. That is, if Py = (Ugl, . ,U;“), then for every x € X, if there exists
an index i such that x € I(U}) and dist(z,y) < (1+ B)b for every y € I(UL), then assign z
to cluster 1.

Notice that the above algorithm calls Algorithm 3 with a sample of size slightly larger than what
was needed in the proof of Theorem 3. We shall return to this issue at the end of this subsection.

Theorem 4 With probability at least 2/3, the selected partition Py is e-good.

Definition 5 Let S C X be a set of points. A partition Ps = (S1,...,8%) of S is called a convex-
partition if the convex hulls of the different S*’s are disjoint.
Lemma 5 There exists a constant ¢ such that for any fized set S, with probability at least 1 — —

6p(k)’
d'kZ'ln(dSL)Hn((sp(k)) contains at least one bad point with respect to each (e/2)-bad

a sample of size s =
convez partition of S.

Proof: Let @ be any fixed (¢/2)-bad convex partition of S. The probability that a sample of size
s as stated in the lemma does not contain a bad point with respect to @ is at most (1 — (€/2))* <

exp(—(€e/2)s) = m. It remains to verify that the number of convex partitions of S is at

most (c|S|)%” for some constant ¢. Each convex partition of S can be defined by a selection of (g)
hyperplanes among the O(|S|¢*!) hyperplanes that separate |S| points in d dimensions, and then
merging subsets of points that fall into the resulting regions into k£ clusters. The total number of
convex partitions is hence O(|S|)%**. W

Lemma 6 With probability at least 5/6, if we select a sample of size
5
dz k> [2\¢ d-k
m—@< = (5) m(m))

then for every phase j and for every convex partition Q of U; that is (e/2)-bad, the sample selected
in phase j + 1 contains at least one bad point with respect to Q.

Proof: Let m; be the size of the (additional) sample selected in phase j, so that |U;| = |Uj—1|+m;,
and where |Ug| = 1. If we apply Lemma 5 with § = U;_; and m; = s, then it is not hard to verify

that
c-d K -j-(6p(k))) _

€

.
IUjIS?](d-kz-log

Since p(k) = ©(k - Vd - (2/8)?), we have that |Upeyl = O (% d5? K3 (2/3)% - log %) . Hence, if
we take a sample of size m = |Upy)| then the probability that for some 1 < j < p(k), and some
(€/2)-bad convex partition of Uy, the (j + 1)-sample does not contain a bad point with respect to

the partition, is at most p(k) - 6(171(16) =1 =

6

Corollary 7 With probability at least 5/6, there exists an index 1 < a < p(k) such that the
restriction P, is (€/2)-good.
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Proof: Algorithm 3 finds an optimal partition P of the sample by enumerating all convex partitions
of the sample. Since the partition P that Algorithm 3 finds is convex, so is each of its restrictions
P;.

By Lemma 6, with probability at least 5/6, the sample selected in each phase contains a bad
point with respect to every (e/2)-bad convex partition of the sample selected so far. Suppose that
this in fact happens. Then there exists a phase 1 < a < p(k), such that the restriction P, is (¢/2)-
good. Otherwise, since every bad point is an influential one, then similarly to what was argued in
the proof of Theorem 3, the partition P could not have diameter at most 5. W

Proof of Theorem 4: Let P, be an (¢/2)-good partition guaranteed with probability at least
5/6 by Corollary 7. Then, the probability that the partition P, selected by Algorithm 4 is e-good
is lower bounded by the probability that the following two events both occur: (1) For every e-bad
partition P, the fraction of bad points in the sample is greater than 3¢; (2) For the (e/2)-good
partition P,, the fraction of bad points in the sample is at most %. Clearly, if both events occur
than the selected partition cannot be e-bad. In order to lower bound the probability that both
these events occur, we upper bound the probability that either one of them does not occur. By
applying a multiplicative Chernoff bound, and using the fact that the number of e-bad partitions
is less than p(k), we get that a sample of size ©(log(p(k))/e) ensures that the probability that one

of them does not occur is at most 1/6.

Adding the two sources of failure, that is, the probability that there is no (e/2)-good partition
P,, and the probability that the selected partition P; is e-bad (given that an (e/2)-good partition
P, exists), we get a total of 1/3 failure probability. W

As noted previously, the size of the sample used here is larger than that used in Algorithm 3.
The reason is that in the analysis of Algorithm 3, we used influential partitions, while here we
use convex partitions, whose number is larger. We could not see how to use the former in our
(constructive) argument here.

