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Abstract

In this paper we consider the problem of testing bipartiteness of general graphs. The problem
has previously been studied in two models, one most suitable for dense graphs, and one most
suitable for bounded-degree graphs. Roughly speaking, dense graphs can be tested for bipartite-
ness with constant complexity, while the complexity of testing bounded-degree graphs is ©(,/n),
where n is the number of vertices in the graph (and ©(f(n)) means O(f(n) - polylog(f(n)))).
Thus there is a large gap between the complexity of testing in the two cases.

In this work we bridge the gap described above. In particular, we study the problem of
testing bipartiteness in a model that is suitable for all densities. We present an algorithm whose
complexity is O(min(y/n,n?/m)) where m is the number of edges in the graph, and match it
with an almost tight lower bound.
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1 Introduction

Property testing algorithms [18, 10] are algorithms that perform approzimate decisions. Namely,
for a predetermined property P they should decide whether a given object O has property P or is
far from having property P. In order to perform this approximate decision they are given query
access to the object O. Property testing problems are hence defined by the type of objects in
question, the property tested, the type of queries allowed, and the notion of distance to having
a property. Much of the focus of property testing has been on testing properties of graphs. In
this context several models have been considered. In all models, for a fixed graph property P, the
algorithm is required to accept graphs that have P and to reject graphs that are e-far from having
P, for a given distance parameter €. In all cases the algorithm is allowed a constant probability
of failure. The models differ in the type of queries they allow and in the notion of distance they
use (which underlies the definition of being e-far from having the property). The complexity of the
algorithm is measured by the number of queries that the algorithm performs.

1.1 Models for Testing Graph Properties

The first model, introduced in [10], is the adjacency-matrix model. In this model the algorithm may
perform queries of the form: “Is there an edge between vertices u and v in the graph?” That is,
the algorithm may probe the adjacency matrix representing the graph. We refer to such queries
as vertex-pair queries. The notion of distance is also linked to this representation: a graph is said
to be e-far from having property P if more than en? edge modifications should be performed on
the graph so that it obtains the property, where n is the number of vertices in the graph. In
other words, € measures the fraction of entries in the adjacency matrix of the graph that should be
modified. This model is most suitable for dense graphs in which the number of edges m is ©(n?).
This model was studied in [10, 3, 2, 1, 4, 13, 8|.

The second model, introduced in [11], is the (bounded-degree) incidence-lists model. In this
model, the algorithm may perform queries of the form: “Who is the ’th neighbor of vertex v in the
graph?” That is, the algorithm may probe the incidence lists of the vertices in the graph, where
it is assumed that all vertices have degree at most d for some fixed degree-bound d. We refer to
these queries as neighbor queries. Here too the notion of distance is linked to the representation:
A graph is said to be e-far from having property P if more than edn edge modifications should be
performed on the graph so that it obtains the property. In this case ¢ measures the fraction of
entries in the incidence lists representation (among all dn entries), that should be modified. This
model is most suitable for graphs with m = ©(dn) edges; that is, whose maximum degree is of the
same order as the average degree. In particular, this is true for sparse graphs that have constant
degree. This model was studied in [12, 11, 7].

In [17] it was suggested to decouple the questions of representation and type of queries allowed
from the definition of distance to having a property. Specifically, it was suggested to measure
the distance simply with respect to the number of edges, denoted m, in the graph. Namely, a
graph is said to be e-far from having a property, if more than em edge modifications should be
performed so that it obtains the property. In [17] the algorithm was allowed the same type of
queries as in the bounded-degree incidence-lists model, but no fixed upper-bound was assumed on
the degrees and the algorithm could query the degree of any vertex. The main advantage of this
model over the bounded-degree incidence-lists model is that it is suitable for graphs whose degrees
may vary significantly. To illustrate this, consider a (sparse) graph having m = O(n) edges, where
the maximum degree d of vertices in the graph is Q(n). Suppose we want to determine whether the



graph is bipartite or e-far from being bipartite for some constant e. If we worked in the bounded-
degree incidence-lists model then we could trivially accept all graphs, since for d = Q(n) and
constant €, every graph having O(n) = o(dn) edges is e-close to being bipartite. However, this is
no longer true when distance is measured with respect to the actual number of edges m.

The Model Studied in this Paper. In this work we are interested in a model that may be
useful for testing all types of graphs: dense, sparse, and graphs that lie in-between the two extremes.
As is discussed in more detail in the next subsection, the two extremes sometimes exhibit very
different behavior in terms of the complexity of testing the same property. We are interested in
understanding the transformation from testing sparse (and in particular bounded-degree) graphs
to testing dense graphs.

Recall that a model for testing graph properties is defined by the distance measure used and
by the queries allowed. The model of [17] is indeed suitable for all graphs in terms of the distance
measure used, since distance is measured with respect to the actual number of edges m in the
graph.Thus this notion of distance adapts itself to the density of the graph, and we shall use it in
our work.

The focus in [17] was on testing properties that are of interest in sparse (but not necessarily
bounded-degree) graphs, and hence they allowed only neighbor queries. However, consider the case
in which the graph is not sparse (but not necessarily dense). In particular suppose that the graph
has w(n'?) edges, and that we are seeking an algorithm that performs o(y/n) queries. While in the
case of sparse graphs, there is no use in asking vertex-pair queries (i.e., is there an edge between a
particular pair of vertices), such queries may become helpful when the number of edges is sufficiently
large. Hence, we allow our algorithms to perform both neighbor queries and vertex-pair queries.

1.2 Testing Bipartiteness

One of the properties that has received quite a bit of attention in the context of property testing, is
bipartiteness. Recall that a graph is bipartite if it is possible to partition its vertices into two parts
such that there are no edges with both endpoints in the same part. This property was first studied
in [10] where it was shown that bipartiteness can be tested by a simple algorithm using O(1/€®)
queries. This was improved in [3] to O(1/€?) queries. The best lower bound known in this model is
Q(1/€'%), due to [8]. Thus the complexity of this problem is independent of the number of vertices
n and polynomial in 1/e. It is interesting to note that testing bipartiteness is considered implicitly
already in [9]. The result in [9] can be used to obtain a testing algorithm in the adjacency-matrix
model whose query complexity does not depend on the number of edges n, but whose dependence
on € is a tower of height polynomial in 1/e.

The complexity of testing bipartiteness changes significantly when considering the bounded-
degree incidence-lists model. In [12] a lower bound of Q(y/n) is established in this model, for
constant € and constant d (where d is the degree bound). An almost matching upper bound of
O(+/n - poly(1/e)) is shown in [11]. Thus, in the case of bipartiteness there is a large gap between
the results that can be obtained for dense graphs and for constant-degree graphs. Here we venture
into the land of graphs that are neither necessarily sparse, nor necessarily dense, and study the
complexity of testing bipartiteness. As we discuss briefly in Subsection 1.5, other graph properties
exhibit similar (and sometimes even larger) gaps, and hence we believe that understanding the
transformation from sparse to dense graphs is of general interest.



1.3 Our Results

In this work we present two complementary results for n-vertex graphs having m edges:

e We describe and analyze an algorithm for testing bipartiteness in general graphs whose query
complexity (and running time) is O(min(y/n,n?/m) - poly(logn/e)). The algorithm has a one-
sided error (i.e., it always accepts bipartite graphs). Furthermore, whenever it rejects a graph
it provides evidence that the graph is not bipartite in the form of an odd-length cycle of length
poly(logn/e).

e We present an almost matching lower bound of (min(y/n, n?/m)) (for a constant €). This bound
holds for all testing algorithms (that is, for those which are allowed a two-sided error and are
adaptive). Furthermore, the bound holds for regular graphs.

As seen from the above expressions, as long as m = O(n!*®), that is, the average degree is O(y/n),
the complexity of testing (in terms of the dependence on n)is ©(y/n). Once the number of edges
goes above n!®, we start seeing a decrease in the query complexity, which in this case is at most
O((n?/m) - poly(logn/e)). In terms of our algorithm, this is exactly the point where our algorithm
starts exploiting its access to vertex-pair queries. Our lower bound shows that this behavior of the
query complexity is not only an artifact of our algorithm but is inherent in the problem.

Note that even if the graph is sparse then we obtain a new result that does not follow from [11].
Namely, we have an algorithm with complexity O(y/n - poly(1/e)) for sparse graphs with varying
degrees.

1.4 Ouwur Techniques

We present our algorithm in two stages. First we describe an algorithm that works for almost-
regular graphs, that is, graphs in which the maximum degree is of the same order as the average
degree. The algorithm and its analysis closely follow the algorithm and analysis in [11]. Indeed, as
long as the degree d of the graph is at most y/n, we execute the algorithm described in [11]. The
place where we depart from [11] is in the usage of vertex-pair queries once d > /n. We refer to
our first algorithm as Test-Bipartite-Reg.

In the second stage we show how to reduce the problem of testing bipartiteness of general
graphs to bipartiteness of almost-regular graphs. Namely, we show how, for every given graph G,
it is possible to define a graph G’ such that: (1) G’ has roughly the same number of vertices and
edges as G, and its maximum degree is of the same order as its average degree (which is roughly the
same as the average degree in G); (2) If G is bipartite then so is G', and if G is far from bipartite
then so is G'. We then show how to emulate the execution of the algorithm Test-Bipartite-Reg on
G’ given query access to G, so that we may accept G if it accepts G', and reject G if it rejects G.

In the course of this emulation we are confronted with the following interesting problem: We
would like to sample vertices in G according to their degrees (which aids us in sampling vertices
uniformly in G’, a basic operation that is required by Test-Bipartite-Reg). The former is equivalent
to sampling edges uniformly in G. In order not to harm the performance of our testing algorithm,
we are required to perform this task using O (min(y/7, n?/m)) queries. If m is sufficiently large (once
again, if m > n'®), this can be performed without increasing the complexity of our algorithm simply
by sampling sufficiently many pairs of vertices in G. However, we do not know how to perform this
task exactly (in an efficient manner) when the number of edges is significantly smaller than n!-.
Nonetheless, we provide a sampling procedure that selects edges according to a distribution that

approximates the desired uniform distribution on edges, and is sufficient for our purposes. The



approximation is such that for all but a small fraction of the m edges, the probability of selecting
an edge is (1/m). This procedure may be of independent interest.

We also conjecture that variants of our construction of G’ (and in particular a simple proba-
bilistic construction we suggest), may be useful in transforming other results that hold for graphs
whose maximum degree is similar to their average degree, to results that hold for graphs with
varying degrees.

We establish our lower bound by describing, for every pair n,d (n even, d > 64), two distri-
butions over d-regular graphs. In one distribution all graphs are bipartite by construction. For
the other distribution we prove that almost all graphs are far from bipartite. We then show that
every testing algorithm that can distinguish between a graph chosen randomly from the first dis-
tribution (which it should accept with probability at least 2/3), and a graph chosen randomly
from the second distribution (which it should reject with probability at least 2/3), must perform
Q(min(y/n,n/d)) = Q(min(/n,n?/m) queries. In the lower bound proof we show the necessity of
both neighbor queries and vertez-pair queries. Specifically by using only one type of queries the
lower bound increases.

1.5 Further Research

As noted previously, there are other problems that exhibit a significant gap between the query
complexity of testing dense graphs (in the adjacency-matrix model) and the complexity of testing
sparse, bounded-degree graphs (in the bounded-degree incidence-lists model). In particular this is
true for testing k-colorability. It is possible to test dense graphs for k-colorability using poly(k/e¢)
queries [10, 3], while testing sparse graphs requires {2(n) queries [7]. We stress that these bounds
are for query complexity, where we put time complexity aside. We would like to understand this
transformation, from essentially constant complexity (for constant k& and €), to linear complexity,
and we would like to know whether any intermediate results can be obtained for graphs that are
neither sparse nor dense. Other problems of interest are testing whether a graph has a relatively
large clique [10], testing acyclicity of directed graphs [6], and testing that a graph does not contain
a certain subgraph [1, 4].

1.6 Organization of the Paper

In Section 2 we give some basic definitions and notation. In Sections 3 and 4 we describe and
analyze our testing algorithms. In Section 5 we present our lower bound.

2 Preliminaries

Let G = (V, E) be an undirected graph with n vertices labeled 1,...,n, and let m = m(G) = |E(G)|
be the total number of edges in G. Unless stated otherwise, we assume that G contains no multiple
edges. For each vertex v € V let I'(v) denote its set of neighbors, and let deg(v) = |I'(v)| denote
its degree. The edges incident to v (and their end-points, the neighbors of v), are labeled from
1 to deg(v). Note that each edge has two, possibly different, labels, one with respect to each of
its end-points. We hence view edges as quadruples. That is, if there is an edge between v and wu,
and it is the ¢-th edge incident to v and the j-th edge incident to u, then this edge is denoted by
(u,v,%,7). When we want to distinguish between the quadruple (u,v,4,j) and the pair (u,v) then
we refer to the latter as an edge-pair. We let dmax = dmax(G) denote the maximum degree in the
graph G and dayg = davg(G) denote the average degree in the graph (that is, davg(G) = 2m(G)/n).

