Proclaiming Dictators and Juntas
or
Testing Boolean Formulae

Michal Parnas Dana Ron Alex Samorodnitsky
The Academic College Department of EE — Systems Institute for Advanced Study
of Tel-Aviv-Yaffo Tel-Aviv University Princeton, NJ 08540
Tel-Aviv, | SRAEL Ramat Aviv, ISRAEL asamor@ias.edu
michalp@mta.ac.il danar@eng.tau.ac.il

August 5, 2001

Abstract

We consider the problem of determining whether a given foncf : {0,1}" — {0,1} belongs
to a certain class of Boolean functioffs or whether it isfar from the class. More precisely, given
query access to the functighand given a distance parametewe would like to decide whethef €
F or whether it differs from every € F on more than ar-fraction of the domain elements. The
classes of functions we consider are singleton (“dictaipr¥functions, monomials, and monotone DNF
functions with a bounded number of terms. In all cases weigeogigorithms whose query complexity
is independent of (the number of function variables), and polynomial in thieeptrelevant parameters.

1 Introduction

The newly founded country &ff is interested in joining the international organizatPea. This organiza-
tion has one rule: It does not admit dictatorshigff. claims it is not a dictatorship but is unwilling to reveal
the procedure by which it combines the votes of its governnmmembers into a final decision. However, it
agrees to allowPea’s special envoyJee, to perform a small number of experiments with its voting moet
Namely, Tee may set the votes of the government members (uisiiig advanced electronic system) in any
possible way, and obtain the final decision given these vdies’s mission is not to actually identify the
dictator among the government members (if such exists)ptiytto discovemhethersuch a dictator exists.
Most importantly, she must do so by performing as few expenits as possible. Given this constraifde

may declineEff’'s request to joirPea even ifEff is not exactly a dictatorship but only behaves like one most
of the time.

The above can be formalized a®eoperty Testing ProblemLet f : {0,1}" — {0,1} be a fixed (but
unknown) function, and I€P be a fixed property of functions. We would like to determinggerying f,
whetherf has the propert, or whether it is-far from having the property for a given distance parameter
By e-far we mean that more than anfraction of its values should be modified so that it obtalresroperty

*Supported by the Israel Science Foundation (grant numbieo3p).
tSupported by NSF (grant number CCR-9987845) and by a Statewflersey grant.

P. For example, in the above setting we would like to test wérethgiven functionf is a “dictatorship
function”. That is, whether there exists an index ¢ < n, such thatf(z) = z; for everyz € {0,1}".

Previous work on testing properties of functions mainlyufeed on algebraic properties (e.g., [BLR93,
RS96, Rub99]), or on properties defined by relatively riamifees of functions such as the family of all
monotone functions [GGL00, DGL™99]. Here we are interested in studying the most basic famiif
Boolean functions: singletons, monomials, and DNF fumsio

One possible approach to testing whether a funcfidras a certain propertp, is to try and actually
find a good approximation fof from within the family of functionsF» having the tested proper®. For
this task we would uselaarning algorithmthat performs queries and works under the uniform distidiout
Such an algorithm ensures thafihas the property (that ig, € Fp), then with high probability the learning
algorithm outputs aypothesis € Fp such thaPr[f(z) # h(z)] < €, wheree is a given distance (or error)
parameter. The testing algorithm would run the learningritigm, obtain the hypothesis€ Fp, and check
thath and f in fact differ only on a small fraction of the domain. Thistlasep is performed by taking a
sample of sizé(1/¢) from {0,1}" and comparingf andh on the sample. Thus, jf has propertyP then
it will be accepted with high probability, and ff is e-far from havingP (so thatPr[f(z) # h(z)] > € for
everyh € Fp, then it will be rejected with high probability.

Hence, provided there exists a learning algorithm for teeetfamilyF», we obtain a testing algorithm
whose complexity is of the same order of the learning algoritTo be more precise, the learning algorithm
should be groperlearning algorithm. That is, the hypothesist outputs must belong t@Fp.!

A natural question that arises is whether we can do bettersimgua different approach. Recall that
we are not interested in actually finding a good approxinmafmr f in Fp but we only want to know
whether such an approximatiaxists Therefore, perhaps we can design a different and moreesgffici
testing algorithm than the one based on learning. In pdaticthe complexity measure we would like to
improve is thequery complexityf the algorithm.

As we show below, for all the properties we study, we descailgerithms whose query complexity is
polynomial in1/e, wheree is the given distance parameter, dndependenf the input sizen.?2 As we
discuss shortly, the corresponding proper learning dlyms have query complexities that dependmgn
though only polylogarithmically. Thus our improvement istiso much of a quantitative nature (and we
also note that our dependence bfe in some cases is worse). However, we believe that our rearéts
of interest both because they completely remove the depeadenn in the query complexity, and also
because in certain aspects they are inherently different the corresponding learning algorithms. Hence
they may shed new light on the structure of the propertiediestu

1.1 Our Results.

We present the following testing algorithms:

¢ An algorithm that tests whethgris a singleton function. That is, whether there exists amxid< i <
n, such thatf (z) = z; for everyz € {0,1}", or f(z) = z; for everyz € {0,1}". This algorithm has
query complexityO(1/e).

e An algorithm that tests whethgris a monomial with query complexit§)(1/€?).

'This is as opposed twon-properlearning algorithms that given query access'te Fp are allowed to output a hypothesis
h that belongs to a more general hypothesis cJa&ss Fp. Non-proper learning algorithms are not directly applledior our
purposes.

2The running times of the algorithms are all linear in the nemtf queries performed and in This dependence amin the
running time is clearly unavoidable, since even writing danquery takes time.

¢ An algorithm that tests whethgtis a monotone DNF having at mo&terms, with query complexity
O(t*/e3).

Techniques. Our algorithms for testing singletons and for testing moiadgrhave a similar structure. In
particular, they combine two tests. One test is a “natuest that arises from an exact logical characteriza-
tion of these families of functions. In the case of singlstdmis test uniformly selects paitssy € {0,1}"

and verifies thatf (x A y) = f(z) A f(y), wherez A y denotes the bitwise ‘and’ of the two strings. The
corresponding test for monomials performs a slight var@rhis test. The other test in both cases is a
seemingly less evident test with an algebraic flavor. In #eeof singletons it is a linearity test [BLR93]
and in the case of monomials it is an affinity test. This tesuegs that iff passes it then it has (or is close
to having) a certain structure. This structure aids us ityaira the logical test.

The testing algorithm for monotone DNF functions uses teefte monomials as a sub-routine. Recall
that a DNF function is a disjunction of monomials (the terrhghe function). If f is a DNF function with
a bounded number of terms, then the test will isolate thewifft terms of the function and test that each is
in fact a monomial. Iff is far from being such a DNF function, then at least one ofahests will fail with
high probability.

It is worthwhile noting that, given the structure of the mtmre DNF tester, any improvement in the
complexity of the monomial testing algorithm will imply amprovement in the DNF tester.

1.2 Related Work

Property Testing. Property testing was first defined and applied in the conteatgebraic properties of
functions [RS96], and has since been extended to variousidsmperhaps most notably those of graph
properties (e.g. [GGR98, GR97, AFKS99]). (For a survey §&nD0]). The relation between testing and
learning is discussed at length in [GGR98]. In particulbgttpaper suggests that testing may be applied
as a preliminary stage to learning. Namely, efficient tgstigorithms can be used in order to help in
determining what hypothesis class should be used by theitepalgorithm.

As noted above, we use linearity testing [BLR93] in our tessingletons, and affinity testing, which can
be viewed as an extension of linearity testing, for testirmnamials. Other works in which improvements
and variants of linearity testing are analyzed include [B®H, AHRS99]. In particular, the paper by Bellare
et. al. [BCH"95] is the first to establish the connection between lingaeisting and Fourier analysis.

Learning Boolean Formulae. Singletons, and more generally monomials, can be easiigéeaunder the
uniform distribution. The learning algorithm uniformlyleets a sample of siz8(logn/e) and queries the
function f on all sample strings. It then searches for a monomial thedrsistent withf on the sample.
Finding a consistent monomial (if such exists) can be dortavie linear in the sample size and+n A
simple probabilistic argument (that is a slight variant @fc@m’s Razor [BEHW87{) can be used to show
that a sample of siz®(logn/e) is sufficient to ensure that with high probability any monahthat is
consistent with the sample is argood approximation of .

There is a large variety of results on learning DNF functigasd in particular monotone DNF), in
several different models. We restrict our attention to thedeh most relevant to our work, namely when
membership queries are allowed and the underlying digimitbus uniform. The best known algorithm
results from combining the works of [BJT99] and [KS99], andldis on Jackson’s celebrated Harmonic

3Applying the theorem known as Occam's Razor would give angfeo result in the sense that the underlying distributioy ma
be arbitrary (that is, not necessarily uniform). This hoaresomes at a price of a linear, as opposed to logarithmierignce of
the sample/query complexity an

Sieve algorithm [Jac97]. This algorithm has query compje® (7" . (lﬁg:—" + f—i)) , Wherer is the number

of variables appearing in the DNF formula, ahi$ the number of terms. However, this algorithm does not
output a DNF formula as its hypothesis. On the other hand |JUAm§Ang88] describes a proper learning
algorithm for monotone DNF formula that uses membershigigea@nd works under arbitrary distributions.
The query complexity of her algorithm ©(¢ - n + £/¢). Using the same preprocessing technique as
suggested in [BJT99], if the underlying distribution is fonm then the query complexity can be reduced

to O (% +2- (r + %)) Recall that the query complexity of our testing algorittsvaifaster growing

function of £ and1/e, but does not depend an Hence we get better results whérand 1/e are sub-
logarithmic inn, and in particular when they are constant.

Finally, we note that similarly to the Harmonic-Sieve baseslilts for learning DNF, we appeal to the
Fourier coefficients of the tested functign However, somewhat differently, these do not appear explic
in our algorithms but are only used in part of our analysis.

1.3 Organization

We start with some necessarily preliminaries in SectiomZédction 3 we present our algorithm for testing
singleton functions. The algorithm for testing monomialgpresented in Section 4, and the algorithm for
testing monotone DNF in Section 5. In Section 6 we discusssaiple (simpler) alternative to the singleton
test, and in Section 7 we present an alternative analysteddffinity test.

