Testing Parenthesis Languages

Michal Parnas Dana Ron
The Academic College Department of EE — Systems
of Tel-Aviv-Yaffo Tel-Aviv University
Tel-Aviv, ISRAEL Ramat Aviv, ISRAEL
michalp@mta.ac.il danar@eng.tau.ac.il

Ronitt Rubinfeld
NEC Research Institute
Princeton, NJ
ronitt@research.nj.nec.com

August 6, 2001

Abstract

We continue the investigation of properties defined by formal languages. This study was
initiated by Alon et. al. [AKNS99] who described an algorithm for testing properties defined by
regular languages. Alon et. al. also considered several context free languages, and in particular
Dyck languages, which contain strings of properly balanced parentheses. They showed that the
first Dyck language, which contains strings over a single type of pairs of parentheses, is testable
in time independent of n, where n is the length of the input string. However, the second Dyck
language, defined over two types of parentheses, requires Q(logn) queries.

Here we describe a sublinear-time algorithm for testing all Dyck languages. Specifically,
the running time of our algorithm is O(n?/3/e3), where € is the given distance parameter.
Furthermore, we improve the lower bound for testing Dyck languages to Q(nl/ 11 for constant e.
We also describe a testing algorithm for the context free language Lrpy = {uu™vv" : u,v € T*},
where ¥ is a fixed alphabet. The running time of our algorithm is O(y/n/e), which almost
matches the lower bound given by Alon et. al. [AKNS99].

1 Introduction

Property testing [RS96, GGR98] is a relaxation of the standard notion of a decision problem:
property testing algorithms distinguish between inputs that have a certain property and those that
are far from having the property. More precisely, for any fixed property P, a testing algorithm
for P is given query access to the input and a distance parameter €. The algorithm should output
accept with high probability if the input has the property P, and output reject if the input is e-far
from having P. By e-far we mean that more than an e—fraction of the input should be modified so
that the input obtains the desired property P.

Testing algorithms whose query complexity is sublinear and even independent of the input size,
have been designed for testing various algebraic and combinatorial properties (see [Ron00] for a
survey).

Motivated by the desire to understand in what sense the complexity of testing properties of
strings is related to the complexity of formal languages, Alon et. al. [AKNS99], have shown that

all properties defined by regular languages are testable in time that is independent of the input size.
Specifically, given a regular language L, they describe an algorithm that tests, using O(l /€) queries,
whether a given string s belongs to L or is e-far from any string in L. This result was later extended
by Newman [New00] to properties defined by bounded-width branching programs. However, Alon
et. al. [AKNS99] showed that the situation changes quite dramatically for context-free languages.
In particular, they prove that there are context-free languages that are not testable even in time
square root in the input size. The question remains whether context-free languages can be tested
in sublinear time. In this paper, we give evidence for an affirmative answer by presenting sublinear
time testers for certain important subclasses of the context-free languages.

Dyck Languages. One important subclass of the context-free languages is the Dyck language,
which includes strings of properly balanced parentheses. Strings such as “(()())” belong to this
class, whereas strings such as “(()” or “) (” do not. If we allow more than one type of parentheses
then “([])” is a balanced string but “([)]” is not. Formally, the Dyck language D,, contains all
balanced strings that contain at most m types of parentheses. Thus for example “(()())” belongs
to D1 and “([])” belongs to D,.

Dyck languages appear in many contexts. For example, these languages describe a property that
should be held by commands in most commonly used programming languages, as well as various
subsets of the symbols/commands used in latex. Furthermore, Dyck languages play an important
role in the theory of context-free languages. As stated by the Chomsky-Schotzenberger Theorem,
every context-free language can be mapped to a restricted subset of D,, [Sch63]. A comprehensive
discussion of context free languages and Dyck languages can be found in [Har78, Koz97].

Thus testing membership in Dy, is a basic and important problem. Alon et. al. [AKNS99], have
shown that membership in D; can be tested in time O(1/¢), whereas membership in D2 cannot be
tested in less than a logarithmic time in the length n of the string.

Our Results.

e We present an algorithm that tests whether a string s belongs to D,,. The query complexity
and running time of the algorithm are O (nQ/ 3/ 63), where n is the length of s. The complexity
does not depend on m, the number of different types of parentheses.

e We prove a lower bound of Q(n!/!/log n) on the query complexity of any algorithm for testing
D,, for m > 1.

e We consider the context free language Lrgy = {uu"vv" : w,v € ¥*}, where ¥ is any fixed
alphabet and " denotes the string u in reverse order. We show that Lrgy can be tested in
O(%\/ﬁ) time, where n is the length of the string. Our algorithm almost matches the Q(y/n)
lower bound of Alon et. al [AKNS99] on the number of queries required for testing Lrgy.