4



Distance to having a property. Consider a fixed graph property P. For a given graph G,
let ep(G) be the minimum number of edges that should be added to G or removed from G so
that it obtain property P. The distance of G to having property P is defined as ep(G)/m(G). In
particular, we say that graph G is e-far from having the property P for a given distance parameter
0<e<l,ifep(G) > e-m(G). Otherwise, it is e-close to having property P. In some cases we
may define the distance to having a property with respect to an upper bound mmayx > m(G) on the
number of edges in the graph (that is, the distance to having property P is defined as ep(G)/mmax)-
For example, if the graph is dense, so that m(G) = Q(n?) then we set mmax = n?, and alternatively,
if the graph has some bounded degree d, then we set myax = d-n. (In the latter case we could set
Mmax = (d - n)/2, but for simplicity we set the slightly higher upper bound.) If ep(G)/mmax > €
then we shall say that the graph is e-far from property P with respect to mmax-

Testing algorithms. A testing algorithm for a graph property P is required to accept with
probability at least 2/3 every graph that has property P and to reject with probability at least 2/3
every graph that is e-far from having property P, where € is a given distance parameter. If the
algorithm always accepts graphs that have the property then it is a one-sided error algorithm. The
testing algorithm is given the number of vertices in the graph, the number of edges in the graph,
or an upper bound on this number, and it is provided with query access to the graph. Specifically
we allow the algorithm the following types of queries.

e The first type of queries are degree queries. That is, for any vertex w of its choice, the algorithm
can obtain deg(u). We assume that a degree query has cost one.

e The second type of queries are neighbor queries. Namely, for every vertex u and index 1 < ¢ <
deg(u), the algorithm may obtain the i-th neighbor of vertex wu.

e The third type of queries are vertez-pair queries. Namely, for any pair of vertices (u,v), the
algorithm can query whether there is an edge between u and v in G.

Note that degree queries can be easily implemented using neighbor queries with cost O(log dmax) =
O(logn). If the neighbors of every vertex are ordered, then vertex-pair queries can be implemented
as well by using neighbor queries with cost O(log dmax) = O(logn).

Bipartiteness. In this work we focus on the property of bipartiteness. Let (V1, V3) be a partition
of V. We say that an edge (u,v) € E is a violating edge with respect to (V1,V2), if u and v
belong to the same subset Vj, (for some b € {1,2}). A graph is bipartite if there exists a partition
of its vertices with respect to which there are no violating edges. By definition, a graph is e-far
from bipartite if for every partition of its vertices, the number of violating edges with respect to
the partition is greater than € - m. Recall that a graph is bipartite if and only if it contains no
odd-length cycles.

3 The Algorithm for the Almost-Regular Case

In this section we describe an algorithm that accepts every bipartite graph and that rejects with
probability at least 2/3 every graph that is e-far from bipartite with respect to an upper bound
Mmax = dmax” on the number of edges. Namely, this algorithm rejects (with probability at least
2/3) graphs for which the number of edges that need to be removed so that they become bipartite
is greater than € - myax = € - dpaxn. The query complexity (and running time) of this algorithm is

O(min(y/n, n/dmax) - poly(logn/e)).



In the case where the graph is almost-regular, that is, the maximum degree of the graph dmax
is of the same order as the average degree, dayg, then we essentially obtain a tester as desired (since
in such a case e€dmaxn = O(em)). However, in general, dmax may be much larger d,y, (for example,
it is possible that dmax = ©(n) while dyyy = ©(1)). To deal with the general case we show in
the next section (Section 4) how to reduce the problem in the general case to the special case of
dmax = O(davg)-

A High Level Description of the Algorithm. Throughout this section let d = dpax. Our
algorithm builds on the testing algorithm for bipartiteness described in [11] whose query complexity
is O(y/n - poly(logn/e)) (and which works with respect to mpax = dn as well). In fact, as long
as d < 4/n our algorithm is equivalent to the algorithm in [11]. In particular, as in [11], our
algorithm selects ©(1/¢€) starting vertices and from each it performs several random walks (using
neighbor queries), each walk of length poly(logn/e). If d < 4/n then the number of these walks is
O(+/n - poly(logn/e)), and the algorithm simply checks whether an odd-length cycle was detected
in the course of these random walks (possibly relying on information from more than one random
walk to find an odd-length cycle).

If d > y/n then there are two important modifications: (1) The number of random walks
performed from each vertex is reduced to O(y/n/d-poly(logn/e)); (2) For each pair of end vertices
reached in these walks with the same parity, the algorithm performs a vertex-pair query. Similarly
to the d < \/n case, the graph is rejected if an odd-length cycle is found in the subgraph induced
by all queries performed. Pseudo-code for the algorithm is shown in Figure 1.

Random Walks and Paths in the Graph. The random walks performed are defined as follows:
At each step, if the degree of the current vertex v is d’ < d, then the walk remains at v with
probability 1 — % > %, and for each u € I'(v), the walk traverses to u with probability QLd.
The important property of the random walk is that the stationary distribution it induces over the
vertices is uniform.

For every walk (or, more generally, for any sequence of steps), there corresponds a path in the
graph. The path is determined by those steps in which an edge is traversed (while ignoring all steps
in which the walk stays at the same vertex). Such a path is not necessarily simple, but does not
contain self loops. Note that when referring to the length of a walk, we mean the total number of
steps taken, including steps in which the walk remains at the current vertex, while the length of
the corresponding path does not include these steps.

Theorem 1 The algorithm Test-Bipartite-Reg accepts every graph that is bipartite, and rejects
with probability at least 2/3 every graph that is e-far from bipartite with respect to Mmax = dmaxn.
Furthermore, whenever the algorithm rejects a graph it outputs a certificate to the non-bipartiteness
of the graph in form of an odd-length cycle of length poly(logn/e). The query complezity and
running time of the algorithm are O (min(y/n,n/dmax) - poly(logn/e)).

Note that the algorithm can work when G contains self-loops and multiple-edges. The latter will be
of importance in the next section. As a direct corollary of Theorem 1 (using m(G) = (ndavg(G))/2)

we get:

Corollary 2 For a given graph G, let v(QG) def dmax(GQ)/davg(G).  Then Test-Bipartite-

Reg(n, dmax(G),€/(2v(Q))) accepts every graph that is bipartite, and rejects with probability at least
2/3 every graph that is e-far from bipartite (with respect to m(G)).



Test-Bipartite-Reg(n, dmax, €)
e Repeat T = @(%) times:
1. Uniformly select a vertex s in V.

2. If Odd-Cycle(s) returns found then output reject.

e In case no call to Odd-Cycle returned found then output accept.
0Odd-Cycle(s)

1. I d = dpax < /7 then let K & © (71‘)%”:3("/5)) and L ¥ 0 (L(g/f)s). Otherwise
/ .
(d> ya), let K < @ (M V/“) and L% o (1p/0).

€

2. Perform K random walks starting from s, each of length L.

3. Let Ay (A1) be the set of vertices that appear at the ends of the walks performed in the
previous step whose paths are of even (odd) length.

4. If d < 4/n then check whether Ag N Ay # (. If the intersection is non-empty then return
found, otherwise return not-found.

5. Else (d > +/n), perform vertex-pair queries between every pair of vertices u,v € Ay
(u,v € A;). If an edge is detected then return found, otherwise return not-found.

Figure 1: Algorithm Test-Bipartite-Reg for testing bipartiteness with respect to the upper bound mmax =
dmax - 1 on the number of edges, and the procedure Odd-Cycle for detecting odd-length cycles in the graph
G.

The corollary below will become useful in the next section .

Corollary 3 If G is e-far from bipartite with respect to Mmax = dmaxn, then (€)-fraction of its
vertices s are such that Odd-Cycle(s) returns found with probability at least %

The completeness part of Theorem 1 (i.e., showing that the algorithm accepts bipartite graphs)
is straightforward. We focus on proving the soundness of the algorithm (i.e., that e-far graphs are
rejected with probability %) What we eventually show (in Subsection 3.6) is the contrapositive
statement. Namely, that if the test accepts G with probability greater than % then there exists an
e-good partition of G.

Our analysis follows the analysis presented in [11] quite closely. In particular, whenever possible
we refer the reader to proofs given in [11]. Here we present what is necessary to establish the
correctness of our algorithm and in particular those proofs in which we diverge from [11].

3.1 The Rapidly-Mixing Case

To gain intuition, consider first the following “ideal” case: From each starting vertex s in GG, and
for every v € V, the probability that a random walk of length L = poly((logn)/e) ends at v is at
least % and at most % — i.e., approximately the probability assigned by the stationary distribution.
(Note that this ideal case occurs when G is an expander). Let us fix a particular starting vertex
s. For each vertex v, let pg be the probability that a random walk (of length L) starting from s,
ends at v and corresponds to an even-length path. Define p. analogously for odd-length paths.



Then, by our assumption on G, for every v, p) +pl > % We consider two cases regarding the sum

o(G) B, weviwmern (POPY + PEPL).

In case o(G) is (relatively) “small”, we show that there exists a partition (Vp, V1) of V that
is e-good, and so G is e-close to being bipartite. Otherwise (i.e., when the sum is not “small”),
we show that the rejection probability is bounded away from zero. This implies that in case G is

accepted with probability at least % then G is e-close to being bipartite.

Consider first the case in which ¢(G) < c¢- %1 for some suitable constant ¢ < 1. Let the partition
(Vo, V1) be defined as follows: Vg = {v: p) > pl} and V; = {v : pl > pl}. Consider a particular
vertex v € Vy. By definition of V and our rapid-mixing assumption, p9 > ﬁ.

o@ = > 5+ ppy)

v,u€V,(v,u)eE

= > Popy + > PuPs
v,u€V,(v,u)€E,u,veVy v,u€V,(v,u)EE u,veVy
1 1
> _— -
- Z 16n2 + Z 16m2
v,u€V,(v,u)€E,u,veVy v,u€V,(v,u)EE u,veVy
1
Tk (The number of violating edges w.r.t. (Vp, V1)) . (1)
n
Thus, if there are more than edn violating edges with respect to (Vy, V1), then o(G) > % . %1

which contradicts our case hypothesis concerning o(G) assuming ¢ < 1/16.

We now turn to the second case, o(G) > ¢ - %d. For every fixed pair 4,5 € {1,...,K}, (recall
that K = ©(y/n/d - poly(logn/e)) is the number of walks taken from s), consider the 0/1 random
variable n; ; that is 1 if and only if both the i-th and the j-th walks have path length with the same
parity, and if the end-points of the paths are vertices u,v such that (u,v) € E. Then for every pair
Z’ ]’

Explnis] = >, (0000 +pops) = o(G) . (2)
u,v€V,(uv)EE

Since there are K2 = O(n/d - poly(logn/e€)) such pairs 4, j, the expected value of the sum over all
7i,;’s is greater than some constant ¢’ > ¢. These random variables are not pairwise independent,
nonetheless we can obtain a constant bound on the probability that the sum is 0 using Chebyshev’s
inequality (cf., [5, Sec. 4.3]).

Unfortunately, we may not assume in general that for every (or even some) starting vertex, all
(or even almost all) vertices are reached with probability ©(1/n). However, roughly speaking, we
are able to show that every graph can be partitioned into parts such that within each part we can
perform an analysis that builds on the ideas presented above. Furthermore, the different parts are
separated by small cuts so that if each part is close to bipartite, then so is the whole graph. An
important component in the analysis is the definition of the Markov Chain Mﬁf (H), and we turn
to this definition in the next subsection.

3.2 The Markov Chain Mﬁf (H)

Let H be an induced subgraph of G. For any given pair of lengths, £; and ¢35, we define a Markov
Chain Mﬁf (H). Roughly speaking, Mﬁf (H) captures random walks of length at most ¢ - £5 in G



that do not exit H for (sub)walks of length ¢5 or more. The states of the chain consist of the
vertices of H and some additional auxiliary states. For vertices that do not have neighbors outside
of H, the transition probabilities in Mﬁf (H) are exactly as in walks on G. However, for vertices v
that have neighbors outside of H there are two modifications: (1) For each vertex u, the transition
probability from v to u, denoted g, ,, is the probability of a walk (in G) starting from v and ending
at u after less than £ steps (without passing through any other vertex in H). Thus, walks of length
less than £, out of H (and in particular the walk v —u in case (v,u) € E), are contracted into single
transitions. Note that for every v and v in H we have g, , = @yu- (2) There is an auxiliary path
of length /1 emitting from v. The transition probability from v to the first auxiliary vertex on the
path equals the probability that a walk starting from v exits H and does not return in less than
£y steps. From the last vertex on the auxiliary path there are transitions to vertices in H with the
corresponding conditional probabilities of reaching them after such a walk.

A more formal definition of Mﬁf (H) appears in the appendix, together with an illustration (see
Figure A). The following definition and lemma will be instrumental in our analysis.

Definition 3.1 We say that a vertex s is useful with respect to Mﬁf (H) if the probability that a

walk in M% (H) starting from s enters an auziliary path after at most €1 steps, is at most % . %
Lemma 1 Let H be a subgraph of G, and £1 and £y be integers. Then at least half of the vertices

s in H are useful with respect to Mﬁf (H).

The proof of the lemma appears in [11].

3.3 Determining the Set S

The following lemma can be viewed as presenting a “contrapositive statement” of the work of
Mihail [16]. While Mihail showed that high expansion leads to fast convergence of random walks
to the stationary distribution, the lemma below shows that too slow of a convergence implies small
cuts that have certain additional properties. In particular, the vertices on one side of the cut can
be reached with roughly the same, relatively high probability from some vertex s (where s need
not necessarily be on the same side of the cut). In the special case where H = G and G is rapidly
mixing, the set S will be all of V', but in the general case it will be a subset of those vertices that
are reached from s with probability that is not much smaller than that assigned by the stationary
distribution (of M2 (H)).

For states z and y in Mgf (H) and an integer ¢, let g5 4(t) denote the probability that a random
walk in Mﬁf (H) that starts at x, ends at y after ¢ steps.

3
Lemma 2 Let H be a subgraph of G with at least jn wvertices, and let £ = © ((M) ),

€

by =0 (g), and F =0 (%) Then for every vertex s that is useful with respect to Mgf (H), there

exists a subset of vertices S in H, an integer t, £1/2 < t < {1, and a value § = Q (ﬁ), such
that:

1. The number of edges between S and the rest of H is at most §-d - |S]|.

2. For everyv € S,

1B LB
e S as(t) S o[ b
S]] = ST 1]



The proof of the lemma appears in [11].