4.4 A Lower Bound for Testing Diameter Clustering

Theorem 5 For any § > 0, any algorithm that determines with success probability at least 2/3
whether X is (1,b)-clusterable or %—far from being (1, (1 4+ B)b)-clusterable with respect to the di-

1) (d—1)/4 .
ameter cost, must sample Q ((ﬁ) ) points from X.

In order to prove the theorem we shall need the following lemma.

. . d ., . 1 d—1
Lemma 8 For any dimension d, value 7 € R% and § > 0, it is possible to choose Q [ Vd - (3)

antipodal pairs of points on the surface of the (d — 1)-dimensional sphere of radius r, where the
distance between any two points is larger than 6 - r.

Proof: We choose the pairs one by one in the following way. Choose a pair of antipodal points
that are of distance greater than § - r from all points chosen so far. Continue to choose antipodal
pairs in this way as long as possible.

We claim that the (d — 1)-dimensional caps of radius § - r centered at the points we chose, cover
the surface of the (d — 1)-dimensional sphere of radius . Otherwise, if there exists a point that is
not covered, then it must also be the case that its antipodal point is not covered, and thus we can
add an additional pair of antipodal points.

14



Let 6 be the angular diameter of a cap of radius ¢ - r, and let 8y = 7/2 — §/2. Then, § =
V2 — 2sinfy. Hence, the ratio between the surface area of a (d — 1)-dimensional sphere of radius
r and the surface area of a cap of such a sphere of radius ¢ - r is:

ff7/32 cos?2 ¢ dt
fgg/Q cosd—2t dt

The numerator is ©(1/v/d) and the denominator is equal to

w/2 w/2 _
/ cos? 2t dt = / (1 — sin? t)¥ cost dt
0

90 0

/2 d—3
< / (2(1 —sint)) 2 cost dt
0

0

12 41 |T/2
= ——«———(2(1 —sint)) 2
3 ao Ca st
1 _
(5d71
- d-1

d—1
Hence the number of points we can choose is €2 (\/E (%) ) |

Proof of Theorem 5: Consider the d-dimensional ball of radius r, where r is slightly greater
than (1 + £)b/2. By definition, the distance between any two antipodal points on the surface of

d—1
this ball is greater than (1 + ). By Lemma 8 we can choose (2 (\/c_l . <%) ) antipodal pairs of

points on the surface of this ball, such that the distance between any two points is at least ¢ - 7.

2y/B2+6) _ ¢

Thus, by Pythagoras Theorem if we choose § > — 7 (v/B) then the distance between any
two points that are not antipodal is at most b.

d—1
Let us fix such a selection of s = Q2 (\/c_i . (L) ) antipodal pairs of positions on the surface

VB

of the ball, and suppose X is such that we have n/(s/2) points in each position.® Clearly, X is %-far
from being (1, (1 4+ B)b)-clusterable. However, by the “birthday paradox” (see for example [31]),
with high probability, a sample of size c-+/s will not contain a pair of points in antipodal positions
(for some constant ¢ < 1). That is, all points in the sample will be at distance at most b from each
other. This implies that our “natural” algorithm (and actually any algorithm having one-sided

d—1)/4
error) requires 2 ((%)( / ) sample points.

To prove the claim for any algorithm, we can apply an argument similar to that used in the
lower bound proofs of [18]. Here we sketch the idea. We define two families of sets of n points,
where in the first family all sets are far from being (1, (1 + 3)b)-clusterable, and in the second
family all sets are (1,b)-clusterable. The first family is defined by all namings of the n points on
the surface of a d-dimensional ball as defined above. In the second family, a set X is defined by

3In order that X be an actual set and not a multiset, we can place the points at slightly different but very close
positions. Note that our algorithms do not rely on the points in X being different from each other (or at any minimal
distance from each other).
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selecting for each one of the s pairs of antipodal positions, one of the positions, and putting n/s
points in that position. Every such X is (1, b)-clusterable.