2 Preliminaries
Definition 1 Letz,y € {0,1}", and letjn] < {1,... n}.
¢ We denote byz| the number of ones in the vecter
e We writey » z if in each coordinatey; > x;.
o Welet2? ® {2 €{0,1}": z < z}. Hence,2?| = 22/,
e We letz A y denote the string € {0, 1}" such that for every € [n], z; = z; A y;.

e We letz @ y denote the string € {0, 1}" such that for every € [n], z; = z; ® v;.

Definition 2 (Singletons, Monomials, and DNF functions)A functionf : {0,1}" — {0,1} is asingle-
ton function, if there exists af € [n] such thatf(z) = z; for everyz € {0,1}", or f(z) = z; for every
z € {0,1}".

We say thaif is amonotone k-monomial for 1 < k < n if there existk indicesiy, ..., i € [n], such
that f(z) = =i, A -+ Az, for everyz € {0,1}". If we allow to replace some of the,’s above withz;,
thenf is ak-monomial. The functionf is amonomial if it is a k-monomial for somé < k < n.

A function f is an /-term DNF function if it is a disjunction o# monomials. If all monomials are
monotone, then it is monotone DNF function.

When the identity of the functioif is clear from the context, we may use the following notation.

Definition 3 DefineF % {z|f(z) =0} and F} ot {z|f(z) =1}.

Definition 4 (Distance between functions)The distance (according to the uniform distribution) betwe

two functionsf, g : {0,1}" — {0,1} is denoted byist(f, g), and is defined as followsdist(f, g) def

Proco,yn[f(2) # g(x)].

The distance between a functigrand a family of functionsF is dist(f, F) def minge 7 dist(f, g). If
dist(f,F) > e for somel) < e < 1, then we say thaf is e-far from F. Otherwise, it is-close.

Definition 5 (Testing Algorithms) A testing algorithm for a family of boolean functiot® over {0,1}"
is given a distance parameter 0 < e¢ < 1, and is provided with query access to an arbitrary function
f:{0,1}" = {0,1}.

If f € F then the algorithm must outpatcept with probability at leas®/3, and if f is e-far from F
then it must outputeject with probability at leas2/3.

3 Testing Singletons

We start by presenting an algorithm for testing singletoie testing algorithm fok-monomials will
generalize this algorithm. More precisely, we present goradhm for testing whether a functiofi is a
monotonesingleton. In order to test whethgris a singleton we can check whether eitifeor f passes
the monotone singleton test. For the sake of succinctrresghat follows we refer to monotone singletons
simply as singletons.

The following characterization of monotokemonomials motivates our tests. We later show that the re-
quirement of monotonicity can be removed.

Claim1 Letf : {0,1}" — {0,1}. Thenf is a monotone-monomial if and only if the following three
conditions hold:

1. Pr[f =1] = &;

2. Va,y, fe Ay) = f(2) A fy);
3. f(z) =0forall |z] < k.

Proof: If fis ak-monomial then clearly all the conditions hold. We turn toy® the other direction. Let
Y = Azer, - Using the second item in the claim we get:

f)=f(N\ 2= A\ flz)=1

zeF zeF1

However, by the third itemf (z) = 0 for all |z| < k, and thugy| > k. Hence, there exist indicesiy, ..., i,
such thaty;, = 1forall1 < j < k. Buty;; = A,cp, #i;. Hencex;, = ... = z;, = 1foreveryz € Fy.
The firstitem now implies thaf(z) = z;, A ... A z;, foreveryz € {0,1}". W

Definition 6 We say that,y € {0,1}" are aviolating pair with respect to a functioif : {0,1}" — {0,1},
if f(z) A fly) # flzAy).

Given the above definition, Claim 1 states that a basic ptppé{monotone) singletons (and more gen-

erally of monotone&:-monomials), is that there are no violating pairs with respe f. A natural candidate
for a testing algorithm for singletons would take a samplaroformly selected pairs, y, and for each pair

5

verify that it is not violating with respect té. In addition, the test would check thBt[f = 0] is roughly
1/2 (or else any monotonke-monomial would pass the test).

As we discuss in Section 6, we were unable to give a completef for the correctness of this test.
Somewhat unintuitively, the difficulty with the analysisdiin the case when the functigns very farfrom
being a singleton. More precisely, the analysis is quitgpmvhen the distanc&betweenf and the closest
singleton is bounded away froty2. However, the argument does not directly apply &rbitrarily close to
1/2. We believe it would be interesting to prove that this simel&t is in fact correct (or to come up with
an example of a functioff that is almost /2-far from any singleton, but passes the test).

In the algorithm described below we circumvent the abovicdity by “forcing more structure” oryf.
Specifically, we first perform another test that only accéptetions that have, or more precisely, that are
close to having a certain structure. In particular, evemglsiton will pass the test. We then perform a slight
variant of our original test. Provided th#tpasses the first test, it will be easy to show tfigiasses the
second test with high probability only if it is close to a detgn function. Details follow.

The algorithm begins by testing whether the functibielongs to a larger family of functions that
contains singletons as a sub-family. This is the familpafity functions

Definition 7 A functionf : {0,1}" — {0,1} is a parity function (a linear function oveiGF(2)) if there
exists a subsef C [n] such thatf (z) = @®;csz; for everyz € {0,1}".

The test for parity functions is a special case of the lirigdeist over general fields due to Blum, Luby
and Rubinfeld [BLR93]. If the tested functighis a parity function, then the test always accepts, arfdsf
e-far from any parity function then the test rejects with mbliity at leastd/10. The query complexity of
this test isO(1/€). Assuming this test passes, we still need to verify that actually close to a singleton
function and not to some other parity function. Suppose tihatparity test only accepted proper parity
functions. Then the following claim would suffice. It showst if f is a non-singleton parity function, then
a constant size sample of pairsy would, with high probability, contain a violating pair witkspect tof .

Claim 2 Letg = @csz; for S C [n]. If |S] is even then

mwmszgWWw@H=%+g%ﬁ

and if|S| is odd then
1

MDD

N =

Prlg(z Ay) = g(z) Ag(y)] =

Proof: Lets = |S|, and letz,y be two strings such that (i} has0 < i < s ones inS, that is,|{¢£ €
S: zp =1} =1 (i) z Ay hasO < k < i ones inS; and (iii) y has a total ofj + k£ ones inS, where
0<j<s—i.

If g(z Ay) = g(x) A g(y), then either (1) is even andk is even, or (2) is odd andj is even. Let
Zy € {0,1}"x{0,1}" be the subset of pairs y that obey the first constraint, and It c {0,1}" x{0,1}"
be the subset of paits y that obey the second constraint. Since the two subsetssomdli

Prlg(z Ay) = g(z) Ag(y)] = 27°" - (|1 Z1] + | Z2)) (1)

It remains to compute the sizes of the two sets. Since thelowies ofr andy outsideS do not determine
whether the pait, y belongs to one of these sets, we have

weeen (£ O£ 08
1=0,7 even ¢ k=0,k even 7=0 J

and

e (LO80.E.6) o
=01 odd */ k=0 j=0,j even \ J

The first expression equals
92n—2s (225—2 + 23—1) — 92n—2 + 92n—s—1 _ 92n (2—2 + 2—(5—}—1)).

The second sum equald” - (2=2 + 2-(+1) if 5 is odd and2?”~2 if s is even. The claim follows by
combining Equations (2) and (3) with Equation (1)l

Hence, if f is a parity function that is not a singleton (that|& > 2), then the probability that a
uniformly selected paig, y is violating with respect t¢f is at leastl /8. In this case, a sample @6 such
pairs will contain a violating pair with probability at leas— (1 — 1/8)1¢ > 1 —e=2 > 2/3.

However, what iff passes the parity test but is only close to being a paritytiom® Letg denote the
parity function that is closest t$ and let§ be the distance between them. (Whegrs unique, given that
f is sufficiently close to a parity function). What we woulddiko do is check whethey is a singleton,
by selecting a sample of paitsy and checking whether it contains a violating pair with resge g.
Observe that, since the distance between functions is meshsiith respect to the uniform distribution,
for a uniformly selected pair, y, with probability at leasf1 — 6)2, both f(x) = g(z) and f(y) = g(y).
However, we cannot make a similar claim abgift: A y) andg(z A y), sincez A y is not uniformly
distributed. Thus it is not clear that we can replace theatioh test forg with a violation test forf.

The solution is to use self-correctorfor linear (parity) functions [BLR93]. Given query accessd
function f : {0,1}" — {0, 1}, which is strictly closer tha/4 to some parity functiory, and an input
z € {0,1}", the procedure Self-Corrdgt x) returns the value of(x), with probability at leas$/10. The
qguery complexity of the procedure is constant.

The above discussion suggests the following testing dtguri

Algorithm 1 Test for Singleton Functions
1. Apply the parity test tg with distance parametanin(1/5, €).
2. Uniformly and independently selent= 32 pairs of pointsz, y.

e For each such pair, leb, = Self-Correctf,z), b, = Self-Correctf,y) and bypny =
Self-Correctf, z A y).

e Check thab s, = by A by.

3. If one of the above failsreject. Otherwiseaccept.

Theorem 1 Algorithm 1 is a testing algorithm for monotone singletoRarthermore, it has one sided error.
That s, if f is a monotone singleton, the algorithm always accepts. Tieeygcomplexity of the algorithm
isO(1/e).

Proof. Since the testing algorithm for parity functions has ordedierror, iff is a singleton function then
it always passes the test. Similarly, in this case the sefector always returns the value ffon the given
input point, and clearly no violating pair can be found. Hertbe test always accepts a singleton.
Assume, without loss of generality, that< 1/5. Consider the case in which is e-far from any
singleton. If it is alsce-far from any parity function, then it will be rejected witmgbability at leas9/10

7

in the first step of the algorithm. Otherwise, there existaigue parity functiory such thatf is e-close to
g. By Claim 2, the probability that a uniformly selected paity is a violating pair with respect tg is at
leastl /8. Given such a pair, the probability that the self-correctturns the value gf on all the three calls
(thatis,b, = g(z), by = g(y), andbzr, = g(z A y)), is atleasf1 — 1/10)® > 7/10. The probability that
the algorithm obtains a violating pair with respectgtand all calls to the self corrector return the correct
value, is greater than/16. Therefore, a sample of 32 pairs will ensure that a violabigy, # by A by, will
be found with probability at least/6. The total probability thaf is accepted, despite beilagar from any
singleton, is hence at mosf10 + 1/6 < 1/3.