The structure of our testing algorithm for D,,. Our testing algorithm for D, combines
local checks with global checks. Specifically, the first part of the test randomly selects consecutive
substrings of the given input string, and checks that they do not constitute a witness to the string
not belonging to D,,. The second, more elaborate part of the test, verifies that non-consecutive
pairs of substrings that are supposed to contain matching parentheses, in fact do. In particular, the
string is partitioned into fixed blocks (consecutive substrings), and the algorithm computes various
statistics concerning the numbers of opening and closing parentheses in the different blocks. Using
these statistics it is possible to determine which pairs of blocks should contain many matching
parentheses in case that the string in fact belongs to D,,. The testing algorithm then randomly

selects such pairs of blocks and verifies the existence of such a matching between opening parentheses
in one block and closing parentheses in the other block.

Organization. In Section 2 we describe the necessary preliminaries. Our testing algorithm for
Dyck Languages is presented in Section 3. The testing algorithm for Lrgv appears in Section 4,
and the lower bound for Dyck languages in Section 5

2 Preliminaries

Let s = s1... sy be a string over an alphabet ¥,,, = {0,...,2m — 1} where 2i,2i + 1 correspond to
the " type of opening and closing parentheses. We will use the following notation for strings and
substrings.

Definition 1 (Substrings) For a string s = s1...s, and i < j, we let s; j denote the substring
SiySit1s -y Sj. If 8',8" are two strings, then s's" denotes the concatenation of the two strings.

Definition 2 (Dyck Language) The Dyck language D, can be defined recursively as follows:

1. The empty string belongs to D,,.

2. If s' € D,,, 0 = 2i is an opening parenthesis and T = 2i + 1 is a matching closing parenthesis
(for some 0 <1 <m — 1), then 0s'T € Dy,.

3. If §',s" € Dy,, then s's" € D,,.

It is clear from the recursive definition of D,, that the parentheses in a string s have a nested
structure and are balanced. The first step of our algorithm will test if the string s is a legal string
when we view it as a string in D, using the test given by [AKNS99]. Furthermore, the algorithm
will test if consecutive substrings of s can be extended to a legal string in D,,. The following
definitions address these aspects formally.

Definition 3 (Single-Parentheses Mapping) Given a string s over %,,, we can map it to a
string p(s) over £1 = {0,1} in the obvious manner: Every opening parenthesis is mapped to 0, and
every closing parentheses is mapped to 1. We denote this mapping by u.

Definition 4 (Parentheses Matching) For every string s such that p(s) € D, there exists a
unique perfect matching M (s) between opening and closing parentheses in s, such that each opening
parenthesis s; is matched to a closing parenthesis sy, and no two matched pairs “cross”. That is,
if sj, is matched to sy, and sj, to sy, where j1 < k1, and j1 < jo < ko, then either k1 < ja or
k1 > ko.

Definition 5 (Consistency of Substrings) We say that a substring s' over %, is Dyck Consis-
tent, if there exists a string s € Dy, such that s' is a (consecutive) substring of s.

The second part of our algorithm finds disjoint pairs of substrings such that there exist opening
parentheses in the first substring that should be matched to closing parentheses in the second
substring. The algorithm verifies that these pairs of parentheses match in type as required. The
following concepts will be needed for this part of the algorithm.

Definition 6 (Parentheses Numbers) For any substring s' of s, define

def . .
no(s') = Number of opening parentheses in s'

and
ni(s') = Number of closing parentheses in s .

Fact 1 A string s belongs to Dy if and only if: (1) For every prefix s’ of s, ng(s') > ni(s"); (2)
no(s) = ni(s).

The above fact implies that any string s’ over ¥; = {0,1} is Dyck Consistent, since for such
a string there exist integers k and £ such that 0¥s'1¢ € D;. In this case we can view s’ as having
an ezxcess of k closing parentheses and £ opening parentheses (assuming k and £ are the smallest
integers such that 0¥s'1¢ € D;). The following definition extends this notion of excess parentheses
in a substring to any alphabet 3.

Definition 7 (Excess numbers) Let s’ be a substring over X, and let k and £ be the smallest
integers such that OF u(s')1¢ € Dy. Then k is called the excess number of closing parentheses in s,
and £ is the excess number of opening parentheses in s'. Denote k by e1(s") and £ by ep(s').

For example if s/ = “| [()]) (7, then e1(s’) = 2 and ey(s’) = 1, where for the sake of the
presentation we denote the pairs of parentheses by () and []. It is possible to compute the excess

numbers from the parentheses numbers as follows.

Claim 2 The following two equalities hold for every substring s',

e1(s') = max (n1(s") — no(s")) (1)
s" prefiz of s
e(s) = max L (no(s") =1 (s")) (2)

In both cases the mazimum is also over the empty prefiz (suffiz) s", for which ny(s") —no(s") = 0.