We now define two processes, one for each family, that constructs a random set X in the
family as it answers the algorithm’s queries, and completes this construction after the algorithm
terminates. Without loss of generality we may assume that the algorithm never queries the same
point twice. Then, for each query of the algorithm, the process selects a new point on the sphere
in a random fashion which depends on the family to which X belongs.

Assume we are now answering the j’th query, and the processes must decide where to position
the new point. Each of the two processes first flips a coin with bias 7, where 7 is approximately
j/s. According to the outcome, the new point will be placed in the same (or antipodal) position
of a previously selected point, or placed in an unoccupied position (whose antipodal position is
also unoccupied). In the latter case, an antipodal pair is selected uniformly among all unoccupied
pairs, and the new point is placed with equal probability on each position in the pair. In the former
case, both processes randomly select an occupied position, where the second process places the new
point in the selected position, and the first process places the new point either in this position or
in its antipodal position.

Note that as long as the former case does not occur, the distributions on the positions of the
points are exactly the same for both processes. However, for a number of queries j < c¢-+/s (for
some constant ¢ < 1), the probability that an occupied position is selected (in either process) is
less than 1/3. This implies that the statistical differences between the distributions on sequences
of queries and answers for the two processes is less than 1/3, and the theorem follows. W

Remark: Essentially the same argument as in the above proof gives an Q(1/n) lower bound for

B=0.

5 Testing of Radius Clustering Under the L, Metric

Below is our algorithm for testing with respect to the radius cost under the Ly metric and for § = 0.
Recall that for this cost and metric, all points in each cluster must be contained in a ball of radius
b. The analysis of this algorithm can be easily generalized to any metric under which each cluster
is determined by a “simple” convex set (that is, where the family of such sets has VC-dimension
O(d)). In particular this holds for the Lo, metric (where these sets are axis aligned cubes). As we
see below, the size of the sample is almost linear in d. An alternative analysis of the algorithm,
which works for 8 > 0 and uses a sample of size independent of d, is given in Subsection 5.1.

Algorithm 5 (L9 metric, radius cost, k > 1,d > 1, 8 =0)

1. Uniformly and independently select a sample of m = © (% - log (%)) points in X.
Let us denote the points selected by U.

2. If there exists a partition P = (U,...,U*) of U such that R(P) < b then accept. Otherwise,
reject.

Finding k balls with minimum radius that contain all m points in the sample (known as the
Euclidean k-Center Problem) can be done in time O(m*@t2) (cf. [2, Sec. 7.1]). When d is relatively
small it is possible to obtain an improvement on this running time by using the algorithm of
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Agrawal and Procopiuc [1], which has running time m®(f ()K= (where f(d) is always bounded
by O(d*/?)).

Remark: Using a result of [17] concerning the relation between learning algorithms and testing
algorithms, we could obtain a testing algorithm for radius clustering with the same complexity as
Algorithm 5 but with two-sided error. This would be based on the learnability of the concept class
defined by unions of k£ balls. Here we give a direct analysis and obtain one-sided error. Furthermore,
the same idea applied here can be used to obtain testing algorithms having one-sided error for any
property that can be defined by a family of subsets having bounded VC-dimension.

Theorem 6 Algorithm & is a radius-clustering tester under the Lo metric for 8 = 0.

We shall need the following definitions (which for sake of the presentation are not given in their
full generality). Let S be a family of subsets of R¢, let R be a finite subset of ¢ and let 0 < € < 1.
We say that N C R is an e-net of R (with respect to S) if for every S € S such that [SNR| > €-|R|
there exists at least one point £ € SN N. In other words, IV is an e-net if it “hits” every subset
in S that has a relatively large intersection with R. Our interest in e-nets will soon become clear,
but first we need one more definition.

We say that a subset A C R¢ is shattered by a family of subsets S, if for every A’ C A, there
exists S € S such that A’ = AN S. The VC-dimension of S, denoted by VCD(S), is the maximum
size of a subset A C R¢ that is shattered by S. The VC-dimension of a family of subsets is hence
a certain measure of richness (or diversity) of the family.

The following theorem is a special case of a theorem that was proved by Haussler and Welzl [21]
based on the work of Vapnik and Chervonenkis [40].

Theorem 7 ([21]) Let S be any family of subsets of R¢, let R be any finite subset of R¢ and
let 0 < € < 1. Consider a sample U of size m > &?(S) -log&?(s) selected uniformly and

independently from R. Then with probability at least 2/3, U is an e-net for R with respect to S.