The query complexity of the algorithm is dominated by therguemmplexity of the parity tester which
is O(1/e). The second stage takes constant timill

4 Testing Monomials

In this section we describe an algorithm for testimgnotonek-monomials, where: is provided to the
algorithm. We discuss later how to extend this to testing onaials whenk is not specified. As for the
monotonicity requirement, the following observation andoaollary show that this requirement can be
easily removed, if desired.

Observation 3 Let f : {0,1}" — {0,1}, and letz € {0,1}". Consider the functiorf, : {0,1}" — {0,1}
that is defined as followsf,(z) = f(z @ z). Then the following are immediate:

1. The functionf is a k-monomial if and only iff, is a k-monomial.

2. Lety € Fy. If fis a (not necessarily monotongymonomial, theryy is a monotong-monomial.

Corollary 4 If f is e-far from every (not necessarily monotoriejnonomial, then for every € Fy, fyis
e-far from every monotonk-monomial.

We next observe that we can also assume without loss of digneiat ¢ < 2~%+2, or else the testing
problem is trivial.

Observation 5 Suppose that > 2=%*2, Then:

1. If Pr[f = 1] < §, then f is e-close to everyk-monomial (and in particular to every monotone
k-monomial).

2. If Pr[f = 1] > £, thenf is not ak-monomial.

Proof: If Pr[f = 1] < £ then for everyk-monomialg,

%
dist(f,g) =Pr[f =1Ag=0]+Pr[f =0Ag=1] < Pr[f = 1]+ Prfg = 1] < §+2—k <e
Sincee > 275F2 if Pr[f = 1] > £ thenPr[f = 1] > 2%, while by the definition of &-monomial,

Prif=1=2"% N1

By Observation 5, if the algorithm receives parametexsdk such that > 27%*2, then it simply needs
to obtain an estimate for p = Pr[f = 1] such that with probability at leagy/3, |« — p| < £. Such an

estimate can be obtained using a sample of §ige/€?). If o < 3¢/8 then the algorithm can accept, and if
a > 3¢/8, then the algorithm can reject.

From this point on we assume thag 2-%+2,

We now present the algorithm for testing monotdnamonomials. The first two steps of the algorithm
are an attempt to generalize the application of parityrigstn Algorithm 1. Specifically, we test whether
F is anaffine subspace

Definition 8 (Affine Subspaces)A subsetd C {0,1}" is anaffine subspacef {0, 1} if and only if there
exist anz € {0,1}" and a linear subspac¥ of {0,1}", such thatd =V & z. Thatis,

H={y|ly=v®uz, for somev e V}.

The following is a well known alternative characterizatimimffine subspaces, which is a basis for our test.
Fact 6 H is an affine subspace if and only if for every y., y3 € H we havey; @ y» @ y3 € H.

Note that the above fact implies that for everyy, € H andys ¢ H we havey; ® yo @ y3 ¢ H.

Algorithm 2 Test for monotoné-monomials

1. Size Test: Uniformly select a sample @¥(1/¢?) strings in{0,1}". For eachz in the sample, obtain
f(z). Leta be the fraction of sample stringssuch thatf(z) = 1. If | — 27| > min(27%75, ¢/4)
then reject, otherwise continue.

2. Affinity Test: Repeat the followin@® (log?(1/€)/€?) times:
Uniformly select,y € F; andz € {0,1}" and check whethef(z @y @ z) = f(z) & f(y) ® f(2).
If some triple does not satisfy this constraint then reject.
(Sincef(z) = f(y) = 1, we are actually checking whethéfz ® y ® z) = f(z). As we show in our analysis,
this step will ensure thaf is close to some functiog for which g(z) ® g(y) ® g(z) = g(z ® y ® 2) for all
z,y,z € G; = {z|g(z) = 1}.)

3. Closure-Under-Intersection Test: Repeat the followin@®(1/¢) times:

¢ Uniformly selectz € F; andy € {0,1}". If z andy are a violating pair, then reject(Note that
sincex € Fi, this test actually checks th#fy) = f(z Ay).)

4. If no step caused rejection, then accept.

In both the affinity test and the closure-under-intersectast, we need to select stringshAih uniformly.
This is simply done by sampling frof0, 1}" and using onlyz’s for which f(z) = 1. This comes at an
additional multiplicative cost of(2*) = O(1/e) in the query complexity.

We now embark on proving the correctness of the algorithm.

Theorem 2 Algorithm 2 is a testing algorithm for monotoiemonomials. The query complexity of the
algorithm isO(1/¢€?).

The proof of Theorem 2 is based on the following two lemmassgharoofs are provided in Subsec-
tions 4.1 and 4.2 respectively.

def ok _ _
Lemma7 Letn = Pr,ep seq01)2[f (z@y®2) # f(2)]. Ifn < 2721 and“f—,ﬁ' -2 ’“‘ < 92— (k+3)

then there exists a functignsuch thatG, def {z : g(z) = 1} is an affine subspace of dimension- £ and

which satisfies:
1

F
dist(f,g) < |2—;|—2—’“ + k2.

Lemma8 Let f : {0,1}" — {0,1} be a function for whicHPr[f = 1] — 2% < 27*-3. Suppose that
there exists a functiop : {0,1}" — {0,1} such that:

1. dist(f,g) < 27%73.

def

2. G1 = {z : g(z) = 1} is an affine subspace of dimension- k.

If g is not a monoton&-monomial, then
Proerm olf (v) # flz Ay)) > 2772

Proof of Theorem 2: We assume that the constants in @) notation in the three steps of Algorithm 2
are sufficiently large. We also recall that= O(27%).

If fis a monotone:-monomial, therPr[f = 1] = 27*. By Chernoff’s bound, the probability that it is
rejected in the first step of Algorithm 2 is less than 1/3. By tlefinition ofk-monomials,f always passes
the affinity test and the closure-under-intersection test.

Suppose thaf is e-far from any monotoné&-monomial. We show that it is rejected with probability
greater thar2/3.

1. If [Pr[f = 1] — 27%| > min{e/2,2~*=9}, thenf is rejected in the first step of the algorithm with
probability at leasf/10.

2. Otherwise|Pr[f = 1] — 27%| < min{e/2,2-*=}. If 5, as defined in Lemma 7, is greater than
k=2 - min{e/2,272k—8}, then f is rejected with probability at lea$t/10 in the second step of the
algorithm (the affinity test).

3. Otherwise, bothPr[f = 1] — 27%| < min{e/2,2-*=Y} andn < k=2 - min{e/2,2-%8}. Now
we can apply Lemma 7 and obtain that there exists a fungtias required in Lemma 8. But now,
sincef is assumed to befar from any monoton&-monomial, the functiory cannot be a monotone
k-monomial. Hence, by Lemma @,will be rejected with probability at leadt/10 in the third step of
the algorithm (the closure-under-intersection test).

Thus, the probability thaf is accepted by the algorithm is at m8gt0 < 1/3, as required. l

4.1 Analysis of the Affinity Test

In this subsection we prove Lemma 7 using tools from Foumadyssis. An alternative proof, which builds
on basic probabilistic principles, is given in Section 7.e®enefit of the alternative proof is that it suggests a
self-corrector for functiong that pass the affinity test. However, we tend to believe ti@ptoof described
below is simpler, given the basic building blocks providgoHourier analysis. We start with some needed
background and notation concerning Discrete Fourier Toams

10

4.1.1 Discrete Fourier Transform

We denote byE,c4[f(z)] the expectatlon of a functioi, whenz in chosen uniformly in the sedt C
{0,1}", namelyE ca[f(z)] = |A| Y wea f(z). We denote byE,[f(z)] the expectation off over the
whole spacg0, 1}".

Forl < i < mn,letr; : {0,1}" — {-1,1} be a function defined by;(z1,...,z,) = 1 if z; = 0,
andri(zy,...,z,) = —1 otherwise. For anys C [n], define a functiorws : {0,1}" — {—1,1} by
wg(z) = [L;es ri(z), wherewg(z) = 1. The functionws is theWalsh functiorindexed bys. 4

There are2™ Walsh functions, one for every subsgtC [n], and they are an orthonormal base of the
space of real functions of0, 1}", under an inner product given by :

o > [l = E;[f(z) - 9(2)] .

xE{O 1}n

Any function f : {0,1}" — R can be represented as a linear combination of Walsh fursctidine
coefficient ofwg in this representation is called ttFourier coefficient off, and is denoted by ().
Namely, f = > gcm F(S) - ws. Since Walsh functions are orthonormal, we hg\&) = (f,ws) =

E[f(z) - ws(z)].
Theconvolutionof two functionsf, g is denoted byf x g, and is defined byf *g)(y) def E.[f(z)-g(zoy)]
We will need the following important property of convolutio

—

(f *9)(S) = f(S) - 4(S).

And we will also need several simple facts about Fourierfagents. For any two functiong, g:

E[f(z Z f(s

[n]

In particular, Parseval’s equality holds:
2@)] =) P (4)
SCln]

By definition, it is also easy to verify that:

E,[f(z)] = f0), D F(5)=f(0), Eu[f(2)-g(@)]=(f*9)(0)
S

4.1.2 Proof of Lemma7

In order to prove Lemma 7, we need to show the existence of fare afubspacé that is close taF;

(that is, the symmetric difference betweéhand F; is relatively small). The definition of this affine
subspace will based on the location of the large Fourierficterits of f. Letp def ‘5,{', and recall that

n def Pry yer ze(01)"[f (z®y®z) # f(2)]. We begin by relating the Fourier coefficientsfofo p andn.

Claim9 Yg f4(S) = p® — 1p?

“Note that Walsh functions are essentially the parity fumetion{0, 1}™, but written in amultiplicative notation If we define
ws(z) to bel if ws(xz) =1, andl if ws(xz) = —1, then the functiongs are precisely the parity functions ¢, 1}".