3.4 Sufficient Conditions for Good Partitions

In the next lemma we give sufficient conditions under which subsets of vertices can be partitioned
without having many violating edges. For each o € {0,1} let ¢J,(t) denote the probability in

Mﬁf (H) of a walk of length ¢ starting from s, ending at v, and corresponding to a path whose
length has parity 0. What the lemma essentially requires is that for some fixed vertex s and subset
of vertices S in H, there is a lower bound on the probability that each vertex in S is reached from
s (in t steps), and there aren’t too many vertices v in the subset such that both ¢J ,(t) and g5 ,(t)
are large (with respect to this lower bound).

Lemma 3 Let H be a subgraph of G, s a vertex in H, S a subset of vertices in H and £1 and £
integers. Assume that for some o > 0, t < £, the following holds in Mﬁf (H):

1. For everyv € S, ¢sn(t) > a;
2. Ev,ues,(%u)eE(qg,v(t)qg,u(t) + q;,v(t)q;u(t)) < £-d-|S]- a? for some constant c.

Let (S0, S1) be a partition of S, where So = {v : q9,(t) > g5, (t)}, and S1 = {v: g5, (t) > ), (1)}
Then the number of violating edges in G with respect to (Sp, .S ) is at most < -d-|S|.

Proof: Consider a vertex v and let v € S, for o € {0,1}. By definition of the partition (Sp, S1),

a3,(t) > 585,0(t) > §-
Assume, contrary to what is claimed in the lemma, that the number of violating edges with
respect to (So, S1) is more than ¢ -d-[S|. Then

Y (@), 1) + g5, (t)as (1)

vUES,(v,u)EE

> > (490 (1)g0,u (%)) + > (45,0 (Dg5u(®))  (3)

v,u€S,(v,u)EE,u,vESy v,u€S,(v,u)EE,u,veST
2 2
« «
> D D DR @
v,u€S,(v,u)EE,u,vESy v,u€S,(v,u)EE,u,vES
2
o €
> —.—-d-|S5]. 5
> © s Q

But this contradicts the second hypothesis of the lemma. W

3.5 Sufficient Conditions for Detecting Odd Cycles

In the next lemma we describe sufficient conditions for “detecting” odd-length cycles when per-
forming walks in Mﬁf(H ) starting from some vertex s. What the lemma essentially requires is
that there exists a subset S of vertices such that there are both lower and upper bounds on the
probability that each vertex in S is reached from s (in t < £; steps), and there are many vertices
v in S such that both qg,v(t) and qg,v(t) are large (with respect to the lower bound). As stated
later in Corollary 4, these conditions are sufficient for detecting odd-length cycles when performing
random walks in G of length ¢; - /5.
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Lemma 4 Let H be a subgraph of G, s a vertex in H, S a subset of vertices in H and £1 and £
integers. Assume that for some a > 0 and F = @(%) and t < £, the following holds in Mﬁf (H):

1. For everyv € S, a < gs,(t) < F-a;

2. Yvues,wuen(@pe5u®) + 45,85, (1) > £-d-|S|-a? for some constant c.

F5
eavdy/|S|
from s in MET(H), and we check the induced graph Gy (G1) on the set Ay (A1) of vertices that
appear on the end of the walks whose related path is of even (odd) parity, then Gy or Gy contain
an edge (i.e. the algorithm detects an odd-length cycle).

Then with probability at least 0.99, if we perform O ( ) random walks of length t starting

We note that when we apply Lemma 4, we set a = poly(e/(logn))/+/|S]| - |H|, and F = O(1/¢), so
that the number of random walks that should be performed is O(4/n/d - poly((logn)/e)).

Proof: Let v % Zv’ues’(v’u)eE(qg,v(t)qg,u(t) + 5 ,(t)g5 () so that by the second hypothesis of

€.d-18] - a2 i — __F5 ;
the lemma v > £-d-|S|-a”. Consider m 0 (e-a-\/E\/F) random walks of length ¢ starting

from s. For 1 <14 # j < m, let ;; be a 0/1 random variable that is 1 if and only if both the i-th
and the j-th walk have path length with the same parity, and if the end-points of the paths are the
vertices u,v € S such that (u,v) € E.

Thus, we would like to bound the probability that } 7, ;i Mij = 0. The difficulty is that the 7; ;’s
are not pairwise independent. Yet, since the sum of the covariances of the dependent 7; ;’s is quite
small, Chebyshev’s Inequality is still very useful (cf., [5, Sec. 4.3]). Details follow. For every i # j,

Explniy] = Y, (60,(8)a0,() + a5, (8)g (1) = -
v,u€S,(v,u)eE

By Chebyshev’s inequality,

o Var [Zi<j ni,j] Var [ZK]. 771-’]-]
) ;% R (Bxp [Sicy ] ) MEGE

We now bound Var[) ._.mn; ;]. Since the 7; ;’s are not pairwise independent, some care is needed:
1<g Ui 5] n 5] p 1Y ’

(6)

_ def
Let 75 < mi; — Exp[ni,]-

2

Var Zm’j = Exp Zm’j

i<j i<j

= D Expliij - ik

1<j k<t

= ZExp [ﬁiz,j] +4 Z Exp [7,j - 0jk] +0
i<j 1<j<k

_ (T;) - Explity] +4- (’;‘) Exp i - g - (7)
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The factor of 4 in the third equality is the number of possibilities that among the four elements
i,7,k,£ (where i < j and k < /) exactly two are equal (namely: i = k < j < {4 i< j=k < ¥
i<k<j=4and k <i=1£<j). The 0 term is due to the fact that when i, j, k,[ are all distinct,

Exp[7ij- ke =  Exp[nij-meed —7°
= Z qg,i(t)qg,j(t)qg,k(t)qg,z(t)

1,,k,L€5,(1,5),(k, ) EE

+ > g9 (t)qg ;(t)gs 1 () g5,6(2)

1,5,k,£€5,(4,5), (k.)€ E

1 1 0 0

+ Z s5,i(1)q5. (1) g5 1 (t)g5,(1)

1,5,k,£€S5,(4,5),(k.O)EE
+ Z q;,i(t)q;,j(t)q;,k(t)q;,e(t) — 7

1,5,k,LES,(4,5),(k L) EE

2
= Z qg,i(t)qg,j(t) + q;,i(t)q;,j(t) Y =9 =4*=0. (8)
(4.5)EE(S)
We next bound each of the two terms in Equation (7).

Explfii ] < Explnis] = Explmg] = 7. 9)

Let v; be a random variable that represents the vertex that the i-th walk ends at.

Exp[1,2 - M2,3] < Exp[ni2-n2;3]
> 090 ()63 1, (G505 () + G50, (85,0 ()5, (1)

v1,v2,V3€8S,(v1,v2),(v3,v2)EE

IA

IA

(number of pairs of edges in S with a common vertex in S) - 2(max{gs,(t)})?
v

2 - min(|S|%d, |S|d?) - F? - o® (10)

N

Since by the lemma’s second hypothesis v > € -d - |S| - a2, we can replace « in Equation (10)

with /E_ZZVS‘ and get

€
c

Bxpliz i) < 2-min(|SPd,[S|%) - - () (1)

Combining Equations (6)—(11) we get

m? -y +m?3 - min(|S|?d, |S|d?) - F3 - ()?
_ _ ’ El
Pr Zm’j—() = 0 mi 2
1<J
. S
0 1 +F3m1n(\/|7|,,/%|)
’Y'mQ m.e%.ﬁ
€ 1



As observed above, by the lemma’s hypothesis concerning +, it holds that o = O(y/v/(ed|S])).
: — F5 — 5 /1
Since m = ) (e-a-ﬂm)’ we have that m = ) (F 1/ 6_7), and the lemma follows. W

Based on the construction of Mﬁf (H) we can map walks of length £; - £ in G to walks of length
41 in Mﬁf (H), and obtain as a corollary to Lemma 4:

Corollary 4 Let H be a subgraph of G and S, s, £1, £2, t, @ and F as in Lemma 4. Then with
.7 . FS . .
probability at least 0.99, if we perform © cavayls random walks of length £ - b5 starting from

s in G, and we check the induced graph Gy (G1) on the set Ay (A1) of vertices that appear on the
end of the walks which their related path is of even (odd) parity, then Gy or Gi contain an edge
(i.e. the algorithm detect an odd cycle).

The proof of the corollary is similar to that of an analogous corollary that appears in [11].

3.6 Proof of Theorem 1

Recall that we need to show that if the test accepts G with probability greater than % then G is
e-close to bipartite.

We say that a vertex s in G is good (for defining a partition) if, with probability at most
0.1, walks of length L on G with the same path parity starting from s end at vertices u,v such
that (u,v) € E. Otherwise it is bad. Since the test rejects G with probability less than %, and
T = §(1/e€), the fraction of bad vertices in G is at most {5. We now show that in such a case we
can find a partition of the graph vertices that has at most edn violating edges. We shall do so in
steps, where in each step we partition a new set of vertices S until we are left with at most {n
vertices. For each partitioned set S we show that: (1) there are few (at most £d|S|) violating edges
with respect to the partition of S; and (2) there are few (at most $d|S|) edges between S and the
yet “unpartitioned” vertices R so that no matter how the vertices in R are partitioned, the number
of violating edges between S and R is small.

At each step, let D be the set of vertices we have already partitioned, and let H be the subgraph
induced by V' \ D. Initially, D = (), and H = G. Let ¢; and 2 be as required by Lemma 2, and let

3
the length L of the walks we perform on G be £; - £5. Since £ = O ((M) ) and £y = O (ﬁ)

we get that L = O (logi(#) Let M & Mﬁf (H). While |H| > £n we do the following. We select

any vertex s in H that is both good and useful with respect to M (see Definition 3.1). By Lemma 1,
at least half of the vertices in H are useful. Since |H| > {n and the total number of bad vertices
is 5n < gn, there exist at least ;5n vertices which are good and useful.

We next apply Lemma 2 to determine a set S, and an integer ¢, ¢1 /2 < t < £, with the properties
stated in the lemma. In particular, the number of edges between S and the rest of H is at most

2
£d|S|, and for every v € S, % < gsp(t) < F. %, where F = O (%), and 8 = Q (logEW)
. . .B-d . .
We claim that it must be the case that Zv’uewv’u)eE(pg(t)pg(t) +pi(t)pL(t) < €|1ﬂ{\ . This claim,
(which we establish momentarily) implies that we can apply Lemma 3 (with a = ’/\SI-’%) to

show that S can be partitioned so that there are at most £d|S| violating edges with respect to this
partition. The claim holds since otherwise, we could apply Lemma, 4, or, more precisely Corollary 4,
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and by letting the number of walks perform from each starting vertex be

P _ VI ) _ (1052 (n/e) - /afd\ _
o\cavivm) ~o(e¥i) - (=) -

(where F, « and 3 are as set above), obtain a contradiction to our assumption the s is good.

Thus, as long as |[H| > $n, each set S contributed at most § - |S|-d + § - |S] - d violating edges
to the partition. Since these sets are disjoint, all these violating edges sum up to % -d-n. The
final H contributes at most £ -7 -d, and so G is e-close to Bipartite.

Verifying that indeed T' = O(1/¢), K = ©(y/n/d- poly(logn/e)), and L = poly((logn)/e)), and
that the algorithm can be implemented using O(K - L + K?) = O(n/d - poly(log n/¢)) queries, the
theorem follows. (Recall that if d < +/n then we obtain the bound of O(y/n - poly(logn/e)).

4 The Algorithm for the General Case

In this section we build on the testing algorithm presented in the previous section and show a one-
sided error bipartite testing algorithm that works with respect to the actual number of edges m =
m(G). Hence this algorithm is suitable for general graphs (for which d,,x may vary significantly
from dayg). The query complexity and running time of the algorithm are of the same order of
magnitude as for Test-Bipartite-Reg, that is, O(min(y/n,n%/m) - poly(logn/e)). We note that
once the graph becomes very dense, that is m = Q(n?/log®n) (where c is approximately 4), it is
preferable to use the adjacency-matrix model algorithm [10, 3] with distance parameter ¢/(n?/m).

A High Level Description of the Algorithm. The basic idea is to reduce the problem of
testing with respect to the actual number of edges m to the problem of testing with respect to
the upper bound mmax = dmax - 1. Specifically, for any graph G we show how to define a graph
G’ over ©(n) vertices that has the following useful properties. First, the maximum degree in G’
is roughly the same as the average degree, and furthermore, this degree is roughly the same as
the average degree in G. In particular this implies that the two graphs have roughly the same
number of edges. Second, G’ approximately preserves the distance of G to bipartiteness. More
precisely, if G is bipartite then so is G', but if G is far from bipartite with respect to m(G), then
G’ is far from bipartite with respect t0 Mmmax = dmax(G')n’. Thus G’ can be viewed as a kind of
“regularized-degree version” of G.

If we had direct access to G', then by the above we would be done: by running the algorithm
Test-Bipartite-Reg on G’ we could decide whether G is bipartite or far from bipartite. However, we
only have access to G. Nonetheless, given query access to G we can efficiently “emulate” queries in
G'. This would almost suffice for running Test-Bipartite-Reg on G'. One more issue is the uniform
selection of starting vertices in G’, required by Test-Bipartite-Reg. As we shall see, selecting a
vertex uniformly from G’ is (roughly) equivalent to uniformly selecting an edge in G.

While we do not know how to efficiently select a vertex in G’ uniformly, we describe a different
selection procedure that suffices for our purposes. Specifically, the selection procedure is such
that for all but a small fraction of the n' vertices in G’, the probability of selecting a vertex v
is Q(1/n'). With slight abuse of terminology we shall refer to this procedure as Sample-Vertices-
Almost-Uniformly-in-G’.> By Corollary 3, this suffices for our purposes.