The proof of Theorem 7 actually gives a bound on the sample size m in terms of a slightly
different measure than VCD(S), which we refer to as the shatter ezponent (where VCD(S) is an
upper bound on this measure). In our case we can get a slightly better bound on m if we use the
shatter exponent directly. We next define it and state a corresponding variant of Theorem 7.

For a subset A C R%, let &5(A) of {ANS: S € S} be the projection of S on A. For any
integer m let ¢s(m) = maxy |4/=m |Ps(A)| be the maximum size of the projection of S on a set
of size m. In particular, by definition of the VC-dimension, for every m < VCD(S), ¢s(m) = 2™,
while for m > VCD(S), ¢s(m) < 2™. Let the shatter ezponent, denoted SE(S) be the smallest
integer such that for every m > 2, ¢s(m) < c- mSE(S) for some fixed constant c. It can be shown
that for every family of subsets S, SE(S) < VCD(S), but as noted above, we can sometimes get a

better bound on SE(S).

Theorem 7’ Let S be any family of subsets of R?, let R be any finite subset of R and let 0 < € < 1.
Consider a sample U of size m > 85E(S) - log 85E(S) selected uniformly and independently from R.
Then with probability at least 2/3, U is an e-net for R with respect to S.

€ €
Proof of Theorem 6: If X is (k,b)-clusterable, then the algorithm clearly always accepts.

Hence, assume from now on that X is e-far from being (k, b)-clusterable. We shall show that the
algorithm rejects with probability at least 2/3.
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Let By be the family of subsets of R? that are defined by unions of k balls each of radius at
most b, and let Ek,b be the family of complements of subsets in By ;. By our assumption on X,
we have that for every collection of k balls each having radius at most b, there are more than en
points in X that do not belong to any of the balls. In other words, for every S € By, we have
|S N X| > €|X|. This implies that a subset N C X is an e-net for X with respect to By if and
only if it contains at least one point from every S € Ek,b.

Now assume that the sample U selected by Algorithm 5 is an e-net for X. Then, by definition
of e-nets and our assumption on X, there is no k-way partition P of U such that R(P) < b. This
is true since such a partition corresponds to k£ balls having radius b, that contain all points in the
sample. But this would contradict the assumption that U contains at least one point from every
S e Bkz,b-

In order to bound the size of a sample that is sufficient to ensure that it constitutes an e-net for
X with respect to By, we bound SE(By ;). It is easy to verify that SE(By ) = SE(Bp), and so
it remains to bound SE(By ). Given any set A of m points in R¢, the number of different subsets
A" = AN B where B € By (i.e., sets defined by single balls), is at most m?*1.4 This follows from
the following fact. For each subset A’ such that there exists balls B € By for which A’ = AN B,
let B4 be such a ball having minimum radius. It is well know that for any such bounding ball
there exists a subset A” C A’ having size at most d + 1 such that By = By». Hence the number
of balls enclosing different subsets of A is at most (,7;) < m®*!. Since By includes unions of k
balls, we have that SE(By ) < k(d + 1). Hence, Theorem 6 follows by applying Theorem 7. Il

Finding an approximately good clustering. Suppose X is (k,b)-clusterable and so the algo-
rithm finds a k-way partition P of the sample such that R(P) < b. That is, the algorithm finds &
centers z!,..., 2% of balls of radius b that contain all sample points. An argument similar to the
proof of Theorem 6, shows that with probability at least 2/3 the centers found by the algorithm
actually define an e-good (k, b)-clustering of X. Specifically, as shown in the proof of Theorem 6,
with probability at least 2/3, the sample selected by the algorithm is an e-net for X with respect
to By. That is, for every S € By such that | X NS| > ¢/ X]|, the sample contains at least one point
in S. (Note that here it is not true that for every S, |X NS| > €| X]|, since X is assumed to be
(k,b)-clusterable. However, this is immaterial to the claim.) Assume that in fact the sample is an
e-net for X. Then by definition of Ek,b, this means that for every k balls of radius b such that more
than €| X| points of X fall outside these balls, the sample contains such a point outside the balls.
This in turn implies that for the k balls defined by the centers found by the algorithm, 2!, ..., z*,
there are at most €| X| points in X that do not belong to these balls, and so the k centers induce
an e-good (k, b)-clustering of X.