11

Proof: Leth : {0,1}" — {+1,—1} be defined as followsh(z) = 1 for everyz such thatf(z) = 0, and
h(z) = —1 for everyx such thatf(x) = 1. In other words:h = 1 — 2f. Using this notation, the affinity
test uniformly picksz,y € F; andz € {0,1}", and checks whethérn(z & y & z) - h(z) = 1.

By the definition ofp,
1-2n = Emyeplz[h(Z) h(r®y o z)]
= :v ,YEF, [Ez[h() (.12 Dy D Z)]]
= w,yEFl [(h * h) (37 S y)] .
By the definition ofh,

Boyenl(h 1)@ ©1)] = Tz Baylf () /) - (h+ W)@ @)

Recall thatf = 15 and hence

22n

1—h(z) 1-h(y)

2 2

= ﬁ y[(hxh)(z@y) — (h(z) +h(y)) - (hxh)(z Sy) + h(z)-h(y) - (h+h)(z©y)] .
We open the brackets and compute the expectations one by one.
Eyy[(h* h)(z © y) = By[Es[(h h)(z © 9)]] = By[E;[(h + h)(2)] = Ea[(h + B)(2)] = 1*(0),

and

Eqylh(z) - (h* h)(z © y)] = By[Es[h(z) - (b h)(z © y)]] = By[(h * b x h)(y)] = 7*(0) -

- (hxh)(z®y)

Similarly,
Eqy[h(y) - (hx h)(z @ y)]] = h*(0).
Finally,
Egylh(z) - h(y) - (hxh)(z @ y)]] = Ey[h(y) - Ez[h(z) - (h*h)(z S y)]]
= Ey[h(y) - (hxhx h)()]
= (hxhxhxh)(Z h4
Observe thab() = E,[h(z)] = 1 — 251l = 1 2p, and thats = 1 — 2f. Thereforei(S) = —2/(S),
for all S # (. Note also thaff (0) = p. Taklng all this into consideration we have:
1-2p = 4;2 ((1 —2p)? —2(1-2p)* + (1 - 2p)* +16- > F4(S) - 16p4>
S
= (1-2p)%—4p*+ 4725;:;(5)
s f4<)

= 1—-4p+4

12

Claim 9 follows. N

Assume thay is small, in particulan < p?. In this case, Claim 9 implies thaf ¢ f4(S) is very close
to p3. Note that, sincg is nonnegative, for ang C [n]:

F(8) <1/ (S) < f®) =p.

We now show that for many subsets|f(S)| is actually very close tp. We later use these subsets to define
the affine subspad@ that is close ta@F;. To this end we define the following collections of subsets:

small S {S: ()| < p—n2}, big® {$:]f($) >p-n7}
Claim 10 If [p —27%| < 273 andy < p?, then|big| > 2871 + 1.

Proof: Using Claim 9, we have:
2
p3—1% = Y fUs)
s
= Y e+ Y)

sesmall Sebig

< -2 Y A9+ Y FAS).

sesmall sebig
Letr = Y gcgmall/2(S). Using Equation (4)S f2(S) = Eo[f2(z)] = p. Thus,
P-0p < p-n)r 1)
P2 — (p—1%)?)
1 1
(2p —n%) <p* —rpn? .

~—

prnd p3—7"-

ol

= p’—m
1
The last inequality is based on our assumption th&tp?. Thereforey < %p. It follows that:

1
~ 2
p—r= 3 FAS)>p-"Tp.
Sebig

But £(S) < p, and therefore:

[
NI

_nZ 1_n2
bigh > 2= 2P _ zZ >

p? P

"=
N =

Sincelp — 27| < 2=(+3), Claim 10 follows MW

Observe that in a set of size 2~! + 1 there are at leagt linearly independent vectors (otherwise the set
lies in a span of at mogt— 1 vectors, which is, obviously, of siZ%—1). We use this in the following claim.

Claim 11 Suppose thap — 27%| < 2-**3) andy < p%. LetS,..., S, € big bek linearly independent
vectors. Leps; = 0if f(S;) > 0, andg; = 1if f(S;) < 0. Define
GE{y : (y,S) = Bis i = 1.k}

where(y,T) = @Dj_,y; - T;. ThenG is an affine subspace of dimensian- k, and dist(G, F1) <

Ip — 27%| + kn3, wheredist(G, F;) © 2= . (|G \ Fi| + |F1 \ G)).

13

Proof: Let M be ak x n matrix with rowsSi, ..., Sx. Consider the linear transformation froffi, 1} to
{0,1}*, takingz to Mz. Since the rows of// are linearly independent, the rank &f is £ and the linear
transformation isonta. The setG is a pre-image of the vectdp, ..., B¢) in {0, 1}* and therefore is an
affine subspace of dimensian— k.

We turn to the second part of the claim. We first show that fgrfared 1 < i < k:

IFin{y : (y,8;) # Bi}| < 2" 'n!/?

Sincef is the characteristic function df,

:_Z 1S — (|F1|—2\{y6F1 (v, Si) =1})

reF

= p- ‘{yEFl (v i) = 1} .

on—1
Assume that}; = 0, and thereforef (S;) > p — n*/2. It follows that,

[{er : wS)=1} = |Rn{y:(n,S)#A}| < 2" 7'y’

The case that; = 1 andf(S;) < —(p — n%) is similar. Therefore, we have:

[FiNG| = ‘Flﬂﬁ{yi Y, Si) = Bi}
> \Flw—gg\pln{y: (v, Si) # Bi}
P
> |Fi| - 2" k.
So
dist(G, F) = o (1G] + R - 216 1 Fi)

1 1
< o= (G = |Fu]) +2"kn?)

1 |F 1
= gF T ogn TH
< lp—27F|+ k2

and we are done. l

Proof of Lemma 7: The proof follows immediately from Claims 10 and 118

4.2 Analysis of the Closure-Under-Intersection Test
We first recall several simple properties of affine spaces.

Claim 12 Let H be an affine subspace such ttfit= V @ z, wherez € {0,1}" andV C {0,1}"
linear subspace. Then,

1. z € H.

14

2. For everyz € H we haveH = V & z. By the definition of thed operator, we thus also have that
V = H & z, foreveryz € H.

3. |H| = |V| = 24imV,

Claim 13 LetH, H' be two affine subspaces @f, 1}", such thatd ¢ H'. Then:

|[HNH'| 1
—_— < -
|H| — 2
Proof: The claim follows from the corresponding property of linsabspaces, namely ¢ V' implies:

[VnV!| 1
v <z ®

The following corollary is immediate:

Corollary 14 Let H, H' be two affine subspaces {,1}" such thatd’ C H. Then eitherH’ = H, or
|H'| < [H]|/2.

Claim 15 Let H, H' be two affine subspaces {ff, 1}" such thatH’ C H and lety € H'. Denote byV’
the linear subspace such th&t = V' @ y, and byV the linear subspace such that =V & y. Then:

1.V CV.

2. Foranyz € V we have(H' ® =) C H, and for anyz ¢ V we have(H' ® z) N H = ().

Proof: By definition,V' = H' @y C H & y = V. This proves the first part of the lemma.

Now letz € V. SinceV andV”’ are linear subspaces ald C V, then(V' @ z) C V. Thus,H' &z =
(V'eoy)oz=(V'@r)®oy CVay= H.Onthe other hand, lat ¢ V. Observe thatV' @ z) NV = .
SinceH' oz =(V'oy)oz=(V'®z)dy, wegetthalH' oz)NH= (V' ®@z)dyn(Vay) =0.
This concludes the proof of the claim il

To prove Lemma 8 we will need several auxiliary claims. The fitaim relates affine spaces that correspond
to k-monomials and monotonicity.

Claim 16 Let H be an affine subspace {0, 1}™ of size2"~*. Assume also thaf is monotone. Namely, if
z € Handy > z,theny € H. ThenH = {z : z;, = 1...z;, = 1}, for some subsei ...i; of coordinates.

Proof: LetV be ann — k dimensional linear subspace andget {0,1}" be such thatf = V @ y. Let
v1...v,_k be a basis oV. Consider ann — k) X n matrix with rowsv;...v,_x. Its rank isn — k, and
therefore it has: — k linearly independent columns. Without loss of generatityse are the first — &
columns. Therefore the restriction of the rows to the first k coordinates is a basis ¢60,1}"*, and thus
it spans all the vectors if0, 1}"* and in particular the first — k coordinates of. It follows that there is
a vectorv € V, namely a linear combination of the rows, that is equa} tm the firstn — k& coordinates.
Thereforez = (v @ y) € H is 0 on the firstn — k coordinates.

Since H is monotone, iflz] < k, or there exists &' # z such that:’ € H, then|H| > 2" %,
contradicting our assumption ai. HenceH = {z : z;;, = 1,---,z;, = 1} whereiy,..., i are the
coordinates on whichis1. W

15

Recall that by the premise of Lemma 8, there exists a fungfisach thatdist(f,g) < 27%~3, and

G ¥ {z : g(x) = 1} is an affine subspace of dimensien— k. Claim 16 implies that ifg is not a

k-monomial, then the affine subspaGe cannot be monotone. We shall use this, together with thaliact
f andg are close, to prove that there are many paits Fy, y € {0,1}" such thatf (y) # f(z Ay). To this

end we define the following subsets.

Definition 9 Letz € {0,1}" andz € 27. DefineG(z, z) o {ylz Ny =z}

We shall show that for many paifs, z), with z € G; andz € 2%, the functiong is far from constant on
G(z, z). Since the functiong andg are close to each other, this will imply the existence of méniating
pairs, as desired. First, we prove some properties of theess(z, z).

Claim 17 For everyz € {0,1}"* andz € 2%, G(z,z) is an affine subspace df,1}" of size2"~
Furthermore, for every € {0,1}", the affine subspacds(z, z) },c2= partition {0, 1}".

Proof: These facts abouf(z, z) follow easily from the following observation: for a fixed the map
mg :y — = Ayis alinear map fron{0,1}" to 2%, andG(z,z) = m;'(z). A

Claim 18 Letz € G be such that there existse 27 for whichG(z, z) C G1. Then,G(z,z) C Gj.

Proof: We first show thaG(z, z) @ x ® z C G;. SinceG; is an affine subspace, by Fact 6, is it enough to
show thatz andz lie in G1, and thatG(z, z) is a subset of;. Taking into account the assumptions of the
Claim, we only need to show € G;. Sincez < z, we havez A z = z. Hencez € G(z,z) C G;.