!The reason we say that we abuse terminology is that the distribution on vertices in G’ induced by this procedure
may be very far from uniform according to any standard distance measure (e.g. statistical difference). However,
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Multiple Edges and The Relation Between m and n. The analysis of the algorithm Test-
Bipartite-Reg did not require any assumptions on the actual number of edges m in the graph,
and it did not preclude the existence of multiple edges. Here we consider graphs that do not
contain any multiple edges and we assume that the number of edges m in G is Q(n). To justify
the assumption on the number of edges, consider a graph that consists of a clique over k = o(y/n)
vertices, where all remaining vertices are isolated. This graph has m = ©(k?) edges, and is clearly
far from bipartite. However, in order to distinguish it from a graph that consists of a complete
bipartite graph over 2k vertices (where all remaining vertices are isolated and is clearly bipartite),
we need Q(n/k) = w(v/N) queries. (Taking this to an extreme, if & = ©(1) then we will need
Q(n) queries.) We note that we could replace this assumption by introducing to the complexity
of the algorithm a dependence on n/m. This would however make the analysis more cumbersome,
without much benefit. For simplicity we further assume that m > n (and not only that m = Q(n)).

We also note that we can actually deal with the case where there are multiple edges, but they
do not constitute more than a constant fraction of the total number of edges.? However, in order
to deal with this case efficiently, we need to assume that there is a concise way to represent the sets
of labels of multiple edges that are incident to each vertex. (In particular this holds if the labels
of multiple edges incident to each vertex are consecutive). For simplicity we assume there are no
multiple edges.

The main theorem of this subsection follows.

Theorem 5 For every graph G having n vertices and m > n edges, we can define a graph G’
having n' vertices and m' edges for which the following holds:

1. n<n' <3n, m <m' <6m, and dmax(G') < 2davg(G).

2. If G is bipartite then G' is bipartite, and if G is e-far from bipartite with respect to m, then
G' is €'-far from bipartite with respect t0 Mmax(G') = dmax(G')n" for € = O(e).

3. Given a starting vertices s in G', it is possible to emulate random walks in G' starting from s,
by performing queries to G. The amortized cost of each random walk step is O(log®n) (degree
and neighbor) queries in G. By emulating these random walks it is possible to execute a slight
variant of Odd-Cycle(s) in G' which we denote Odd-Cycle’(s). This variant is such that
Pr[Odd-Cycle’(s)=found] > Pr[Odd-Cycle(s)=found], where if Odd-Cycle’(s) returns found,
then we can obtain an odd-length cycle of length poly(logn/e) in the original graph G.

4. There exists a procedure Sample-Vertices-Almost-Uniformly-in-G’ that for any given param-
eter 0 < § < 1, performs O(min(~y/n/8,n%/m)) queries in G and returns a vertez in G' such
that the following holds: For all but at most én' of the vertices = in G', the probability that
is selected by the procedure is Q(1/n').

We note that for every graph G there is actually a family of graphs G’ with the above properties (all
defined over the same set of vertices). When we run algorithm Test-Bipartite-Gen, we construct
one such (arbitrary) graph G’ in the family as we go along.

it approximates the uniform distribution in the sense of assigning relatively large weight to every sufficiently large
subset.

%If the number of multiple edges is more than a constant fraction then it is possible to obtain a lower bound on
the number of queries that depends on the ratio between the number of multiple edges and the total number of edges.
Specifically, consider a graph that contains a small clique with many multiple edges, which is far from bipartite, but
can’t be distinguished from a bipartite graph that contains a small complete bipartite graph with many multiple
edges.
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As a corollary to Theorem 5 and Corollary 3 we obtain:

Corollary 6 Algorithm Test-Bipartite-Gen (see Figure 2) accepts every graph G that is bipartite,
and rejects with probability at least 2/3 every graph G that is e-far from bipartite (with respect to
m(G)). Furthermore, whenever the algorithm rejects a graph it outputs a certificate to the non-
bipartiteness of the graph G in form of an odd-length cycle of length poly(logn/e).

The query complezity and running time of the algorithm are O (min(y/n,n?/m) - poly(log n/e)).

Test-Bipartite-Gen(n, dayg, €)
e Repeat T'= O(2) times:
1. Set € =¢/108.

2. Select a vertex s in G’ by calling the procedure Sample-Vertices-Almost-Uniformly-in-G’
with § = €/ /c (where ¢ is a sufficiently large constant).

3. Apply Odd-Cycle’(s).
4. If Odd-Cycle’(s) returns found then output reject.

e In case no call to Odd-Cycle’ returned found then output accept.

Figure 2: Algorithm Test-Bipartite-Gen for testing bipartiteness with respect to the actual number of edges
m = m(G) in the graph G.

We now turn to proving Theorem 5. We actually provide two proofs: one is based on a
deterministic construction of G’ and one on a probabilistic construction. We start by presenting
the deterministic construction.

4.1 Defining G’ and proving the first two items in Theorem 5

In all that follows, let d = dayg(G), and let d' = dmax(G'). We shall assume that d is a sufficiently
large constant. If daye(G) is not sufficiently large then we still set d in the construction below to
be sufficiently large, and run the algorithm with € set to €/(d/davg(G)).

The Idea. Recall that part of our goal is to have G’ be a “regularized” version of G in the sense
that in G’ all vertices have degree at most 2d (while in G there may be vertices with degree much
higher than the average degree d). To this end, every vertex of G with degree higher than d is
represented in G’ by a subset of vertices. Each such subset is partitioned into two equal parts:
an external subset (consisting of external vertices), and an internal subset (consisting of internal
vertices). The edges between external vertices in G’ are determined by the edges of G. Namely, if
(u,v) is an edge in G, then in G’ there is an edge between one of the vertices in the external subset
of u to one of the vertices in the external subset of v. In addition, for every vertex v (with degree
greater than d) there is a bipartite subgraph between its internal and external vertices. All vertices
in the subgraph have degree d, and the subgraph has good expansion properties. The role of these
subgraphs is to ensure that if G is far from bipartite then so is G’. This will be made more clear
subsequently.

4.1.1 The Construction of ¢’

For each vertex v in G such that deg(v) < d, we have a single vertex in G’, which is considered an
external vertex. For each vertex v in G such that deg(v) > d we have in G’ a subgraph, denoted
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H(v). It is a bipartite graph over two subsets of vertices, one denoted X (v), the external part, and
one denoted I(v), the internal part. Both parts consist of [deg(v)/d] vertices. Every vertex in X (v)
represents up to d specific neighbors of v according to some fixed, but arbitmry partition of the
neighbors of v. We refer to the vertices in the two subsets by {X;(v )}[(jleg ©)/dl and {Li(v )}[deg v)/d]
respectively. The edges in H(v) are determined as follows. In case deg(v)/d < d then we have
[d?/deg(v)]-multiple edges between every internal vertex and every external vertex in H(v). In
case deg(v)/d > d, denote s = [deg(v)/d]| and let H(v) be a bipartite expander where each of its
sides has s vertices (s > d). Each vertex in H(v) has degree d. All eigenvalues of the adjacency
matrix of H, but the largest one and the smallest one (which are equal to d and —d, respectively),
are at most d/4 in their absolute values. Explicit constructions of such expanders can be found,
e.g., in [15, 14]. Furthermore, these constructions allow the determination of the i-th neighbor of
any given vertex in constant time.

We have described how vertices of G are transformed into vertices of G'. It remains to describe
the relevant transformation to the edges of G. Consider an edge (u,v) € E(G) where v is the
i-th neighbor of u and u is the j-th neighbor of v. Let Xj(u) and X,(v) be the external vertices
representing the i-th neighbor of u, and the j-th neighbor of v, respectively. Then, there is an edge
(Xg(u), X¢(v)) in G'. Tt directly follows that every vertex in G’ has degree at most 2d and that
n' = |V(G")| < Y peq 2[deg(v)/d] < 3n, and m' = m(G") < 3dn = 6m.

For an illustration of the construction of G’, see Figure 3.

H(ul)

\H(UZ)

H(ud)

H(u3)

Figure 3: An illustration for the construction of G'. On the left are 4 vertices and their induced
subgraph. On the right are the 4 corresponding subgraphs and the edges between the external
vertices in these subgraphs. (The external vertices are marked in bold, and there are additional
edges that do not appear in the figure, between the external vertices in the figure and external
vertices of other subgraphs.)

We have thus established the first item in Theorem 5, and we turn to the second item. From
the construction of G’ it is obvious that if G is bipartite, then so is G'. It remains to prove the
following lemma.

Lemma 5 If G is e-far from bipartite (with respect to m = (dn)/2) then G' is €'-far from bipartite

with respect to d'n’, for € = f5.

In order to prove Lemma 5, we first prove the following proposition concerning bipartite ex-

pander graphs. For any two (disjoint) subsets of vertices, A and B, we let e(A, B) denote the
number of edges with one end-point in A and another in B.
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Proposition 7 Let G = (AU B, E) be a d-regular bipartite graph with sides A and B of size s.
Assume that all eigenvalues of the adjacency matriz of G, but the largest one and the smallest one,
are at most X in their absolute values. Assume further that A < d/4. Then for every two partitions
A= A1 U A, B= By U By, satisfying |A1| > s/2,
d|A
6(A1,Bl) + 6(A2,B2) > % .

Proof: It is well known that the larger is the “spectral gap” (i.e., the difference between d and
A), the closer the edge distribution in G approaches that of a truly random bipartite graph with
sides of size s and edge probability d/s. Specifically, for every Ay C A, By C B of sizes |Ag| = ayo,
|Bo| = bo,

G(A(],B()) — daObO S A\/ aob(] (13)

s
(see, e.g., Chapter 9 of [5]).

Let |A1| = ai, |A2| =ag =8 —ai, |Bl| = bl, |B2| = b2 = 8 — bl. It is given that a; > 8/2. We
may obviously assume that by > ay/2, as otherwise at least half of the edges incident to Ay have
their other endpoint outside Bj, implying e(Asg, Bs) > dag /2.

Applying the bound in Equation (13) twice we get:

dagh daib
e(A1,B)) = d|By|— e(Ay,By) > db; — fl—A agb) = il—AM@h, (14)
e(A2,Bs) = d|As| —e(A2, B1) > das — dajbl — Aagh = dazb2 — Aagb . (15)

Consider first the case by < /2. In this case it follows from Equation (14) that

(AL By) > bt aonr s W26

s s
ds As S ds S das

4 V2787 4

We thus assume that by > s/2. If dagby/s > 2Av/agb1, we obtain from Equation (15) that

2
e(Ag,Bg) 2 da2b2 2 dag(s/ ) _ dag .
2s 2s

4
Hence we may assume that dagbe/s < 2Avagbi. If daibi/s > 2X\v/agb;, then it follows from
Equation (14) that
da1b1 > d(s/2)(a2/2) - da,2
2s 2s T8
as required. Hence we may assume that da1b;1/s < 2A\y/agb;. It remains to check that the latter
assumption together with dagsbs/s < 2A\y/ab; bring to a contradiction. Indeed, multiplying these
inequalities we get: d2ajaghiby/s? < 4X2agby, or d?a1bs < 40?52, Recalling that a; > s/2, by > 5/2,
it follows that d < 4\ - a contradiction to our assumption on A. W

e(A1,By) >

Proof of Lemma 5: We prove the contrapositive statement. Suppose G’ is €/-close to bipartite
with respect to mmax = d'n’. Namely, there exists a partition P’ = (V{,V]) of the vertices in
G’ with respect to which there are at most € - d'n’ violating edges in G’. We shall show how to
construct, based on P’, a partition P = (Vp, V1) of the vertices in G with respect to which there
are at most edn/2 = em violating edges in G, thus proving the lemma.
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Consider a particular vertex v in G, and the subset of external vertices X (v) in G’ that corre-
spond to v. Let X°(v) = X (v)NVj, and let X' (v) = X (v)NV]. We refer to the larger subset as the
magority subset of v, and to the smaller subset as the minority subset of v. We define P = (V}, V1)
by assigning each vertex v in G according to its majority subset. Namely, if | X°(v)| > | X! (v)| then
v is assigned to Vj, otherwise it is assigned to Vi. In what follows it will be convenient to refer to
0 and 1 as colors.

Also, when we refer to edges in G’ as violating edges, we mean with respect to P, and when
we refer to edges in G as violating edges, we mean with respect to P. Note that the partition P
is defined only according to the coloring of the external vertices in G', ignoring the coloring of the
internal vertices. Also recall that there is a one-to-one mapping between edges in G and edges in
G’ whose end-points are both external vertices.

Since each vertex v in G is assigned the color of its majority subset, the violating edges in G’
between pairs of vertices that both belong to majority subsets, or between pairs of vertices that
both belong to minority subsets, become violating edges in G. Similarly, non-violating edges in G’
between vertices in majority subsets, or between vertices in minority subsets, become non-violating
edges in G. It remains to deal with edges between minority and majority subsets in G'. These
edges can be non-violating in G’, but may become violating in G.

We next show that the total number of vertices in G’ that belong to minority subsets can be
bounded as a function of the number of violating edges in G’. To this end we show that if there
were many minority vertices, then there would be many violating edges in G’ between internal and
external vertices.

For each vertex v in G, consider the majority and minority subsets of (the external vertices
of) v. Let the majority subset of X(v) be X%*(v) and let the minority subset be X#(v) (where
a,p € {0,1}).

Claim 5.1 For every vertex v in G, the number of violating edges in G' between vertices in X (v)
and vertices in I(v) is at least |Xf3(v)‘ - (d/8).