Testing and the VC-dimension. The above analysis can be extended to obtain the following
relation between the VC-dimension and Testing, very similarly to the way such a relation is obtained
between the VC-dimension and PAC Learning.

Consider any property P of boolean functions over some domain Z, and let Fp be the class of
functions having property P. A testing algorithm for property P is given query access to the tested
function f (and in particular may ask for the value of f on a uniformly selected sample). If f has
property P (that is, f belongs to Fp) then the algorithm should accept. If f is e-far from having

“In fact, the bound b on the radius of the balls can be used to obtain a bound of m¢. However, the reasoning is
slightly more complicated.
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property P (that is, for every function g € Fp, Pr[g(z) # f(z)] > €, where the probability is over
a uniformly selected z), the algorithm should reject with probability at least 2/3.

In what follows we shall sometimes view boolean functions as sets. In particular, the VC-

dimension of Fp is defined as the VC-dimension of the family of subsets: {Sf}scr, where Sy o
{z : f(2) = 1}. Suppose there is an algorithm A that given a sample of labeled examples {z;, b;}
where z; € Z and b; € {0,1}, determines whether there exists a function in Fp that is consistent
with the sample. That is, if 3g € Fp, such that g(z;) = b; for every i, then A outputs accept, and
otherwise it outputs reject. We shall refer to A as a consistency checker for Fp.

Theorem 8 For any property P, a consistency checker for Fp can be used for testing P by applying

it to a uniformly selected sample of size m > SVC]i(]'—p) -log svce(fp)'

Proof: The proof of Theorem 8 is a generalization of the proof of Theorem 6. By definition of a
consistency checker, if f € Fp (that is, f has property P), then it accepts. Let Fp def {—g: g€ Fp}
(so that in particular VCD(Fp) = VCD(Fp)). Then by Theorem 7, for any function f, with
probability at least 2/3, a sample of size m as stated in the theorem is an e-net for f (i.e., Sy) with
respect to Fp (i.e. {Sg}geﬁ)' As argued in the proof of Theorem 8, this implies that if f is e-far
from having property P, then it is rejected with probability at least 2/3. W

We note that in many cases (e.g. the property of monotonicity), the VC-dimension of the class
of functions defined by the property is prohibitively large, and we seek other techniques (that in
particular may use adaptive querying).

5.1 An Alternative Analysis for Radius Clustering

Here we present an alternative analysis of the radius clustering algorithm. Recall that Algorithm 5,
which worked for 8 = 0, selected a sample of size roughly linear in d. Below we show that it is
possible to trade the dependence on d (in terms of the sample complexity) with a dependence on

1/p6.
We start be analyzing the algorithm for £ =1

Algorithm 6 (Ly metric, radius cost, k=1,d>1,0< < 1)

1. Uniformly and independently select m = © (%) points in X. Denote the set of points

selected by U. ‘
2. If r(U) < b then accept, otherwise reject.
Theorem 9 Algorithm 6 is a radius-clustering tester for k = 1 under the Lo metric.
We shall prove the theorem by appealing to the following lemmas.
Lemma 9 Let S C R%, and let y € R and a > 0 be such that r(S U {y}) < r(S)-(1+ ). Then
the distance between y and the center of the minimum sphere bounding S is at most r(S)-(1+a+

Va2 + 2a).

Proof: Let r = r(S). Without loss of generality we may assume that the center of the minimum
sphere bounding S is at the origin of our coordinate system and that the center of a sphere of
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radius 7(1 + «) bounding S U {y} is at (£,0,...,0), £ > 0. In order to obtain the stated claim, it
suffices, by the triangle inequality to show that £ < 7 - v/a?2 + 2a.

Assume to the contrary that £ > r-v/a? + 2a. For any point ¢ = (¢1,...,¢qq) in S, let ¢’ denote
the (d — 1)-dimensional vector (ga,...,qq). Since S is bounded by a sphere of radius r centered at
the origin, we have that

gt +ld'|3 < (4)

(where ||¢’]|3 = %, (¢;)? denotes the Ly norm squared of the vector ¢'). Since S is also bounded
by a sphere of radius 7(1 + «) centered at (£,0,...,0), we have that

(a1 =07 +1ldl3 < r*(1 + ). ()

_ 2—r2(a?+2a) . .
Let a = ——;—, so that by our counter assumption a > 0. We consider two cases.