Next, we show tha€(z,z) C G(z,z) ® z @ 2. Takey € G(z,z). Now, definey’ as follows. Ifz; = 1,
theny, = 1 (in this case always; = 1). If z; = 0 andz; = 1, theny, = 0, and ifz; = 0 andz; = 0,
theny, = y;. Thus,y’ Az = z and soy’ € G(z,z). Itis also easy to verify thay’ & z ® z = y. (Note
thaty > =, and thereforer; = 1 impliesy; = 1). Hencey € G(z, z) ® = & z. Since we have shown that
G(z,2) ® z® z C Gy, the claim follows. W

We shall be interested in the following set:

XYz eG: Ga,x) C Gy} (5)
ThusX consists of those € G4 for which everyy = z is in G1. Since, by Claim 16¢:; is not monotone,
necessarily¥ # G;. As we show momentarilyt’ is actually significantly smaller tha@;, and we shall
exploit this in our proof.

Claim 19 The setY is an affine subspace 6f;. Furthermore, ifg is not ak-monomial thelX| < 1|G|.

Proof: By Fact 6, in order to prove the first part of the lemma it suffiteshow that for every®, 22, 2 €
X, we haver' @ 22 @ 23 € X. Letus fixz!, 2%, 2° € X, and letz = 2! @ 22 @ 2°. To show that: € X
we have to show that(xz,z) C G1. Namely, that for every > z, we havey € G;. Lety > z. Then
there existy!, y2,y® such thay = y' @ y? @ v, wherey/ = z; for j = 1...3. (To verify this, choose a
coordinatei: (1) If y; = z;: sety! = = forall j. (2) If y; = 1 andz; = 0: Sety! = 1 for all j.) That s,
v/ € G(x?,27) C Gy. Thereforey? € Gy forall j, and soy = y' @ y? @ > € G1.

By Corollary 14, sinceY is an affine subspace @;, eitherX = Gy, or |X| < %|G1|. If X = Gy,
then for anyzr € Gy we haveG(z,z) = {y : y = z} C G1, namelyG, is monotone. By Claim 16; is a
k-monomial, which contradicts our assumptions. Therefdt¢ < 1|G1|. W

16

In the next claim we show that for everye G, \ X, the functiong is far from constant oi7(z, z),
for manyz € 2”. Observe that this is trivially true i is a monotone monomial, since in this case the set
G1\ X is empty.

Claim 20 For everyz € G1 \ X, and for any fixed functioh : {0,1}" — {0,1},

Q\w\ Z PryEG (z,2) [g() 7é h(z)] > 271‘: .

zZ€22

Proof: Letus fixz € G1 \ X and a functiom:. For everyz € 2%, if h(z) = 0 thenPrycq(y,.)[9(y) #

h(z)] = CE20E and ifh(z) = 1 thenPryeq(a,.la(y) # h(z)] = GG = 1 — CEAA0L Hence,

Prycc(a,2)[9(y) # h(z)] > min { |G(z,2) NG| 1 |G(z,z) N G1|}

G2 1T (G ©)

But, for all z € 2%, G(z, z) € G1 (otherwise, by Claim 18, we would ha¥&z,z) C G1, and saz € X).
Thus, by Claim 13M <3 1. Combining this with Equation (6),

G (,2)]
1 1 |G(z,2) NGy
Pl S 9(y) #h(2)] > -
9la] ; veG(z)|) 2l ; Gz, 2)|
= 27" > |G(z,2) NG| = 27" |Gy| = 2°F
zZ€E2%

In the last sequence of steps we have used the followingtG(), z)| = 2"~ '*! for everyz (Claim 17); (2)
For everyr, the subset&(z, z) form a partition of{0,1}" (Claim 17); (3)G1 is of size2*. W

If the closure-under-intersection test in Step 3 of Aldgont2 was performed og and not onf, we
would be done. Indeed, Claims 19 and 20 imply thatig not ak-monomial therPr e, yeto,137[9(y) #

g(z Ay)] > 2~ *+D_ Therefore, uniformly picking: € G1,y € {0,1}" and checking thaj(y) = g(z Ay),
we would detect a violation with probability at least(:+1).

However, the test is performed gh) andg and f might differ (though the distance between them is
bounded). Consequently, we need to relate between twaeahtfprobabilities. This is done in the following
claim.

Claim 21 Procr, o (f(y) # f(@ AY)] > § (Premnciy lay) # (@ Ay)] —27572)

Proof: Recall thatdist(f,g) < 27%=3, and tha{F| > 2% — 2n—%=3 Thus:

Proery[f(y) # f(x Ay)] > Preemyfly) # f(zAy), z € Gi]

NG
= Preermnciy [f(y) # f(z Ay)]- %
1

> 5 ' PrzeFlﬂG1,y [f(y) 7é f(.’L' A y)] .

Also,

Procrmnc,y lf(¥) # F(x Ay)] > Preermncylf(y) # FzAy), fly) =
= PrZEFlﬂGl,y [g(y) # f(.’E A y), f

17

On the other hand,

Pryemne: y lg(y) # f(z Ay)]

< Priemnciyl9y) # f(xz Ay), fly) =g(y)] + Pry [f(y) # 9(y)]
< Proemnaiyl9() # f@Ay), fy) =gy)]+27573.
Hence,
Procry [(0) # f@AD)] > SPrecring [fW) # fz A)
> 2 (Praemnciyloty) # f(o Ay)] - 27479).
m

We are now ready to prove Lemma 8.
Proof of Lemma 8: By Claim 21, it suffices to bound the following probability:

1

|FL NGy > %ZPryEG(I,z) l9(y) # f(2)]. (7)

e NGy zZE2®

Proerneylg(y) # flzAy)] =

Let X be the set defined in Equation (5). If we replace the summaNenz € F; N G in Equation (7)
with a summation over € (F) N G1) \ X, then, by Claim 20, we obtain

1
Proemnciyl9) # flany)] > ——— Y 27F
|F1N G| 2€(FING1)\X

(FiNG1)\ &|

ok
|Fy NGy 2 ®)

However, by Claim 19,|X| < @ — okl ANso X C G and Pr[f # g =
= (|F1 \ G1| +|G1 \ Fi|) < 27%=3. Hence,

(FiN G\ X[= |(G1\ X))\ (G1\ F1)| > 2nF~1 —g7h=3 . gn — gn=k=1 _ gn=k=3,
Since|F; N G1| < |G1| = 2% we have

NG\ x| 2nk-l_ogn-k=3 3
|(1 1)\ | > — -2 9)
|F1 NGy 2 8

Combining Equation (8) with Equation (9):
Proemnc y(9(y) # f(z Ay)) >3-27573

Thus, by Claim 21:

vV
| =

Procmnauy (9(y) # f@ Ay)] - 2757)
—k—3

?

Proery [f(y) # f(z Ay)]

vV
N po

and we are done. H

18

4.3 Testing Monomials whenk is Unspecified

Suppose that we want to test whether a funciios a monomial without the size of the monomigj,being

specified. In this case we start by findikg We obtain an estimate to Pr[f = 1], by taking a sample
of size®(1/¢). By the multiplicative Chernoff bound, such a sample erstinat, with high probability, if
Pr[f = 1] > ¢/2 thena > ¢/4, while if Pr[f = 1] < ¢/8, thena < ¢/4. Hence, ifa < €¢/4 then we can
immediately accept. This is true, since we may assumeRtgt = 1] < €/2, and sof is close to every
monomial that contains at ledsig(2/¢) literals.

Otherwise, we may assume that[f = 1] > €/8, and the multiplicative Chernoff bound implies that,
with high probability, (1 — 1/4) - Pr[f = 1] < a@ < (1 + 1/4) - Pr[f = 1]. Now, we look for an integer
k for which4/5a: < 2% < 4/3a. If there is no such integer, we reject. If there is, theretisiast one,
and we chose it as our estimate forlf f is in fact a monomial, then this estimatefofs correct with high
probability. Given thisk, we proceed as before.

5 Testing Monotone DNF Formulae

In this section we describe an algorithm for testing wheth&rmction f is a monotone DNF formula with
at most/ terms, for a given intege#.

In other words, we test whethgr="T, VT, V --- V Ty, where/' < /£, and each terrd; is of the form
T; = zj AN zjy A -+ N zj,,. Note that we allow the size of the terms to vary. We assumenowt loss
of generality, that no term contains the set of variablesnyf @ther term (or else we can ignore the more
specific term), though the same variable can of course appaaveral terms. The basic idea underlying
the algorithm is to test whether the d&t def {z : f(z) = 1} can be “approximately covered” by at mdst
terms (monomials). To this end, the algorithm finds striafyg {0, 1}" and uses them to define functions
f* that are tested for being monomials. If the original functfois in fact an/-term DNF, then, with high
probability, each such functioff corresponds to one of the termsfof

The following notation will be useful. Lef be a monotoné-term DNF, and let its terms BB, ..., Ty.
Then, for anyz € {0,1}", we letS(z) C {1,...,£} denote the subset of indices of the terms satisfied by
z. Thatis:

S(x) e Ti(z) =1} .

In particular, if f(z) = 0 thenS(z) = (. This notion extends to a s& C F;, wereS(R) def Uzer S(z).

We observe that if is a monotoné-term DNF, then for every,y € {0,1}"
Sl Ay) =S5(z)NS(y) -
We shall also need the following definitions.

Definition 10 (Single-Term Representatives)Let f be a monotoné-term DNF. We say that € F} is a
single-term representative for f if |S(z)| = 1. That is,z satisfies only a single term ifu

Definition 11 (Neighbors) Letx € F;. Theset of neighbors of z, denotedV (z), is defined as follows:

N@) ¥ {y| fly)=1andf(zAy) =1} .

The notion of neighbors extends to a 8eC F, whereN(R) ot Ugzer N ().

19

Consider the case in whichis a single-term representative §f and.S(z) = {i}. Then, for every
neighbory € N(z), we must have € S(y) (or elseS(z A y) would be empty, implying thaf(z Ay) = 0).
Notice that the converse statement holds as well, that s, S(y) implies thatz andy are neighbors.
Therefore, the set of neighbors ®fis exactly the set of all strings satisfying the tefin The goal of the
algorithm will be to find at most such single-term representativess {0,1}", and for each such to test
that its set of neighbord/(z) satisfies some common term. We shall show thgtig in fact a monotone
£-term DNF, then all these tests pass with high probability.ti other hand, if all the tests pass with high
probability, thenf is close to some monotordeterm DNF.