Proof: Similarly to our notation for external vertices, for the internal vertices of v let I°(v) def
I(v) NV and I'(v) def I(v) N V/. Consider first the case that degT(”) < d. By construction of G’,
| X (v)| = [I(v)| = [deg(v)/d], and there are d?/deg(v) edges between every pair of vertices (z,y)
such that z € X (v) and y € I(v). Hence the number of edges between X (v) and I(v) that are
violating (with respect to P') is

(1X @I @)] + X7 @)1 (0)]) - (d /deg(v))

> (1IXP @11 (0)| + 1XP @)1 (0)]) - (62 /deg(v) = [XP(0)] -d. .
Next consider the more interesting case where degT(”) > d. In this case Claim 5.1 directly follows
from Proposition 7. ¢ (Proof of Claim 5.1.)

Thus we can conclude that if there are w external vertices that belong to minority subsets then
they contribute at least w - d/8 violating edges in G’. Since the number of violating edges in G’ is
at most €'n'd’ < 6¢'nd, we have that w < 48¢'n. As noted previously, the total number of violating
edges in G is upper bounded by the number of violating edges in G’ plus the number of edges
between minority and majority (external) subsets. Using Claim 5.1 and the above discussion,
the number of violating edges in G is at most 6¢'nd + 48¢'nd = 54¢'nd. Since ¢ = ¢/108, and
m = (nd)/2, the lemma follows. H

We have completed proving the first two items of Theorem 5, and we now turn to the third item.
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4.2 Establishing Item 3 in Theorem 5

Random-Walk Steps. We first shortly discuss the emulation of random walks. If the walk
stays at the current vertex, then clearly there is no need for any emulation. Hence, we only need
to consider the case in which we have to select a random neighbor. Recall that vertices in G’ are
either of the form X;(v) (the i-th external vertex corresponding to vertex v in G), or I;(v) (the
i-th internal vertex), where 1 < ¢ < [deg(v)/d]. Recall that we can obtain deg(v) for any v by a
single degree query, and in particular use this to find the exact degree of every vertex in G'. For
simplicity, we assume from this point on that when considering a vertex v, deg(v)/d is an integer
and hence the degree of every I;(v) is d, and of every X;(v) is 2d.

Performing a random-walk step in G’ from an internal vertex I;(v) can be easily done by using
the explicit structure of the graph H(v) (which is either a complete bipartite graph with multiple
edges, or an explicitly constructible expander). In order to perform a random-walk step from an
external vertex, X;(v), we first determine whether to take one of the d edges within the graph H(v),
or whether to take one of the d edges going from X;(v) to another external vertex. In the first case
we then select an internal neighbor given the explicit structure of H(v). It remains to deal with
selecting an external neighbor. Note that in the special, but easy, case in which deg(v) < d and so
H (v) is a single vertex, there is only the latter option.

As noted just following the statement of Theorem 5, we actually construct G’ as we go along.
The important thing to note is that the definition of G’ allows us to assign the vertices in X (v)
edges of v in an arbitrary manner (as long as each X;(v) is assigned (at most d) different edges).
Hence, all we need to take care of is to be consistent with previous choices, and to ensure the
correct distribution in the choice of the random walk step. To this end we may think of each
external vertex as has having d “ports”, labeled 1,---,d, which are initially unassigned. As the
algorithm proceeds, it puts a “link” between, say, the ¢'th port of X;(v) and the £’s port of X;(u)
(where (v,u) € E(G)). When performing a random-walk step from X;(v) (to a vertex outside of
H(v)), we uniformly select a port. Let us denote the index of the port selected by ¢. If port ¢ of
X;(v) is already linked to another port, then we simply take this link to the port (and vertex) at
the other end. Otherwise, we first set the link, and then take it. In order to set the link properly,
we need to uniformly select a neighbor u of ¥ among the neighbors of v that were not yet assigned
(to any port of one of the external vertices of v). After doing so, and selecting a neighbor u, we
need to select a yet unassigned port of one of the external vertices of u. The above can be done,
with the aid of sampling, at an amortized cost of O(logn) queries in G. Details follow.

For each external vertex X;(v), the algorithm keeps a vector of length d, I';(v). The k’th entry
of I';(v) contains the k’th neighbor of X;(v), if it was determined, and is empty otherwise. Denote
by fi(v) the number of free entries in the vector I';(v). Also denote by A(v) the set of neighbors
of v that were already assigned to external vertices of v, and by NA(v) the vertices that were
not assigned. When setting a link to a yet-unassigned port (filling in a new entry in I';(v)), we
distinguish between two cases .

Case 1: If less than half of the neighbors of v in G are in A(v), the algorithm repeats at most
(log?n) times the following procedure: It chooses uniformly at random a neighbor of v in G. If that
neighbor belongs to NA(v), then a desired neighbor is found. By repeating the above procedure
O(log?n) times, the probability that the algorithm didn’t find a desired neighbor is at most o(1/7).
In this case we say that the algorithm fails . Since the total number of queries that the algorithm
performs is at most o(n), the total failure probability of the algorithm is o(1). Suppose that a
desired neighbor of v, with the name u is found. In that case the algorithm should move to one of

the external vertices of u. The selected vertex Xy (u) is chosen with probability: Ji(w) JAOR
1< < [deg(u)/a1 J3 (1)
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According to the chosen X;(u), the algorithm sets I';(v)[t] <= X;(u). In addition, the algorithm
chooses uniformly at random one of the f;(u) free entries in the vector I'j(u). Assume that the
chosen index is ¢/, 1 < ¢’ < d, then, the algorithm sets I';(u)[t'] < X;(v).

Case 2: If more than half of the neighbors of v in G are in A(v), the algorithm reads all the
neighbors of v in G that belong to NA(v), and attaches them arbitrarily to the unoccupied entries
in T'j(v), 1 < j < [deg(v)/d]. By doing this, the algorithm (at most) doubles the number of
neighbor queries performed on vertex v of G. Now, suppose that in I';(v)[¢] there is a name of a
vertex of G, say u. In that case, the algorithm should move to one of the external vertices Xy (u),
1 <k < [deg(u)/d], and this is done as in the first case.

Modifying Odd-Cycle(-). The procedure Odd-Cycle’(+) is the same as Odd-Cycle(-) in terms of
the performance of random walks, which are emulated as described above . The only modification is
in the last stage, where the procedure performs vertex-pair queries. Let (z,y) be the pair of vertices
queried in G’. We answer the query as follows. If (z,y) = (X;(v), I;(v)) for some vertex v in G, then
we answer according to the explicit construction of the sub-graph H(v). If (z,y) = (X;(v), I;(u))
for u # v, then the answer is always negative. If (z,y) = (X;(u), X;(v)) then we query the pair
(u,v) in G. If there is no edge between (u,v) in G, we answer that there is no edge between X;(u)
and X;(v). Otherwise, we give a positive answer. While this answer may be inconsistent with
the construction of G’, (since it would correspond to having a complete bipartite sub-graph in G’
between the external vertices of u and the external vertices of v), it always provides evidence to an
odd-length cycle in G. An explanation follows.

Consider two paths in G', where both paths start at the same vertex z € H(s), end at a pair of
external vertices X;(v) and X;(u), respectively, and whose lengths have the same parity (so that
Xi(v) and X;(u) both belong to the same A, b € {0,1}). By construction of G', such a pair of
paths in G’ corresponds to a pair of paths in G, which start at s, end at v and u respectively, and
have the same parity b as well. But if there is an edge in G between v and u, then there is an
odd-length cycle in G.

4.3 Establishing Item 4 in Theorem 5

In this subsection we prove the last item in Theorem 5. Recall that we are interested in a procedure
for selecting a vertex in G’ such that there is a sufficiently high probability of hitting any fixed
sufficiently large subset of vertices in G’ (and in particular of hitting the subset of vertices s for
which Odd-Cycle(s) returns found with probability at least 2/3 (in the case G’ is far from bipartite)).
To this end we first describe a procedure, which we refer to as Sample-Edges-Uniformly-in-G, for
sampling edges in G and then show how to use it for our purposes.

4.3.1 Sampling Edges Almost Uniformly in G

We consider two cases: d > v/dn and d < v/én (recall that d = dayg(G) is the average degree in
G and that our goal is to use O(min(y/n/d,n/d)) queries to G). The first case is easy since if
G contains sufficiently many edges then we simply sample ©(n/d) = ©(n%/m) pairs of vertices in
order to obtain an edge. More precisely, we do the following;:

Sample-Edges-Uniformly-in-G
Repeat O(n/d) times:

e Select two vertices in G uniformly and at random.
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e Check if there is an edge between these two vertices (by performing a single vertex-pair query).
If the answer is positive then output this edge (and exit the repeat loop).

Clearly every edge in G has equal probability of being selected, and the query complexity of this
procedure is ©(n/d), which for d > v/dn is ©(min(y/n/d,n/d) as required. (To be more precise,
there is some probability that this procedure fails to output an edge. However, the probability that
this occurs can be made sufficiently small so as to have a negligible effect on the success probability
of our algorithm.)

In the second case, where G contains fewer edges (d < v/dn), we do not have an algorithm
that selects an edge uniformly from G (using relatively few queries). However, we can show the
following;:

Lemma 6 There exists a procedure Sample-Edges-almost-Uniformly-in-G that uses O( n/d) de-
gree and neighbor queries in G and for which the following holds: For all but (6/4)m of the edges e
in G, the probability that the procedure outputs e is at least 1/(64m).  Furthermore, there ezists a
subset Uy C V(G), |Uy| < (0n/2), such that for all edges e = (u,v) that are output with probability
less than 1/(64m), we have u,v € Uy.

Proof: Let us define the following log m buckets: For 1 < i < logm,
B, ={v e V(G) | deg(v) € (271,27} . (16)

Sample-Edges-Almost-Uniformly-in-G(d):
e Let t = 24/n/d - logm. Uniformly select a subset of vertices S C V(G), where |S| = ¢ and
partition the sampled vertices into buckets S; = S N B;.

|Si|2°
> 182t

e Choose a bucket 7, 1 <14 < logm with probability
e Uniformly select a vertex v € §;.
e Uniformly select an edge incident to wv.

Let us define a set of indices Iy, that includes indices of all buckets B; that have “few” elements.

More precisely,
Vo
In=<i:1<i<logm and |B;| < n .
2logm

(17)

Let Up be the set of vertices that belong to buckets with “few” elements: Uy = [J,¢ 1, Bi-

Consider any fixed vertex v ¢ Uy, and let i(v) be the index of the bucket that v belongs to,
that is, v € By,). We denote by C, the event that v is selected in the third step of the sampling
algorithm. Then, for a vector (s1,...,S10gm) We can estimate:

_ Sy s 1
IBiwyl  22i8i2°  siw)

(first require that v falls in Sj(,), then choose the bucket S;(v), and then choose v inside Sj())-
Thus the above conditional probability is:

PI‘[CU | |Sl| k2 TR |Slogm| = Slogm]

Si(v) 2i(v) S si(,,)deg('u)
|Biw)|  22i8i2" — |Bigw)l 225 8i2°

(18)
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The random variable s;(,) is hypergeometrically distributed with parameters n, |Bz-(v)\ and ¢. It
thus has mean t|Bj(,)|/n, and using known bounds on the tails of the hypergeometric distribution
and our assumption on v (v € Uy and therefore Bi(y) is large), we can get:

Si(v) t ]
Pr > —| >
['Bi(v)| ~2n|

Consider the sum Y¢_, 5;2". We have:

ni Lt
Z\Bﬂ?i
>3 (degv) < LT

t vEB;

Exp [Z \si|2i] =

3!@# 3!HN.M

IA

Using Markov’s inequality, the probability that },[5;/2" > 28 js less than 1/4. It thus follows

that
(2 50) (Z s ﬁtm)]%'

Consider only such vectors (si,...,s;). From Equation(18) we obtain:

t  deg(v) _ deg(v) '

Top | I6m T g4
n

Pr

Pr[Cy] >

l\DIb—t

Finally, for an edge e € E(G), let us denote by C. the event that e is selected in the fourth
step of the procedure Sample-Edges-Almost-Uniformly-in-G. Let E(Ujp) denote the set of edges
between pairs of vertices in Uy, that is, E(Up) = {(u,v) € E(G) | u,v € Up}. By definition of
Uo, |Us| < V/6n/2, and hence |E(Up)| < (6n)/4. Therefore, for all but at most (én)/4 < dm/4 of
the edges in E(G), at least one of their end-points is not in Uy. (Note that here we have used the
assumption that m > n.) For each such edge (u,v) where u ¢ Uy (or v ¢ Up), we have

1 deg(u) 1 1
> . = .
deg(u) = 64m  deg(u) 64m

Pr[C,] > Pr[C,] - (19)

4.3.2 Sampling Vertices in G’

We now return to selecting vertices in G'. Let us denote by V(H (v)) the set of vertices corresponding
to v in G'.