Case 1: g1 > a. In this case

gt + 'll3 — 291 - a + @®
r? —2-a% + a? (6)

= r2—a? (7)

(a1 —a)” + |I1d'lI3

IN

where Equation (6) follows from Equation (4), our case assumption that ¢; > a, and from our
counter hypothesis by which a > 0.

Case 2: g1 < a. In this case
(@—a)’+ 15 = @ +Id15— 2 a+a®

= q% + 02 —2q10 — 0% + 2q10 + ||q'||% —2¢1 - a+ a?
= (@ —0*+Idll5 +2q:(¢ —a) +a® — £°

< rPl+a)?+2-a-(L—a)+a®— 12 (8)
= r(1+a)?+2al— 02— d®

= r?(14+a)?+ (12 —r*(a® +20)) — 12 —a? 9)
= 7’ —a° (10)

where Equation (8) follows from Equation (5) and the case assumption that ¢; < a, and Equation (9)
follows from the definition of a.

Hence, in either case we get that S is contained in a sphere centered at (a,0,...,0) having
radius strictly smaller than r, contradicting the minimality of . W

As a corollary to Lemma 9 we get:

Lemma 10 Let S C R%, and let z € R be the center of the minimum sphere bounding S. Consider
any point y € R¢ such that dist(y, z) > t for some t > r(S). Then

r(SU{y}) > r(S) - = - (T(’;) + @>

N
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Proof: Assume, contrary to the claim that 7(S U {y}) < r(9) - % - ( b+ T(f)). Let a be such
that
r(SU{y}) =7r(S)-1+a).

By Lemma 9, this implies that
dist(y,z) < 7(S)- (1 + a+ Va2 + 2a)

where z denotes the center of the minimum sphere bounding S. Let § be such that 1+ a = cosh 6.
Since sinh® = v/cosh?# — 1, we have that va2 + 2a = sinh#. Since cosh + sinh = ¢, we get
that

dist(y, z) <7(S) - €’ . (11)

On the other hand, since cosh — sinhf = e, we have that
Lo, e
1+a—§(e +e ) (12)

But by definition of @ and our assumption on the relation between (S U {y}) and r(S),

1 t r(S)
HO‘SE'(r(S)JF : ) (13)

andsoel +e? < Lo+
follows that

. Since the function f(z) = (z + 1/z) increases with = for z > 1, it

t
< 14
) (14)
Combining Equation (14) with Equation (11) we get
dist(y, 2) < 7(S) ¢ < #(S) - (’;) _ (15)

contradicting the premise of the lemma that dist(y,z) >¢. W

Proof of Theorem 9: If X is (1,b)-clusterable, then the algorithm clearly always accepts.
Hence, assume from now on that X is e-far from (1, (1 + )b)-clusterable, and we shall show that
the algorithm rejects with probability at least 2/3.

We view the sample of size m as being selected in p = ©(1/3) phases, where in each phase
O©(log(p)/e) points are selected (uniformly and independently). Let U; be the union of the samples
selected in the first ¢ phases, and let r; = r(U;).

We show that with probability at least 2/3 over the choice of the sample, for every phase i,
ri > 1i—1(1 + ;) for some sufficiently large ;. It will follow that after O(1/5) phases, we must
obtain that r; > b, causing the algorithm to reject.

For each new phase 7, let z,_; € R¢ be the center of the minimum sphere bounding U;_;. Since
X is e-far from (1, (1+ 5)b)-clusterable, there are at least en points y € X such that dist(y, zi—1) >
(1 + B)b. Let us refer to these points as influential (with respect to U;—1). Suppose that in each
phase the sample taken is of size at least In(3p)/e. Then for any fized phase, the probability that an
influential point is not selected is at most (1 — €)™®P)/¢ < exp(—In(3p)) = 1/(3p). The probability
that for some phase no influential point is selected is therefore less than 1/3. Hence, assume from
now on that for every phase i, the sample selected in this phase contains an influential point y with
respect to U;_1.
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We now show that O(1/3) phases suffice until r; > b. Let y be an influential point with respect