We start with a high-level description of the algorithm, ahdn show how to implement its main step
of finding single-term representatives.

Algorithm 3 Test for Monotone/-term DNF

1. R < (. Ris designated to be a set of single-term representatives for
2. Fori =1to4+ 1 (Try to add/ single-term representatives 19):

(@) Take a uniform sampl&* of sizem; = © (elnge) strings. LetW® = (U* N F;) \ N(R). That
is, W* consists of strings: in the sample such that(z) = 1, andz is not a neighbor of any
string already inR.

Observe that if the strings iR are in fact single-term representatives, then ewegy W satisfies only
terms not satisfied by the representativeRin

(b) Ifi = £+ 1 andW'? # 0, thenreject.

If there are more thafsingle term representatives fithen necessarily is not an/-term DNF.
(c) Else, if % < £ thengo to Step 3.

The current set of representatives already “covers” alaibst F; .

(d) Else(% > gandi < é), useW* in order to find a stringz? that is designated to be a single-
term representative of a term not yet represente®.iThis step will be described subsequently.

3. For each stringe* € R, let the functionf? : {0,1}" + {0, 1} be defined as followsfi(y) = 1 if and
only ify € N(z*).
As observed previously, i# is in fact a single-term representative, th&ris a monomial.

4. For eachf?, test that it is monomial, using distance paramefer 5 and confidence — & (instead
of % — this can simply be done I6y(log ¢) repeated applications of each test
Note that we do not specify the size of the monomial, and soeeslto apply the appropriate variant of our

test, as described in Subsection 4.3.

5. If any of the tests fail thereject, otherwiseaccept.

The heart of the algorithm lies in finding a new represergativeach iteration of Step 2. This procedure
will be described and analyzed shortly. In particular, wallgbrove the following lemma.

Lemma 22 Suppose thaf is an ¢-term monotone DNF, and ek C {0,1}" be a subset of single-term
representatives fof such thatPr [z € F; \ N(R)] > ¢/8. LetU’ be a uniformly selected sampleraf =
C) %g_ﬁ strings, and leW*® = (U*N Fy)\ N(R). Then there exists a procedure that receil#sas input,
for which the following holds:

20

1. With probability at least — é taken over the choice &’ and the internal coin flips of the procedure,
the procedure returns a stringf that is a single term representative ffiof a term not yet represented

in R. Thatis,|S(z*)| = 1 and S(z?) N S(R) = 0.
2. The query complexity of the procedured§/ log? £/¢).
Conditioned on the above lemma we can prove the followingréma.

Theorem 3 Algorithm 3 is a testing algorithm fof-term DNF. The query complexity of the algorithm is
O(¢4/é%).

Proof: We shall use the following notation: for any getc {0,1}", let p(R) aof Prjz € F1 \ N(R)].

Supposef is a monotone/-term DNF, and consider each iteration of Step 2. By Lemmaif22l|
strings inR are single-term representatives fbandp(R) > ¢/8, then with probability at least — 6_16
the procedure for finding a single term representative inrigtarns a new representative (of a term not yet
represented iR). Hence, the probability that, for some iteratignhe stringz? returned by the procedure is
not a single-term representative, is at mb&. Conditioned on such an event not occurring, the algorithm

completes Step 2 with a sB&tthat contains at mogtsingle-term representatives fér

In such a case, by the definition of single-term represemistieachf’ defined in Step 3 is a (monotone)
monomial. For each fixed?, the probability that it fails the monomial test is at mg?t By applying a
union bound, the probability that any one of tffés fail, is at most%. Adding up the error probabilities, we
obtain thatf is accepted with probability at lea3t3.

We now turn to the case in whichis e-far from being a monotonéterm DNF. Consider the value of
p(R) at the start of each iteratianof Step 2. Observe tha{(R) does not increase with If p(R) > €/2,
then, by the multiplicative Chernoff bound, the probabiﬂnat%—f' < €/4 (causing the algorithm to exit
Step 2) is smaller thaéz. Hence, the probability that the algorithm completes StejitRout rejecting and
with a setR for whichp(R) > €/2, is at mostl /6.

Conditioned on such an event not occurring, consider thetifoms f* defined in Step 3. We claim that
at least one of these functionsggfar from being a monomial. To verify this, assume in conttaadn that
all these|R| < £ functions areg;-close to being monomials. For each such functiongldbe a closest
monomial and ley = g* v g2 V...V gI®l. Thendist(f, g) < |R| 5 +p(R) < ¢, contradicting the fact that
f is e-far from any/-term DNF. Thus, letf* be one of thef?'s that is 5;-far from being a monomial. The
probability that the the monomial test does not rejcis at most&. Adding up the error probabilities
is rejected with probability at leagy/3.

Finally, we bound the query complexity of the algorithm. féhare at most + 1 iterations in Step 2.
In each iterationin; = O(£log £/€) strings are queried in Step 2a. By Lemma @2/ log? £/¢) strings are
queried by the procedure for finding a new representativeishaalled in Step 2d. By Theorem 2, testing
each of the at mogt functions f* requiresO(1/(€')3) - O(log£) = O(£3/€®) queries. Therefore, the total
number of queries i©(¢*/¢3). W

5.1 Finding New Representatives

Suppose thaf is a monotone-term DNF, and consider an arbitrary iteratibm Step 2 of the algorithm.
Assume that? C {0,1}" is a subset of single-term representativesffosuch thaPr[z € F; \ N(R)] >

/8. Let N(R) def F, \ N(R) be the set of all the strings that are not neighbors of anggsini R, and

21

let S(R) def {1,...,£} \ S(R) be the set of indices of terms not yet representedk.inBy definition,
W* C N(R), and for everyr € W we haveS(z) C S(R).

Given a stringzy € W, we shall try to “remove” terms frons (), until we are left with a single term.
More precisely, we produce a sequence of strings. ., z,, wherezq € W', such tha) # S(z;41) C
S(z;), and in particulatS(z,)| = 1. The aim is to decrease the sizeX{fr;) by a constant factor for most
j's. This will ensure that for = O(log ¢), the final stringz,. is a single-term representative as desired. How
is such a sequence obtained? Given a swing N (z;), definez; ., = z; Ay;. Thenf(z;,) =1 (i.e.,
S(zj1) #0), andS(z;41) = S(z;) N S(y;) C S(z;). The stringy; is acquired by uniformly selecting
a sufficiently large sample frof0, 1}", and picking the first string in the sample that belongd'ia:;), if
such exists. The exact procedure follows.

Procedure for finding a new representative, giveriv* C N(R)

1. Letthe strings ifW* be denotedyy, . . ., wyyi.

2. Uniformly and independently seleet = ©(log¢) samplesYy,---,Y,_1, each consisting oy =
O(£log £/¢) strings from{0,1}".

3. found < FALSE;t <+ 0;
4. While found # TRUE and t < |W?| do:

@) t+ t+1; xp < ws.
(b) For j=1tor

i. If Y;_1 N N(zj—1)=0then exit the “for” loop and go to (4a).

ii. Otherwise, pick the first stringy; 1 € Y;_1 N N(z;_1), and letz; = z; 1 Ay;_1.
(¢) If j =rthenfound <+ TRUE.

5. if found = TRUFE, return z,., else return an arbitrary string.

We first prove that ifY; intersectsN (z;), then the probability that the size 8z ;1) is significantly
smaller than that of(z;) is at leastl/3. Observe that since the samge is uniformly distributed in
{0,1}",Y; N N(z;) is uniformly distributed inV (z;).

Claim 23 Letz; be a fixed string. With probability at Iea%t over the uniform choice of a string; €
N(z7), [S(z; Ayp)l <1+ 5 - (1S(25) = 1)

Proof: Without loss of generality, le§(z;) = {1,...,t}. We partition the set of neighbor¥(z;) into
disjoint subsetsV;(z;), for 1 < i < ¢, whereN;(z;) = {y : i € S(y) and forevery’ < i, 7' ¢
S(y)}. Sincey, is uniformly distributed inV(z;), we can view it as being selected by first choosingth
probability % and then selecting uniformly in N;(z;).

Consider the casg; € Ni(z;). In order to select a string uniformly iV, (z;), we first set to 1 all
bits corresponding to the variablesTh, and then let the remaining bits to be 0 or 1 with equal prdigbi

Since for evenyi # 1 there is at least one variable that appears;iand not in7}, we have that

Pr[Ti(y;) = 0] y; € Ni(z;)] >

N | =

22

It follows that the expected number of indices S(z;), i # 1, for whichT;(y;) = 1 is at most:52
By Markov’s inequality, the probability that there are mthan(1 — «) (¢ — 1) termsT;, i # 1, satisfied by
a uniformly selected; € Ny(z;), is at mostﬁ. Settinga = 1/4, we get that, with probability at least
1 over the choice of a uniformly selectgg € Ni(z;), we have|S(zj41)] < 1+ 2 - (|S(z;)| — 1). ltis
easy to see that for any;(z;), ¢ > 1, this probability is at least as large. In particular, ndtat fors = ¢,
for anyy; € Ny(z;), |S(zj+1)|=1. W

The next corollary follows directly from Claim 23 and the fdlcat | S (z¢)| < 2.
Corollary 24 Letr = c - log¥, wherec is a sufficiently large constant, and leg be a fixed string ir#/*.
Consider the following process, consisting-adteps, where in thg's step we uniformly and independently

select a stringy;—1 € N(z;—1) and setz; = z;_1 A y;—1. Then, with probability at least — poly(1/¢)
over the choice ofy, . . ., yr—1, we obtain|S(z,)| = 1.

Finally, we bound the size of a samg#e sufficient for acquiring a string; € N (z;) with high probability.
We first define a “good initial string#g. This is a string that satisfies only “large” monomials.

Definition 12 A stringz, will be called agood initial string if for everyi € S(z), Pr[T; = 1] > 1&;. Let
Good & {:1; € N(R) andz is a good initial string}.

Claim 25 Supposér[z € N(R)] > £. Then the probability, taken over the choiced8f that W* does
not contain any good initial strings, is at moétz.