Sample-Vertices-Almost-Uniformly-in-G’

e Sample an edge e € E(G) according to the procedure Sample-Edges- Almost-Uniformly-in-G.

e Choose with equal probability one of the end-points v of the edge e.

e Choose uniformly at random one of the vertices z in V(H (v)).
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Proof of Item (4) in Theorem 5. Let Uj be as defined in Lemma 6. For an edge e € E(G), let
C. denote the event that e is selected by Sample-Edges-Almost-Uniformly-in-G. For v € V(G) let
C, denote the event that v is selected in Step 2 of procedure Sample-Vertices-Almost-Uniformly-in-
G’, and for z € V(G') let C,, denote the event that z is selected in Step 3 of the procedure. Recall
that for every v € V(G) we have |V (H (v))| = 2[deg(v)/d], and so for every = € V(G'),

1 1 1
Sdeg)d ~ 2= 3719 raeeidl

e=(u,v)

Pr[C,] = Pr[C,]- (20)

Consider first the case where z € V(H (v)) for v ¢ Uy. Then for every edge e that is incident to
v, we have that Pr[Cc] > 1/(64m) = 1/(32dn). By Equation (20), for each such vertex z we have

that
1 1 1 1

. . > >
32dn  2[deg(v)/d] ~— 256n — 256n'’
as required. Next consider the case that z € V(H (v)) where v € Uy but deg(v) > 2|Up|. In such

a case for at least half of the edges e incident to v we have that Pr[C.] > 1/(32dn), and we can
deduce that Pr[Cy] > ﬁ It remains to show that the total number of vertices = that correspond

to vertices v such that v € Uy and deg(v) < 2|Up|, is at most én’. Using the fact that |Uy| < v/én/2
and for every vertex v, |V (H(v))| = 2[deg(v)/d] < 2deg(v), we get:

Pr(C,] > 7 deg(v) (21)

> V(H()| < 40> < én’, (22)
veUp: deg(v)<2|Up|

as required.

4.4 A Probabilistic Construction of G’

In this subsection we describe an alternative, probabilistic construction of a graph G’ that estab-
lishes Theorem 5. More precisely, we describe such a construction that, under certain conditions
on d and €, results, with very high probability, in a graph G’ as required in the theorem. Here too
the graph is constructed as the algorithm proceeds. In all that follows, let d = davg(G), and let
d' = dmax(G"). Let n (n') be the number of vertices in G (G'), and m (m') be the number of edges
in G (G"). The probabilistic construction is simpler and it is possible that it may be applicable to
other problems as well. However in this construction we need that d = Q(logn + 1/¢).

4.4.1 The Construction

As in the deterministic construction, every vertex of G is transformed into [deg(v)/d] vertices.
Denote by X (v) the vertices in G’ related to a vertex v € V(G). The vertices in X (v) are denoted
by Xi(v),1 < i < [deg(v)/d]. Thus, n’ = [V(G")] < ¥peq[2EW] < 2n. The edges of G’ are
determined as follows: an edge (u,v) € E(G) chooses independently uniformly at random a vertex

from X (v) and a vertex from X (u). In G’ there will be an edge between these two randomly chosen
vertices. Clearly, m’' = |E(G')| = |E(G)| = (nd)/2.

Lemma 7 For d = Q(logn), the mazimum degree d' of G' constructed above is 2d with probability
1—o0(1).
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Proof: Let W2/ be an indicator random variable which is 1, if the j-th induced edge of v € V(G)

(1 < j < deg(v)), chooses vertex X;(v) € V(G'). Let W} o 2 1<j<deg(v) Wl Wi is a sum of
j independent indicator variables. Exp[W}] = deg(v) - 1/(deg(v)/d) = d. Let X! be an indicator
variable which is 1, if W? > 2Exp[W/] = 2d, and 0 otherwise.

Using standard bounds on tails of sums of bounded random variables (see, e.g., [5]), for a specific
v € V(G) and 1 < i < [deg(v)/d], it follows that Pr[X! = 1] < e~°?. Using a union bound over
all Xi’s v € V(G) and 1 < i < [deg(v)/d], we get that the probability that there exists a vertex
v and an index 4 for which X! = 1 is at most n - e = o(1), thus with probability 1 — o(1), the
maximum degree of G' constructed above is 2d. W

Lemma 8 For a graph G with d > 512/e the following ezists: If G is e-far from bipartite (with
respect to m = (dn)/2), then with probability 1 — o(1), G' is € -far from bipartite with respect to
d'n!, for € = 5.

Proof: Consider a fixed partition P’ = (V{, V) of the vertices in G'. The partition P’ induces
a partition of X (v) for every v. Let us denote by X“(v) the majority subset of X (v) induced by
P'. Consider a partition P = (Vy, V1) of the vertices of G induced by P’ in the following way. For
v € V(G), if X*(v) C Vj, then v € Vp, otherwise v € V. Since G is e-far from bipartiteness, at
least one of the subsets Vp, V; contains 1end edges. W.lo.g. assume that |E(Vp)| > fend. Let H’
be a sub-graph of G’, defined as follows. The vertices of H' are:

U X*()

veVY

The edges of H' are the edges of G', induced by V(H'). Thus, V(H') C Vj and E(H') C E(V}).
Claim 8.1 Pr[|E(H')| < (¢/32)nd] < 27¢", where ¢ > 1.

Once Claim 8.1 is proved, by taking a union bound over all possible partitions P’ of the vertices
of G' we get that for every partition P’ = (Vj,V/) of the vertices of G', the number of violating
edges in G’ is at least €/32 - n - d with probability 1 — o(1). Recall that n’ < 2n and d' < 2d with
probability 1 — o(1). Thus, for every partition of the vertices of G', the number of violating edges
is at least €/128 - n’ - d' with probability 1 — o(1), as required.

Proof of Claim 8.1 Consider an edge e = (u,v) € E(G), Let ¢ = (X;(v)

,X;(u)) be its related edge
in E(G'), and let us refer to €' as ¢(e). For e € E(Vy), Pr[é(e) € E(H')]

X;(
>1/2-1/2 = 1/4. Thus,

Exp[| E(H')|] 2 1/4|E(Vo)|-

As |E(H")| is a sum of |E(V})| independent Bernoulli random variables, each with expectation at
least 1/4, it follows from standard bounds on the tails of binomial random variables (see, e.g., [5])
that

PI‘[X|E(V0)| < (1/32)end] < e nd/512

Thus, for d > 512/¢ we have
Pr[|E(H')| < €¢/32nd] < 27"

for ¢ > 1, and the lemma is proved. B(Proof of Claim 8.1 and Lemma 8.)
We have completed proving the first two items of Theorem 5, with regard to the probabilistic
construction.
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4.4.2 Proving Item (3) in Theorem 5

In order to prove this item we need to explain how to emulate queries in G’ by performing queries
in G.

Degree Queries Here we assume that in G’ the maximum degree is 2d. It was proved before to
be true with probability 1 — o(1). Consider the following procedure Assign-Edges(v) where v is
a vertex of G: Find deg(v) by one query on G; for each edge-index r € {1,...,deg(v)}, choose one
of the vertices X;(v) € X (v) (1 <17 < [deg(v)/d]), uniformly at random. Denote by Q;(v) a vector
of 2d cells. This vector contains the indices of edges that are assigned to X;(v).

Choose an empty cell ¢ in the vector Q;(v), and set Q;(v)[t] := r. This procedure actually fits
the random construction of G'.

Neighbor Queries. For each vertex X;(v), the algorithm keeps a vector (of length 2d), W;(v)
that contains an ordered list of all the vertices of G' s.t. the algorithm is committed to the
existence of an edge between them and X;(v). Le. if W;(v)[t] = X;(u), it means that there is an
edge (X;(v), X;(u)) in G'. In that case Wj(u)[t'] = X;(v) for some ¢/, 1 < ' < 2d. Note that the
procedure Assign-Edges(v) assigns each of the edges of v independently to one of the vertices
Xi(v), 1 < i < [deg(v)/d].

Suppose that the algorithm is located in X;(v) and it wishes to perform a neighbor query.
Choose uniformly at random, a number k, 1 < k < 2d. Take an empty vector Q;(v) of length 2d
and copy into it the vector W;(v). By that the algorithm keeps its commitment about the edges
which have already been exposed. Then, apply the Assign-Edges(v) procedure only for edges of v,
that do not appear in one of the W;(v), 1 < i < [deg(v)/d] (i-e. to edges which were not exposed
yet by the algorithm). If @;(v)[k] is empty then the walk remains at X;(v), if Q;(v)[k] contains
a name of a vertex in G', the walk moves to that vertex, otherwise, Q;(v)[k] contains an index of
a neighbor of v in G. By performing a single neighbor query on G, the algorithm determines the
name of that neighbor (say) u in G. Then the walk needs to move to one of the vertices X;(u),
1 < j < deg(u)/d. It chooses one of the vertices X;(u) uniformly at random. For the chosen j set
Wi(v)[k] := X;(u). Now choose a free cell £/, 1 < k' < 2d, in W;(v), and set W;(v)[K'] := X;(v).
The walk is now at X (u).

Vertex-Pair Queries. Consider the following pairs of vertices (X;(v), X;(u)) in G'. Perform a
vertex pair query (u,v) in G. If there is no edge between (u,v) in G, answer that there is no edge
between X;(u) and X;(v). Otherwise, an odd-length cycle is detected in G. The explanation is
similar to the one that appeared in the deterministic construction.

4.4.3 Establishing Item 4 in Theorem 5

In this subsection we prove the last item in Theorem 5 (for the probabilistic construction); Recall
that we are interested in a procedure for selecting a vertex in G’ such that there is sufficiently high
probability of hitting any fixed sufficiently large subset of vertices in G’ (and in particular of hitting
the subset of vertices s for which Odd-Cycle(s) returns found with probability at least 2/3 (in the
case G’ is far from bipartite)).

There is an isomorphism between the edges of G and G'. Thus to choose an almost random
edge of G' choose an almost random edge (u,v) of G using Sample-Edges-almost-Uniformly-In-G
algorithm. Then choose uniformly independently a vertex from X (v) and a vertex from X (u), this
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is the sampled edge from G’. Thus Pr[C/,] = Pr[C,] > 1/64m > 1/64m’'. Note that once a random
edge of G’ is chosen, it is actually determined in G’ using the process for assigning edges that is,
this edge is actually a part of G'. Thus, the last item in Theorem 5 follows.

5 A Lower Bound

In this section we present a lower bound on the number of queries necessary for testing bipartiteness.
Similarly to the lower bound presented in [11], this lower bound holds for testing algorithms that
are allowed a two-sided error, and the graphs used for the lower bound construction are regular
graphs. However, the lower bound of Q(+/n) (for constant €) established in [11], holds for graphs
having constant degree (e.g., degree 3), and when the algorithm is allowed only neighbor queries.
Our lower bound is more general in that it allows the algorithm to perform both neighbor queries
and vertex-pair queries, and it is applicable to all graphs.

Theorem 8 Every algorithm for testing bipartiteness with distance parameter € < 2~* must per-
form Q(min(y/n,n?/m)) queries.

The high-level structure of our proof is similar to other lower-bound proofs for testing, which
can be traced back to [19]. Specifically, we present two distributions over graphs (which are defined
in detail below): G(n,d), and G(n/2,n/2,d), where d is the degree of the vertices in the graphs. (For
simplicity we assume that n is even.) We prove that graphs created randomly according to G(n, d)
are e-far from bipartite with high probability, while all graphs in the support of G(n/2,n/2,d)
are bipartite. We then show that a bipartite tester that asks o(min(y/n,n%/m)) queries, cannot
distinguish with sufficiently high probability whether a graph is created according to the distribution
G(n,d) or G(n/2,n/2,d). Note that by definition, in both cases m = (nd)/2, and so n?/m = 2n/d.

The Graph distribution G(n,d). A graph G in the support of the distribution G(n,d) is
composed of n vertices, and it is a d-regular graph. The edges of G are determined according to
the following random process. Consider a two-dimensional table of size n x d, which we refer to as
the matching table. Each cell in the matching table is denoted by c, ;, where u denotes the row in
which the cell is located, (and corresponds to a vertex in the graph) and i denotes the column in
which the cell is located (and corresponds to a label of an edge incident to v).

Consider a perfect matching over the cells of the table, randomly chosen over all possible perfect
matching. This randomly chosen matching defines the edges of the graph G. That is, if the cells
cu;i and ¢, ; are matched then this means that there is an edge (u,v,1,7) in the graph.

The Graph distribution G(n/2,n/2,d). A graph G in the support of the distribution
G(n/2,n/2,d) is a bipartite d-regular graph composed of n vertices, where each side of the partition
is of size n/2. The edges of G are determined according to the following random process. First we
select a random partition of the graph vertices {1,...,n} into two parts (sides), each of size n/2.
Second, consider two tables, each of size n/2 x d, where each is attached to one of the partition
sides. The rows in each table refer to the vertices that belong to the relevant side of the partition.
Let us refer to the table attached to the first side of the partition as the even table, and to the
table attached to the second side of the partition as the odd table.

A cell in these tables is denoted by cp i, where b € {1,2} denotes the relevant table, v denotes
the row in which the cell is located, and ¢ denotes the column in which the cell is located.
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Now, consider a perfect matching over the cells of the two tables, randomly chosen over all
possible perfect matchings that are restricted to matching cells from the odd table with cells from
the even table. This randomly chosen matching defines the edges of the graph G. That is, if the
cell ¢ 4, is matched to the cell ¢o, j, this means that there is an edge (u,v,14, j) in the graph (where
u belongs to one side of the bipartite graph and v to the other side).

By definition, all graphs in the support of G(n/2,7n/2, d) are bipartite. We can show that almost
all graphs in the support of G(n,d) are far from being bipartite.

Lemma 9 With probability 1 —o(1), a graph chosen uniformly according to the distribution G(n,d)
is e-far from being bipartite for every e < 1/16 and d > 64.

Proof: We shall show that for every fixed partition (Vj, V1) of V, the probability, taken over the
selection of a graph in G(n/2,n/2,d), that there are more than € n - d violating edges with respect
to (Vp, V1), is very close to one. The lemma will then follow by a union bound (over all partitions).

Let P = (Vb, V1) be an arbitrary fixed partition of V. Without loss of generality let [Vy| > n/2.
Consider the following process, denoted by Cp, for choosing a random d-regular graph having n
vertices (i.e., a perfect matching over a matching table of size n x d). Starting from b = 0, choose an
arbitrary cell ¢, ; such that u € Vj, and match ¢, ; to a randomly chosen unmatched cell ¢, ;. If the
number of unmatched cells that belong to vertices in Vj, is smaller than the number of unmatched
cells that belong to the other side of the partition, then switch sides (i.e. let b <~ 1 — b). Finish
when all the cells are matched. Thus, the number of steps in this process is %d —1. (In the last step
there are two unmatched cells, which are matched together). We denote by Gp the graph chosen
according to process Cp.