to U;—1. By Lemma 10, r(U;_1 U {y}) > r(Ui—1) - 5 <(1J_ﬂ1)b + ({i_ﬂl)b)' Therefore, assuming such a

point is selected in the ¢’th sample,

1/(1+p)b T 1 r2.
ey (5 +(1+2)b>‘§<(1+ﬁ)"+(1+723)b)' 1o

We first observe that for every ¢ > 1, r; > %. Thus, we may assume that ro > g. On the other

hand, since (1Tj'_ﬁ l)b + ({—il—_ﬁl)b decreases as r;_1 increases, then as long as r;_1 < b,
1 1 oz
i >rii1= |1 — =71 |14+ ——]. 17
7‘1_7'112<+/8+1+18> Ti—1 (+2(1+/3)> ( )

By applying this lower bound on the rate of increase of r; (for i > 2), we get that after O(1/32)
phases, r; > b. However, we can do a slightly more refined analysis and exploit the fact that for
smaller radii, the rate of increase is greater. In particular, let v be such that r;_; < b(1 —+). Given
Equation (16), it can be shown (using simple manipulations), that for every v < 3,

rini_1_1<(1+ﬁ)+(1—7))Zri_1.<1+’7_2) (18)

2\(1=9) (1+5) 2

For each integer 1 < a < log(1/8), let s(a) be the first phase such that b- (1 —27%) < ryq) <
b (1 —2=(at1) (if there exists such a phase). We would like to upper bound the number of phases
t required so that ryg)4¢ > b- (1 — 2-(a+1)) " By Equation (18), as long as r; < (1 —27%"!) we have
Fig1 > 75 - (14 2~ @@t)+1)) - Therefore, we need ¢ to be such that (1 —27%) . (1 4 2~ at)+)yt >
(1—2~(a+1)) Since for every § < 1/2, we have the bounds (1—8) > exp(—26) and (146) > exp(§/2),
it suffices that ¢ = 294, It follows that the number of phases required to get from 7y > b/2 to
r; > b(1— ) is at most 16- Zg’:ggl/ﬁ) 2% = 0(1/p). Finally, to get from r; > b(1 — ) to r;4¢ > b, we
use the bound from Equation (17), and conclude that it takes an additional O(1/(3) phases. W

52 k>1

The alternative radius-clustering tester for k£ > 1 is a generalization of the algorithm for the case
k=1:

Algorithm 7 (Lo metric, radius cost, k > 1,d >1,0< 5 <1)

1. Uniformly and independently select a sample of m = © (k?g%k) points in X.

Let us denote the points selected by U.

2. If there exists a partition P = (U',...,U*) of U such that R(P) < b then accept. Otherwise,
reject.

The proof of the following theorem is analogous to the proof of Theorem 3, where here we use
the arguments from the proof of Theorem 9 as a basis.

Theorem 10 Algorithm 7 is a radius-clustering tester under the Lo metric.
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6 Clustering in One Dimension

In one dimension the radius and diameter problems are the same, and it is possible to test clustering
in an efficient way, for 8 = 0, and any L, metric.

Algorithm 8 (L, metric, radius and diameter cost, k > 1, d =1, 8 =0)

1. Uniformly and independently select m = © (% - log %) points in X.

2. If the sample is (k,b)-clusterable then accept, otherwise, reject.
The problem of clustering in one dimension can be solved by dynamic programming.
Theorem 11 Algorithm 8 is a radius-clustering tester for d =1, 8 =0, and under any L, metric.

The proof of the Theorem follows directly from the following Lemma, and a standard “balls
and bins” analysis.

Lemma 11 Let X be e-far from being (k,b)-clusterable. Then there exist k non-intersecting seg-
ments [left;, right;] each of length 2b, such that there are at least (en)/(k+1) points from X between
every two segments, to the left of the leftmost segment and to the right of the rightmost segment.

Proof: Let us assume for simplicity that X contains distinct points. The first and leftmost segment
is placed such that there are (en)/(k+ 1) points from X to the left of it. Since X is e-far from being
(k,b)-clusterable, there must exist at least (enk)/(k + 1) points to the right of this first segment.
We thus place the second segment to the right of the first segment, such that there are (en)/(k+1)
points from X between the two segments. The remaining segments are placed in a similar way.
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