Proof: Recall thapp(R) % Pr[z € N(R)]. For anyi € S(R), consider the event

E; “ {z ¢ N(R) andTy(z) = 1}.

By definition,p(R) = Pr [UZES(R)] Let

Ssmau(R) = {Z € g(R) andPr[E,-] < Z%}z)} .

Clearlyj for any termy, Pr[T; = 1] > Pr[E;]. Therefore, ifx € (i€S(R)\(i€8uman (R)EZ-) then
R

S(z) C S(R) \ Seman(R), and therefore for all € S(z) we havePr[T;(z) 1] > Pr[E;] > 2
Thus,z € Good. Therefore,

Pr[Good] > Pr U Ei|\ U =&
| \i€S(R) i€Ssman(R)
> pr| J E|-Pr| |J E
ie?(R) iegsmall(R)
p(R p(R
> p(R)—£- (ZE) = (2)

Sincep(R) > &, and the size of the samplé is ©(£log ¢/¢), the probability tha#¥* does not contaiany
initial good strings is, for a sufficiently large constantlie ©(-) notation, smaller tha@@ |

The next claim follows from the definition of a good initiatisg.

23

Claim 26 Letmg = c- £log//e, wherec is a sufficiently large constant, and suppaseis a good initial
string. Then, for each < j < r, the probability that a sampl¥; of ms strings intersectsV(z;) is at least
1— 37

Proof of Lemma 22: By the premise of the lemm&r[z € N(R)] > ¢/8. By Claim 25, the seV*
contains a good initial string with probability at ledst %se Conditioned on this event, let us fix such a
string zo, and consider the execution of Step 4b in the procedure. BinC26, the probability that there
existsj < r for which the samplé&’; does not contain a string iV (z;) is at mostlisz. Since the strings
in Y; are uniformly selected fron0,1}", the strings inY; N N(z;) are uniformly distributed inV(z;).
Hence, conditioned on eadf) containing a string frondV (z;), we can apply Corollary 24 and get that with
probability at leastl — 1, |S(z-)| = 1. Sincezo € N(R), necessarilyr, € N(R). Therefore, with
probability at leastt — 3 - 15, = 1 — 4, taken over the choices &f’ and the sample¥;;, the procedure
returns a string:, that is a single-term representative joof a term not yet represented jn

The number of queries performedrismy = O(£log®£/¢). W

6 Testing Singletons Without Testing Linearity

Recall that by Claim 1 an alternative characterization mgl&tons is thaPr[f = 1] = 1/2, and furthermore
that there are no violating paitsy € {0,1}". Thatis, there are ne, y such thatf (zAy) # f(z)Af(y). We
show that the following simple algorithm that checks thes®perties, is a testing algorithm for singletons
if fis not too far from a singleton function. Lé%ne denote the class of singletons. The algorithm will
receive a valuey such thatminge 7, ., dist(f,g) < % — vp. That is,yp is a lower bound on the difference
betweenl /2 and the distance of to the closest singleton. We shall think-gf as a constant.

Algorithm 4 Test for Singleton with lower boung,

1. Size Test: Uniformly select a sample e = ©(1/¢?) strings in{0,1}". For eachz in the sample,
obtain f(z). Leta be the fraction of sample stringssuch thatf(z) = 1. If |« — 1/2| > £ then
reject, otherwise continue.

2. Closure-Under-Intersection Test: Repeat the followin® (e ;') times: Uniformly select,y €
{0,1}". If z andy are a violating pair, then reject.

3. If no step caused rejection, then accept.

Theorem 4 If f is a singleton, then Algorithm 4 accepts with probabilityestst2/3. If f is e-far from any
singleton where is bounded away frorih/2, then the algorithm rejects with probability at leaxt3. The
query complexity of the algorithm @(1/¢?).

Proof: If f is a singleton the®r[f = 1] = 1/2. By an additive Chernoff bound, and for the appropriate
constant in thed(-) notation, the probability that it is rejected in the firstpstef Algorithm 4 is less than
1/3. By the definition of singletonsf always passes the closure-under-intersection test.

Suppose thaf is e-far from any singleton and lek be its distance to the closest singleton. Thus
d < 1/2 — ~y. We show thaff is rejected with probability greater thag3.

1. If |[Pr[f = 1] — 1/2] > §, thenf is rejected in the first step of the algorithm with probapitit least
5/6.

24

2. Otherwise|Pr[f = 1]-1/2| < § < g In this case, as we show shortly in Lemma 27, the probability
of obtaining a violating pair is at Ieaé(% —0d) > £-70. Therefore f will be rejected with probability
of at leasts /6 in the second step of the algorithm (the closure-undersetgion test).

Thus, the probability thaf is accepted by the algorithm is at mags, as required. W

Lemma 27 Leté be the distance of to the closest singleton. Fr[f(z) = 1] > % - g, then the probability
of obtaining a violating pair is at Ieasg(% —9).

Proof: Letz; be the closest singleton iy so thatPr[f(z) # z;] = ¢. Define
G1=A{z[f(z) =Lzi=1}, Bi=F\G
Go = {z|f(z) =0,2; =0}, Bo=Fp\ Go

A simple counting argument shows that there @"& 4)2™ disjoint pairsz, z’, such that: (1} € G,
z' € Gy; (2) z andz’ differ only on thei’'th bit. To see why this is true, simply match eache G; to
a pointz’, which differs withz only on thes’'th bit. Thus, there are at leaf;| — | B1| pointsz € G,
that must be matched to points € Go. But |G1| + |Bo| = 2771, and|Bi| + | By| = 62" and therefore
|G1| = [Bi] = (5 — 9)2".

Now consider any poing € B, and letz € G, 2’ € Gy be a matched pair as defined above. Then
z Ay =1 Ay, butf(z)A f(y) = 1while f(z') A f(y) = 0. Therefore, eithef (z Ay) # f(z) A f(y) or
f(&" Ny) # f(2') A f(y), and so eithey andz are a violating pair, oy andz’ are a violating pair.

SincePr(f(z) = 1] > 3 — &, then|G1| + |B1| > 2"(3 — 3). Using again the fact thaG| — |B;| =
(% — §)2", we get thatB;| > §2"~2. It follows that the probability of obtaining a violating ipais at least
8(4-¢). M

The above analysis breaks whgiis actually almosi /2 — far from every singleton, since in this case

J is close tol/2, and the probabilityg(% — ¢) of obtaining a violating pair is not bounded from below.
Another disadvantage of Algorithm 4 is the two sided errabability for testing singletons, as opposed
to the one sided error we achieved in Algorithm 1 when we addedarity test. However, Algorithm 4
can be generalized to testikigmonomials, with a query complexity of ont9(1/€2), in comparison to the
O(1/€*) query complexity of Algorithm 2. The probability of choogim violating pair can be shown to be
at Ieastg(zlk —¢). Thus the requirement here is ti#awill be strictly smaller thanzl—k. Notice that it is not a
problem that is even more restricted here, since we first must test whettj¢(z) = 1] is approximately
1
2k

Another alternative test for singletons is to replace thatikely expensive test of checking whether
Pr[f(z) = 1] is approximatelyl /2, by extending the notion of a violating pair. We will say thaty €
{0,1}™ are a violating pair iff (z Ay) # f(z) A f(y) orif f(zVy) # f(z)V f(y). Then in a similar
way to the proof of Lemma 27, it can be shown that the prolstmli obtaining a violating pair is at least
%(% — &) (In this case the size of eithd, or B is at leas2” *. Therefore choosing € B; ory € By
andz, z’ as before, will result in a violating pair either to thetest or to thev test). The query complexity
of this algorithm will be onlyO(1/¢), and it will have a one-sided error. Unfortunately this aion does
not extend to testing monomials.

7 An Alternative Analysis of the Affinity Test
In this section we provide an alternative analysis of then@fitest that is derived from basic probabilistic

principles. One benefit of this analysis is that it suggestsifacorrector for functiong that pass the affinity
test.

25

Theorem 5 For a given functionf : {0,1}" — {0,1}, let F} dof {z : f(z) = 1} and let

1 Pryep e[(09y®2) £ f)). 10 < 27%7° and [Fy| > 27k, then there exists a

functiong such that:
1. dist(f,g) <263 . p;

2. Foreveryz,y, z € G1, (WhereG, def {w: g(w) =1}), we havgy(zdydz) =1

Our proof of Theorem 5 has similar structure to Sudan’s aml{Sud99] of the Blum, Luby, and
Rubinfeld’s [BLR93] linearity test. Our proof is slightly one involved due to the differences between
affinity and linearity. In particular we define a functign: {0,1}" — {0,1} as follows. For every, €
{0,1}", letg(a) = b whereb € {0, 1} is such that the probabilit}r, ycr, [(zDy®a) = b] is maximized.

Theorem 5 follows from the following two lemmas.
Lemma 28 dist(f,g) < 2k+3 . 7.

Lemma 29 If n < 272¢=6 and|F;| > 27~*~1, then for every, b, c € G1, g(a®bdc) = 1.

Proof of Lemma 28

In order to prove Lemma 28, we shall need the following claim.