Claim 9.1 For every fized partition P, the distribution on graphs induced by the process Cp is
equivalent to G(n,d)

Proof: For each step ¢ in the process Cp, 1 <t < %d — 1, let e; be the edge selected in that step.
Let Ry be the set of all graphs in the support of G(n,d) and denote by R; C Ry the set of graphs
in Ry that contain the edges eq,...,e;. Using this notation, at the start of process Cp, before any
edge was selected (any two cells were matched), the process can potentially select any graph in Ry.
After performing ¢ steps it is restricted to selecting graphs from R;.

The probability that a particular graph G in the support of G(n,d) is selected is

Pr[Gp =G] = Pr[G € R1]-Pr[G € Ry|G € Ry]- --- -Pr[G € R%d_1|G € R%d_Q] )

Consider any particular term Pr[G € R;|G € R;_1] in the above expression. Conditioned on G
belonging to R; 1 (that is, the edges eq,...,e; 1 selected by the process Cp are all edges in G), we
would like to know what is the probability that G belongs to R; as well. Let ¢, ; be the arbitrary
unmatched cell selected by Cp in step t. Let v be the i-th neighbor of v in G, where u be the j-th
neighbor of v. Since G € R;_1, necessarily ¢, ; is an unmatched cell in the matching table. Hence,
the probability that G belongs to R; (conditioned on it belonging to R;_1) equals the probability
that c,; is matched to ¢, ; which is 1/(dn — 2(¢t — 1) — 1). Therefore,

P 1 1 dn(dn—2)- - 2
PriGp=C] = = o= '3 (dn)!
_ (2(dn/2) - (2((dn/2) 1)) - --- -2 292 (dn/2)! (23)
(dn)! (dn)!
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It remains to show that the above expression equals 1/|Rg|. But this is easy to verify: By definition,
|Ro| is the total number of possible perfect matchings between the dn cells in the matching table.
Each such matching can be obtained by ordering all the cells and letting the matching be defined by
successive pairs. The number of such orderings is (dn)!. However, different orderings may produce
the same matching. In particular we need to take into account the over-counting due to orderings
within the pairs (i.e., the pairs (¢, , ¢y ;) and (cyj, ¢y,i) are the same), and the over-counting due
to orderings between the different pairs. In other words, we need to divide (dn)! by 29%/2 . (dn/2)!.
We have thus obtained the inverse of the expression in Equation (23), as required. ¢ (Proof of
Claim 9.1.)

We have thus completed proving the claim and may view a graph G selected uniformly from
G(n,d), as if it is created according to the process Cp, for any fixed partition P. It remains to show
that with very high probability over the choice of such a graph, it has more than e - nd violating
edges with respect to the partition P.

By definition, during the process Cp, we always try to match a cell that belongs to a side of
the partition having more unmatched cells. Thus, at each step we create a violating edge with
probability at least % (except the last stage), independent of the past events. It follows that the
expected number of violating edges in the final resulting graph G, with respect to a particular

nd

partition P, is p > (nd/2 — 1) - % > &, Let Yp denote the number of violating edges with respect

to P. By applying the Chernoff bound we have that for any constant 0 < o < 1,
Pr[Yp < (1 — @)p] < exp(—(1/2)c?u) .
In particular, for @« = 1 — 8¢ (recall that € < 1/16) we obtain:

Pr[Yp < end] Pr[Yp < 8epy]

<
< exp(—(1/2)(1 - 8¢)*p)
< exp(—(1 — 8¢)®nd/16)

Since the total number of partitions is 2", if we take a union bound over all possible partitions
then we can deduce that the probability that G has less then end violating edges with respect to
any partition P is bounded from above by 2" - exp(—(1 — 8¢)?nd/16). Taking € < 1/16 and d > 64
we get that a graph constructed according to a distribution G(n,d) is e-far from bipartiteness with
probability 1 — o(1) as required. H

Let ALG be an algorithm for testing bipartiteness using @ = @Q(n) queries. Namely, ALG
is a (possibly probabilistic) mapping from query-answer histories {(q1,a1), .-, (qt,at)) to g11, for
every t < (@, and to {accept,reject} for ¢ = Q). Recall that a query ¢; can be of two types: a
neighbor query and a vertex-pair query. A neighbor query ¢; is a pair (uy, i), where uy € V,
and iy € {1,...,deg(us)}. Here the corresponding answer a; is a pair (v, j;) where v; € V and
Ji € {1,...,deg(vs)} such that v; is the i;-th neighbor of u; and wuy is the j;-th neighbor of v;. A
vertex-pair query g is a pair (u¢, v;), where ug, vy € V, and the corresponding answer is of the form
a; = (Y, ¢, j¢)- If there is an edge between u; and v; then y; = 1, and 4; and j; are the corresponding
labels of the edge. If no such edge exists then y; = 0, and i; and j; are set arbitrarily, say to 1. In
the former case we shall say that ALG has detected an edge (by a vertex-pair query). In the latter
case we'll say that (ug,v;) is a non-edge (and that ALG has detected a non-edge)®. Note, that the

3In case multiple edges are allowed then the answer is of the form (y;, It, J;) where I; and J; are sets of labels.
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answers to the queries of ALG, contain additional indexing information, that do not appear in our
model. We show that even by using the extra information, ALG can’t do better than the stated
lower bound.

We assume that the mapping is defined only on histories that are consistent with some n-vertex
graph. Any query-answer history of length ¢ can be used to define a knowledge graph Gy, at time ¢.
The vertex set of Gy contains all vertices that appear in the history (either in queries or in answers).
For every neighbor query (uy,iy) answered by (vy,jy) (' < t), the graph G contains the edge
(ug, vy, i, jp), and similarly for every vertex-pair query (vy,uy) that is answered by (1,4, jy).
In addition, for every vertex-pair query (vy,uy) that is answered by (0,1,1), the knowledge graph
maintains the information that (vy,uy) is a non-edge. Thus Gy is a subgraph of the graph tested
by ALG.

In what follows we describe two random processes, P! and P2, which interact with an arbitrary
algorithm ALG. The process P! answers ALG’s queries while constructing a random graph from
G(n/2,n/2,d), and the process P2 answers ALG’s queries while constructing a random graph from
G(n,d). We assume without loss of generality that ALG does not ask queries whose answer can be
derived from its knowledge graph, since such queries give it no new information. (For example ALG
does not ask a vertex-pair query about a pair of vertices that are already known to be connected
by an edge due to a neighbor query).

For a fixed algorithm ALG that uses @) queries, and for b € {1,2}, let D?&LG denote the
distribution on query-answers histories (of length Q) induced by the interaction of ALG and P°.
We show that for any given ALG that uses o(min(y/n,n/d)) queries, the statistical distance between
D}; g and D%, is o(1). Combining this with Lemma 9 (and the fact that m = (nd)/2), Theorem 8
follows.

Definition of P?, b € 1, 2.

e Let R! be the set of all graphs in the support of G(n,d), and let R? be the set of all graphs in
the support of G(n/2,n/2,d).

For an edge e = (u,v,1,j), denote by ng C R® the subset of graphs in R’ that contain e;. We

may refer to ng as RI(’U vig)’

For an edge-pair fy = (u,v), denote by R?ck C R? the subset of graphs in R® that contain an edge

between the vertices u,v. Denote by Rl}— C R® the subset of graphs in R’ that do not contain
k

an edge between the vertices u, v.

e The process P® answers queries as follows. Initialize R} = R (in general, as is explained in more
detail below, for any ¢ > 0, the set R? consists of all graphs in R that are consistent with the
first ¢ queries and answers).

1. If the t-th query is a vertex-pair query ¢; = (u¢, v¢) then the answer a; = (yy, it, j¢) is selected
as follows. Let y, = 1 with probability |Rp,, .\ R?_;|/|Rj_;| and let y; = 0 with probability

(ut,vt

1—|R? NRY_,|/|R%_;|. In the former case, for any pair 4,5 € {1,...,d}, the probability

(ut,ve)
that 44 = ¢ and j; = j is |R((’Ut,vt,i,j) NRY ,|/|R% ;| and we set R} = R?Ut,’l]t,i,j) NRY ;. In
the latter case, the values of 7; and j; can be selected arbitrarily (say to 1), and we set
RI=R.__NRY,.

(vt ,ut)
2. If the t-th query is a neighbor query ¢; = (uy, ;) then for each v € V., j € {1,...,d}, answer
a; = (v,j) with probability |R’(’ut vivg) RY ||/|Rb_,|, and set R} = R? NRS_,

(ut vt,1,5)
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e After all queries are answered (that is, after ) queries), uniformly choose a random graph G
from R’(’Q. This is the graph constructed by P?,b € 1,2.

Lemma 10 For every algorithm ALG, the process P!, when interacting with ALG, uniformly
generates graphs in G(n,d), and the process P2, when interacting with ALG, uniformly generates
graphs in G(n/2,n/2,d).

Proof: Consider a specific graph G € Rj. Recall that R} = G(n,d), and R2 = G(n/2,n/2,d).
The probability that G is generated by P?,b € 1,2 is:

Pr[G € R}]-Pr[G € R}|G € RY]- --- -Pr[G € RY)|G € R) 1] ‘R |
_ BB Bel 1 1
|R§| |RY| |RY 1| |RY] | RY|

and the lemma follows. W

We next want to upper bound the probability that ALG, after performing o(n/d) queries, gets a
positive answer (that is, of the form (1, *, %)) when it performs a new vertex-pair query and interacts
with either one of the two processes. We first introduce some more notation. For b € {1,2} and

any set of edges B = {e1,...,es}, let Ry = o R N...NRY, (where jo is as defined above in the
description of the processes {Pb}be{l 2})- Slmllarly, for any set of edge-pairs D = {f1,..., fn}, let
Rb def R— ﬂR . Finally, let Rb — = Rb N Rb That is, Rb 1s the subset of all graphs in R?

that are consmtent w1th a partlcular set of edges and a partlcular set of non-edges. In particular,
if B and D correspond to the set of edges and non-edges, respectively, that were observed by ALG
in the course of its first ¢ queries, then R%, 5= RY.

Lemma 11 Let B = {e1,...,es} be any set of edges, and let D = {f1,..., fn} be any set of edge-
pairs such that no edge-pair in D appears in B and such that |B|,|D| = o(n/d). Then for each
b€ {1,2}, and for every (u,v,i,j) ¢ B we have

b b
\Bluig) VB 5l 4

b -~ = .
|RB,E dn

Proof: Consider first the process P' and recall that R' is the set of graphs in the support of
G(n,d). For sake of brevity we remove the superscript 1 for the remaining discussion (until we turn
to the process P?). For each ey € B, let e, = (ug, U, ik, jx). For any w < £ = | B|, the total number
of possible perfect matchings in the matching table that match ¢, ;, to ¢y, j, for 1 <k < w (that
is, the number of matchings that are consistent with the edges ej,...,ey), is
(dn — 2w)!
25 —w)(dn _ )1

The argument required for establishing this expression is a slight extension of the one used in the
proof of Lemma 9 (when determining the size of Ry). It follows that for any (u,v,i,7) such that
neither ¢, ; nor ¢, ; is yet matched,

(dn—2(k+1))!
R0, N bl _ 2(%”*(’““”(%”7(“1))! _ 1

|Rp| B _ (@20 T dpn—2k—1"
oG- =k)(dn gy
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For an edge-pair (u,v) we can thus deduce that

|R(u,v) N RBl ‘ (Ulgi’jsd R(u,v,i,j)) n RB‘
|RB] Rz
2151',3'5(1 [ Riu,i,5) N BBl
|Rp|

d? d
S — = 24
dn —2k —1 O(n) ’ (24)

Hence we obtain that

e ()
|Rp| B
‘RB \ <U1§wsh Rf“”)‘
|RB|

|Ry, N Rp]
1— 1w " BI
2 |RB|

v

1<w<h

- 1—0(%)-0@) = 1-0(1), (25)

n

and so P2l — 1+0(1).

|RB,5‘ o

Putting the above together we get that for every (u,v,1,j) ¢ B:

|R(u,v,i,j) N RB,E| _ |R(u,'u,i,j) N RB| . |R(U:U,i:j) N RB,El . |RB|
|Rp 5l |Rp| |Riup,ijy) " BBl |Rppl
1 4
. 1.-(1+0(1 < = 2
gn ok 1 L (tem) < oo (26)

We now turn to P® = P2 and recall that R? is the support of G(n/2,n/2,d). Also recall that
in order to construct a random graph from G(n/2,n/2,d) we do the following: we partition the n
vertices into two equal parts at random and we use two matching tables (one named the odd table
and one the even table). We then randomly select a perfect matching between cells in the odd table
and cells in the even table. Here too we remove the superscript b = 2 for sake of brevity.

Let w = o(n/d), and let M,, be the number of possibilities to partition n vertices into two parts
of equal size so that the end-points of the edges e1, ..., e, belong to different sides of the partition.
The total number of graphs in R = R? that contain the edges e1,.,e, € B is My, - (dn/2 — w)! .
To verify this, consider any fixed equal-partition amongst the M, possible ones (such that the
end-points of the edges ey, .., e, belong to different sides of the partition). For each such partition,
consider the dn/2 — w cells in the odd/even tables which are not part of the edges ei,..,e,. A
matching between them can be uniquely defined by an arbitrary order on the un-matched cells in
the odd table, and a permutation on the un-matched cells in the even table.