Claim 30 For everya € {0,1}", Pr,yer(g(a) = f(z@y®a)] > 1 — 2829,

Proof: We fixa and letp def Pryyerm [g9(a) = f(z@y®da)]. Note that by definition of(-), it is the case that
p> % In all that follows, unless stated otherwise, all proki#ibg are over uniform choices of elements in
Fi. Then,

Pr[f(z1®y10a) = f(z2®y2Pa)]
= Pr[(f(z1@y1®©a) = g(a)) A (f(22@y2®a) = g(a))]
+ Pr[f(z10y:18®a) # g(a)) A (f(z20y2@a) # g(a))]
= P’ +(1-p)? (10)

On the other hand,
Pr[f(z10y1®a) = f(z20y20a)]
> Pr[f(10y1®@a) = f(21@22@y1@y2Da)) A (f(22Dy2®@a) = f(21Dz2@Yy10Yy2Da)) |

= 1—Pr[(f(z10y190a) # f(710120y10y20a)) V (f(220y20a) # f(210120y1DYy2Da)) |
1—2-Pr] f(r10y10a) # f(21Dx2DY1DY2Da) | (11)

v

Subclaim 30.1 If |[Fy| > 27 1 thenPr1[(f(71®y10a) # f(71D9120y1Oy2®a)) | < 28+ .,

Proof: For anyz € {0,1}",

Pr[z1®y16a = z] < max Pr[z1®(y1®a) = 2] . (12)
y1E€F

26

Since for any fixed; (anda andz), Pr[z; ®(y1®a) = 2] is either0 or ﬁ (depending on whethemma®dz €
Fy or not), we get that

1

< W 2—(n—k:—1) (13)

Vz € {0,1}" Pr(z1®y1®a = 2]

IA

By definition ofn we know that

> Pilf(2) # flwaypez)] = 2" (14)

2€{0,1}"

By combining Equations (13) and (14) it follows that

Pr] f(z1©y10a) # f(710720y10y2Da)]
= Z Prz1®y1©a = 2] - Pr[f(2) # f(220y202)]

ZE{Ojl}n
< Y 2R UPHf(2) # f(220y002)]
26{071}n
— 9n, 2—(n—k—1) = 2k+1 /i (15)

O
By combining Equations (10) and (11) with Subclaim 30.1, Wweam thatp? 4 (1 — p)? > 1 —2k+2. 4,
The next subclaim completes the proof of Claim 30.
Subclaim 30.1 Let < p < 1, and suppose? + (1 — p)2 > 1 — B for somed < 8 < 1. Thep > 1 — B.

Proof: If p?> + (1 —p)?2 > 1 — B, then2p(1 — p) < B. Sincep > 1/2, this imples thatl — p < 3, or
equivalentlythap >1—- 5. N

Proof of Lemma 28: For any fixed choice of,y € F; andz € {0,1}", let E; be the event thaf(z) =
f(z®ydz), and letE, be the event thaf (z@y®z) = g(z®y®z2). Thus,Pry ycp ociony[Er] =1 -1
andPry ey eq0,1)7 [E2] = 1 — dist(f,g). Now,

Proyer zcpoy[B2] 2 Proyer zeqony[B1 A Eo]

= Pr;c,yEFl,zE{O,l}n [El] - Prw,yeFl,zE{O,l}"[El A _'EQ] (16)
As stated abovePr, ¢, ,cq013[E1] = 1 — 7, and so it remains to upper bound the probability
Prw,yEFl,zE{O,l}" [El A _‘E2]-

Prw,yEFl,ze{O,l}"[El A _‘EQ]
= Pryycr zefo1)7[f(2) = f(2@y®2) A f(z0yd2) # g(zDyD2)]

Pry yerm zefo1)7[f (2) # g(z®y®2)]
2k+2 o (17)

IN A

where the last inequality is due to Claim 30 (and the propedi thep operator). Combining Equations (16)
and (17) we obtain
Pr, yer cefoy[Bo) > (1—n) —2F2.n > 123 .y

We thus get that

dist(f,9) =1 — Pryyer zefoyr[B2] <1—(1—n— 282) < 2KF3 .y

27

Proof of Lemma 29

In order to prove Lemma 29, we prove several additional daim

Claim 31 For everyu € Gy, and for every fixed € {0,1}",
Py yer [f (30 (y@v)@u) # 1] < Pryer, [(yov) # 1]+ 257

Proof: Let us first rewrite a special case of Claim 30 as follows: Mergu € G4,

>

zEFl‘ 1| we|Fy|

) ﬁ x(f(z@weu) #1) < 262.9 (18)

wherex(f(z®wdu) # 1) = 1 when f(zdwdu) # 1 and is 0 otherwise. Now:

Proyer [f(z®(ydv)du) # 1] = > 7l 1| > Pryer [ydv = w] - x(f(z@wdu) # 1)
z€F we{0,1}"

Let us break the sum over into two sums, one over ¢ F; and one ovew € F;. We start with the first
case.

IA

Z 0 > Pryem [ydv = w] - x(f (c®wdu) # 1) Z Y Pryem[ydv=w]-1

.’EEFI w¢Fy TE€F; 1| wéFy
Pr?/EFl [y@v §§ Fl]
= Pryen[f(yov) # 1]

And we obtain the first term stated in the claim. In order tombthe sum when taken over € Fj, we
again observe that for evety € {0,1}", Prycp, [y®v = w] < |F - Hence

> Y Pryer [ydv = w] - x(f(z@weu) # 1) Z Z |F | fz@wdu) #1)

TEF, | 1| weF ;L‘EFl ’wEF

but by Equation (18) the above is bounded25y? - 1, and the claim follows.
As an immediate corollary we get:

Corollary 32 For everyu € G4, and for every distributiorD over{0,1}",
Pry yery omn [f (2@ (yD0)®u) # 1] < Pryerm oop[f (y®v) # 1] + 2812 .9
Claim 33 For everya,b € G1, Prycp, [g(a®b®x) # 1] < 3-2k+2. 9,
Proof. For any giveru, b, and for every fixed:, we have by Claim 30 that
Pry .erm [9(a®b®z) # f(y®20(adbdr))] < 2772 .9
This directly implies that

Pryy,.cr [9(a®bBT) # f(yD20(a®bdT))] < 2872 1 (19)

28

Subclaim 33.1 For everya andbin G1, P,y .cr, [f (z®(yDz®a)®b) # 1] < 2F3 . q,
Proof: By Corollary 32, where we set= z®a andu = b,
Pryy cer [f (#@(y@(2@a))@b) # 1] < Pryccr [f (y©(2@a)) # 1]+ 2577 -

But by Claim 30 (sincegg(a) = 1), Pry em [f(y®(2®a)) # 1] < 2872 .5, and we are done with the
subclaim. O

Combining Equation (19) and Subclaim 33.1, we get

Pryer [g(a®b®z) # 1]
< Pryy.er [f(a®bOzOY®2) # 1] + Proy er [9(a®b®z) # f(a@bDzOYy®?2)]
< 2k+3_7]+2k+2_,’,’:3_2k+2_,’,’

as desired. ®
Proof of Lemma 29: For any giveru, b, c € G, by Claim 30,
Pry yem [9(a®b®c) # f(z@y@adb®e)] < 262 . g
We next show that for every, b, c € G1,
Pry yer [f(z®yDa®bdc] # 1] < 22k+5 (20)

It follows that forn < 272k=6 there exists a fixed choice af,y € F; such thatg(a®b®c) =
f(z®y®a®bdc) = 1, and the lemma is proven.

It remains to prove Equation (20). By Corollary 32, where weus= ¢ andv = a®b, for everyc € G,
Pry yem[f (2®(y@a®b)®c) # 1] < Pryer [f (y®a®b) # 1] + 25727 (21)
Now,

Prycr [9(y®a®b) # 1] + Pryep, [f (yDa®db) # g(yDadb)]
3. 282 oktl ok+3 Ly (22)

Prycr [f(y®adb) #1] <
<

Where the first part of the second inequality follows from i@la33, and the second part from
Lemma 28 and the lower bound on the sizeFf Combining Equations (21) and (22) we obtain that
Pryyer, [f (zDy®adbdc] # 1] < 226+5 .y, as desired. W

Further Research

Our results raise several questions that we believe maytéeegting to study.

e Our algorithms for testing singletons and, more generatignomials, apply two tests. The role of the
first test is essentially to facilitate the analysis of theosel, natural test (the closure under intersection
test). The question is whether the first test is necessary.

¢ Our algorithm for testing monomials has a cubic dependendé¢q as opposed to the linear dependence
of the singleton testing algorithm. Can this dependencenipeaved?

29

e The query complexity of our algorithm for testidgterm DNF grows like/*. While some dependence
on / seems necessary, we conjecture that a lower dependendedsadide. In particular, suppose we
slightly relax the requirements of the testing algorithrd anly ask that it rejects functions that aréar
from any monotone DNF with at most- £ (or possibly£¢) terms, for some constant Is it possible,
under this relaxation, to devise an algorithm that has oalylpgarithmic dependence df?

e Finally, can our algorithm for testing monotone DNF funosobe extended to testing general DNF
functions?

References

[AFKS99] N. Alon, E. Fischer, M. Krivelevich, and M Szeged¥fficient testing of large graphs. In
Proceedings of FOC$®ages 645655, 1999.

[AHRS99] Y. Aumann, J. Hastad, M. Rabin, and M. Sudan. Liremsistency testing. IRroceedings of
RANDOM pages 109-120, 1999.

[Ang88] D. Angluin. Queries and concept learningachine Learning2:319-342, 1988.

[BCHT95] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and Mdan. Linearity testing in character-
istic two. InProceedings of FOC$ages 432-441, 1995.

[BEHWS87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. ivth. Occam’s razor.Information
Processing Letter24(6):377-380, April 1987.

[BJT99] N. Bshouty, J. Jackson, and C. Tamon. More efficié&@Jearning of DNF with membership
queries under the uniform distribution. Rroceedings of COLTpages 286—295, 1999.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testingicecting with applications to numerical
problems.JACM, 47:549-595, 1993.

[DGLT99] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, BnRand A. Samorodnitsky. Im-
proved testing algorithms for monotonocity. fnoceedings of RANDOMages 97-108, 1999.

[GGLT00] O.Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A.@adnitsky. Testing monotonicity.
Combinatorica 20(3):301-337, 2000.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Propedirig and its connection to learning and
approximation.JACM, 45(4):653—750, 1998.

[GR97] O. Goldreich and D. Ron. Property testing in boundegrde graphs. IRroceedings of STOC
pages 406-415, 1997. To appeaAigorithmica

[Jac97] J. Jackson. An efficient membership-query algorifar learning DNF with respect to the
uniform distribution.JCS$55:414-440, 1997.

[KS99] A. Klivans and R. Servedio. Boosting and hard-corts.sdn Proceedings of FOCSages
624633, 1999.

[Ron00] D. Ron. Property testing. To appear in the HandbaoRandomization. Currently available

from: http://www.eng.tau.ac.il/"danar , 2000.

30

[RS96] R. Rubinfeld and M. Sudan. Robust characterizatigmotynomials with applications to pro-
gram testing.SIAM Journal on Computin@5(2):252-271, 1996.

[Rub99] R. Rubinfeld. Robust functional equations andrtlapiplications to program testingSIAM
Journal on Computing28(6):1972-1997, 1999.

[Sud99] M. Sudan. Private communications, 1999.

31