Note that by the definition of M,, we have that MML;” < 1. Therefore,

[Bluwig) VBBl M1 - (dn/2 — (k+1))! 1
|Rz| My - (dn/2 — k)! = dn/2 -k
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As in the case of P? = P! it follows that

R NR 2
Boo DRel o &~ o), (29)
|RB| dn/2 — k n
from which we can obtain that 22 =1+ o(1).
[Rp 5]
By combining the above we get that
|Buwig) VRe ol |Ruwig) VRl [Ruwii) VR 5l |Ra|
|Rp 5l |Rp| |Rupig) N BBl |Rp 5l
1 4
-1-(1+0(1)) < (29)

dn/2 —k dn

The next two lemmas follow as corollaries of Lemma 11.

Lemma 12 Let ALG be an algorithm that interacts with a process P, b € 1,2 and performs o(n/d)
queries. The probability that ALG detects an edge by a vertez-pair query at any step, is o(1).

Proof: Consider the interaction of ALG with P’. For each 1 <t < @, Q = o(n/d), let B; 1 be
the set of edges in the induced knowledge graph Gy_;, and let D;_; be the set of edge-pairs that are

non-edges in the graph. By definition of the process P?, we know that Rf,l = R’;at DT Suppose

that the ¢-th query of ALG is a vertex-pair query (u¢, v¢) (where by our assumption, the pair
(ut,vy) is neither an edge(-pair) nor a non-edge in Gy_1, but other than that it may be any vertex-

pair). Then by Lemma 11 (and using the fact that R} | = RbBtfl ﬁ)’ for every i,7 € {1,...,d},
|R€ut,vt,i,j) NRY ,|/|RY ;| < 4/(dn) . Therefore,
d
Rl N ng,l‘ B ‘(Ui,je{l,...,d} th,vt,z‘,j) N R,’;l‘ _ g ‘ (th,vt,z‘,j N Rf,l)‘ P
R}, |R}_,| B |R}_,| on

It follows by definition of PP that the answer a; = (s, iy, j;) satisfies y; = 1 with probability at most
4d/n. Note that the above is true for every step ¢, for every pair of sets B;_; and D; ; and for
every vertex pair (u,v;) (that does not already appear in B;_; or in D;_1). Hence, the probability

that y; = 1 in any one of the @ = o(n/d) queries performed by the algorithm is o(1) as required.
[ |

Next we turn to neighbor queries and prove a similar claim.

Lemma 13 Let ALG be an algorithm that interacts with process P®, b € 1,2 and performs o(y/n)
queries. Then the probability that ALG, while performing a neighbor query q. = (u, i) at any step
t of the interaction, receives as an answer a; = (vy,ji) where v is a verter that belongs to the
knowledge graph Gi_1, is o(1).

Proof: Let ¢t = o(y/n) and let ¢; = (u,i) be a neighbor query. Denote by p; the probability that
following this query ALG reaches a vertex that was previously visited (i.e., p; is the probability
that in the answer a; = (vy,j:) we get a vertex v; that already belongs to the knowledge graph
Gy _1). Then by definition of P° (for both b =1 and b = 2),

Unegio1, 1<5<d (R?ut,v,it,j) N R?—l) ‘
Pt = . (31)
|R?_,|

33



By Lemma 11 (using the same argument as the one applied in the proof of Lemma 12), we can
deduce that for any specific v and 7, v € Gy—1 and 1 < 5 < d,

4
‘RI()ut,v,it,j) ﬂ Rg—l‘ S % * ‘Rg_l‘ . (32)

Therefore,

b b b b
U (R(Ut,v,it,j) n Rtil) S Z ‘R(Ut,’l},it,j) ﬂ Rt*l‘
v€G—1, 1<j<d vEGy_1, 1<j<d,
4 8t
< d-zt-—-‘R’L‘ - —-‘R’L‘. 33
— dn t—1 n t—1 ( )

Since t = o(y/n) we get that p; = 0o(1/4/n). Since this holds for every 1 < ¢ < Q = o(y/n), the
probability that for some ¢ (in which a neighbor query is performed), the algorithm reaches a vertex
in the knowledge graph is 0o(1). W

In particular we can obtain the following corollary:

Corollary 9 Let ALG be an algorithm that interacts with process P® and performs Q =
o(min(y/n,n/d)) queries. Then ALG does not detect a cycle with probability 1 — o(1).

Recall that D%, b € {1,2}, denotes the distribution on query-answer histories (of length Q),
induced by the interaction of ALG and P?. We are now ready to show that the two distributions
are indistinguishable if ) is sufficiently small.

Lemma 14 For every algorithm ALG that asks Q = o(min(y/n,n/d)) queries, the statistical dis-
tance between D}y and D3 is at most o(1). Furthermore, with probability at least 1 — o(1) the
knowledge graph at time of termination of ALG contains no cycles.

Proof: Recall that G, the knowledge graph after () queries, contains all the vertices that appeared
in one of the queries or answers, all the edges found by queries, and all the non-edges found by
queries.

Recall that we assume without loss of generality that ALG does not ask queries whose answer
can be derived from the knowledge graph, since those give it no new information. Under this
assumption the following holds:

1. According to Lemma 12, both in D} o and in D?%; ; the total weight of query answer histories
in which an edge is detected by a vertex-pair query is o(1). In all other histories (whose weight
is 1—o0(1) under both distributions), all answers to vertex-pair queries are of the form (0, 1, 1).

2. According to Lemma 13, both in D}&LG and in DiLG the total weight of query-answer histories
in which any neighbor query ¢, is answered with a vertex that belongs to the knowledge graph
Gy¢_1,is 0o(1). In particular, this means that with probability at least 1 — o(1), the knowledge
graph at time of termination of ALG contains no cycles.

Let II; be the set of all possible query-answer histories in which a vertex-pair query is answered
by (1, ,x*), let IIs be the set of histories in which a neighbor query is answered with a vertex that
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appears in the current knowledge graph, and let II3 be the set of all remaining histories. Then the
statistical distance between D}A‘LG and D%LG is upper bounded by

Z ‘D}ALG(W) - DJQALG(W)‘ + Z ‘D}ALG(W) - DJQALG(W)‘ + Z |D11ALG(7T) - D%LG(W)‘ . (34)
welly wells wells

Observe that

Z |Divc(m) — Diig(m)| < Z Djig(m) + Z D31g(7) = Djy,g(I) + DX 6(I12)
wellp mell; mell;

(and similarly for the sum over IIp). Hence the first two terms in Equation (34) contribute o(1).
As for the third term, first note that for every fixed history ((¢1,a1),...,(q—1,a¢t—1)), the
distribution on the next query ¢; that ALG performs is the same no matter which process it interacts
with. By definition of I3, if ¢; is a vertex-pair query, then a; = (0,1,1) for both processes. Finally,
if ¢; = (uy, 1) then again by definition of II3 the answer a; = (v, j¢) is such that v; ¢ Gy_;. For both
processes, conditioned on vy ¢ G;_1, the vertex v; is uniformly distributed among all vertices not
in G¢_1, and j; is uniformly distributed over {1,...,d}. Therefore, the third term in Equation (34)
is bounded by |D}; (IT3) — D3, (II3)| which is o(1) as well, and the lemma follows. W
Theorem 8 follows by combining Lemma 14 with Lemma 9.

5.1 Self Loops and Multiple Edges

The lower bound proof as stated above is valid for graphs that may contain multiple edges and
self loops. In both the distributions G(n,d) and G(n/2,n/2,d) the probability of a multiple edge
between vertices 4 and v is O(Z—z), and the probability of a self loop edge incident to vertex v is
O(%). Thus, graphs created according to these distributions contain self loops and multiple edges
with probability close to 1. However, with probability 1 — o(1) there are at most O(d?) loops and
multiple edges in the graphs created according to these distributions.

We have shown in Lemma 9 that graphs created according to the distribution G(n,d) are e-far
from bipartiteness with probability 1 — o(1). Hence we can deduce that by removing self-loops and
multiple edges from a graph G constructed according to a distribution G(n,d), the resulted graph
is e-far from bipartiteness with probability 1 — o(1).

In addition, an algorithm ALG that interacts with process P?, detects a multiple edge with
probability o(1), due to the following reason: ALG does not detect any edges by sampling steps
with probability 1 — o(1). The probability to detect a multiple edge/self loop in a neighbor query
is at most the probability that such a query is answered by a vertex in the knowledge graph. This
probability was shown (in Lemma 13) to be o(1).

Thus, P? in the end of the interaction with ALG, can delete all the loops and multiple edges
from the resulting graph, so that the resulting graph contain no loops and multiple edges. In the
case of P? the graph is bipartite as before, and in the case of P! the graph is (still) e-far from
bipartiteness.

As a conclusion we get that our lower bound is valid also for graphs with no multiple edges and
loops.

5.2 The Necessity of Both Neighbor Queries and Vertex-Pair Queries

A bipartite tester that “meets” the lower bound Q(min(/n,n2/m)) should use both neighbor
queries and vertex-pair queries for graphs where the degree d > /n, i.e. when \/n > n?/m.
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For bipartite testers that use only neighbor queries, there exist a lower bound of Q(y/n) on any
two-sided error algorithm. Such a lower bound can be obtained using Lemma 13 similarly to the
lower-bound stated above.

For bipartite testers that use only vertex-pair queries, there exist a lower bound of Q((n/d)?) =
Q(n*/m?) (for any two-sided error algorithm). This is true since by using o((n/d)?) vertex-pair
queries the testing algorithm would see at most one edge with probability 1 — o(1).

Thus, we can conclude the both types of queries are needed for bipartite testers that “meet”
the lower bound.

5.3 A Lower bound for Testing k-Colorability

It is possible to generalize the lower bound stated for bipartite-testers to a lower bound for
k-colorability. By using similar arguments we can get that a graph chosen uniformly from
the distribution G(n,d) is e-far from being k-colorable. In addition, by defining a distribution
G(n/k,n/k,..n/k,d) in an analogues way to the definition of G(n/2,n/2,d), and by an analogues
definition of the processes P’,b € 1,2, we can get a lower bound for k-colorability which is:

Q(min(y/n, n%/m)).
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A A formal definition of Mg (H)

For every vertex v in H we have a state v in Mﬁf (H). For simplicity, we shall continue referring
to these states as vertices. Let the border of H, denoted B(H), be the set of vertices in H that
have at least one neighbor in G that is not in H. Then, for every vertex v € B(H), we have a
set @y 1,...,0,¢ of auziliary states. Let pf,u(t) denote the probability of a walk of length ¢ that
starts at v and ends at u without passing through any other vertex in H. Namely, it is the sum
over all such walks w, of the product, taken over all steps in w, of the transition probabilities of
these steps. In particular, pi{v(l) > % (where equality holds in case v has degree d), and for every
u € D(v), pi, (1) = 5 (here we assume that we can choose a random neighbor of a vertex with in

time which is O(1)). The transition probabilities, g; 4, in Mgf (H) are defined as follows:

e For every v and w in H, g, = Zf‘" llpfu( t).

Thus, gy, is a sum of pf, (1) and Zfz St P, (t). The first term implies that for every v in

H, gy > % and for every pair of neighbors v and u, g, > 21_(1' The second term, which we
refer to as the ezcess probability is due to walks of length less than 5 (from v to u) passing
through vertices outside of H, and can be viewed as contraction of these walks.

Hence, for every pair of vertices v and u, gy = Qu o-
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e For every v € B(H), Qv (av) = DoucH thb p{){u(t); for every £, 1 < € <l1, q(a, ) (avp1) = 15
and for every u € H, =_1 DI pﬁ{u(t). (The parentheses added in the notation

Ao,y )50 9v,(ay,1)

above (e.g., g( are only for sake of readability.)

av,l)!(av,lH—l))
In other words, gy (4, ;) is the probability that a random walk in G that starts from v takes at
least £ steps outside of H before returning to H, and g(q, o) is the conditional probability

of reaching v in such a walk. Thus, the auxiliary states form auxiliary paths in Mgf (H),
where these paths correspond to walks of length at least £o outside of H.

We shall restrict our attention to walks of length at most ¢; in Mﬁf (H), and hence any walk
that starts at a vertex of H and enters an auxiliary path never returns to vertices of H.

For any two states v, z in Mﬁf (H) let gy ,(t) be the probability that a walk of length ¢ starting
from y ends at z. In particular ¢, , = gy,,(1), and for any two vertices u and v and any integer ¢,
we have g, ,(t) = ¢u,4(t). We further let the parity of the lengths of paths corresponding to walks
in G be carried on to Mﬁf (H). That is, each transition between vertices v and u that corresponds
to walks outside of H consists of two transitions — one due to even-length paths corresponding to
walks from v to u outside of H, and one to odd-length paths. For any two vertices in H we let
gy, (t) denote the probability in Mﬁf (H) of a walk of length ¢ starting from v, ending at u, and
corresponding to a path whose length has parity o.

In all that follows we assume that G is connected. Our analysis can easily be modified to deal
with the case in which G is not connected, simply by treating separately each of its connected
components. Under the assumption that G is connected, for every v and u in H, there exists a
t such that g, ,(t) > 0, and hence Mﬁf (H) is irreducible. Furthermore, because for each v € H

Qoo > %, Mﬁf (H) is also aperiodic. Thus it has a unique stationary distribution.

1-1r(v)l/(2d)

Ve

\1/(2(1)

Figure 4: The structure of Mﬁf (H). The states corresponding to vertices of H are depicted as black
dots, and the auxiliary states as white ones. Here p; , denotes the transition probability between
any two vertices z,y € B(H), which equals Zfzz_ll pgy(l), pu denotes the probability of entering
an auxiliary path starting from u € B(H), which equals ),y > sy, puH, .(t), and p,|, denotes

the probability of returning from the last state on this auxiliary path to z € B(H), which equals
1
B sty P (t)-
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