3 The Algorithm for Testing D,,

In the following subsections we describe several building blocks of our algorithm. Recall that the
algorithm has two main parts. First we test that u(s) € D, and that consecutive substrings of s
are Dyck consistent. Then, by estimating the excess numbers for substrings of s, we find pairs of
substrings that contain a significant number of matched pairs of parentheses according to M (s), and
check that these pairs match in type. To do the latter, we break the string into n!/3 substrings each
of length n2/3, which we refer to as blocks. Assume for simplicity that (s) € D; (where we of course
deal with the general case). Then there exists a weighted graph, whose vertices correspond to these
blocks, and in which there is an edge between block 7 and block j > 4 if and only if the matching
M (s) (as in Definition 4) matches between excess opening parentheses in block i to excess closing
parentheses in block j. The weight of each edge is simply the number of corresponding matched
pairs of excess parentheses. As we show subsequently, this weight can be determined by the values
of the excess numbers for every consecutive sequence of blocks. Hence, if we were provided with
these exact values, we could verify, for randomly selected pairs of blocks that are connected by an

4

edge in the graph, whether their excess parentheses match as required. Since we do not have these
exact values, but rather approximate values, we use our estimates of the excess values to construct
an approximation of the above graph, and to perform the above verification of matching excess
parentheses.

3.1 Checking Consistency

It is well known that it is possible to check in time O(n) using a stack whether a string s of length n
belongs to D,,. This is done as follows: The symbols of s are read one by one. If the current symbol
read is an opening parenthesis then it is pushed onto the stack. If it is a closing parenthesis, then
the top symbol on the stack is popped and compared to the current symbol. The algorithm rejects
if the symbol popped (which must be an opening parenthesis) does not match the current symbol.
The algorithm also rejects if the stack is empty when trying to pop a symbol. The algorithm
accepts if after reading all symbols the stack is empty.

The above algorithm can be easily modified to check whether a substring s’ is Dyck consistent.
The only two differences are: (1) When reading a closing parenthesis and finding that the stack
is empty, the algorithm does not reject but rather continues with the next symbol. (2) If the
algorithm has completed reading the string without finding a mismatched pair of parentheses, then
it accepts even if the stack is not empty. Thus the algorithm rejects only if it finds a mismatch in
the type of parentheses.

3.2 A Preprocessing Stage

An important component of our algorithm is acquiring good estimates of the excess numbers of
different substrings of the given input string s. We start by describing a preprocessing step based on
which we can obtain such estimates for a fixed set of basic substrings of s (having varying sizes). By
sampling from such a substring s, we obtain estimates of ny(s’) and n(s’). Using these estimates
we can derive estimates for the excess numbers of any given substring of s.

Let 7 = log(n'/3/5), where 0 < § < 1 is a parameter that is set subsequently. For each
j €{0,1,...,7}, we consider the partition of s into 2/ consecutive substrings each of length n /2.
We assume for simplicity that n is divisible by 2" = n!/3 /0. Thus the total number of substrings is
O(n'/3/6), where the longest is the whole string s, and the shortest ones are of length & - n?/3. We
refer to these substrings as the basic substrings of s.

For each basic substring s’ of length n/27, we uniformly and independently select a sample of

m; symbols from s’, where
m; — O <n2/3 _ log3(n/5)) .

2% 92

Let m? be the number of opening parentheses in the sample, and mjl- be the number of closing
parentheses in the sample. Our estimates of the number of opening and closing parentheses in s’
are respectively:

m
fp(s') = —L-|s'|=—L- = and () =L .

Lemma 3 With probability at least 1 — o(1), for each of the basic substrings s' C s, |no(s') —
no(s')| < 24105% 023 and A1 (s') — ni(s)] < 24105% -n?/3. The total size of the sample is

o (n2/3-1(:$g23(n/6)) .

Proof: We prove the bound for 7 (s’). The bound for 71 (s") directly follows since ng(s’) +n1(s') =
|s'| = fg(s") +71(s"). By an additive Chernoff bound, for any fixed substring s’ of length n/27, and
for any given 0 < y; < L.

Pr [Jfio(s') — nols)| > 5 - 57| < 2exp(~2m;7) (3)

27
Setting v; = % . W@/J) so that v - 57 = m -n?/3 for any such string the probability
that |7g(s") — no(s")| > W(n/d) -n2/3 is at most Zexp(—ij'yJQ-) = 1/poly(n/d). Since the total

number of basic substrings considered is O(nl/ 3/6), all estimates are within the stated error with
probability 1 — o(1).

The total size of the sample is:

We assume from now on that the quality of our estimates 7ig(s’) and 71(s’) are in fact as
stated in the lemma for every basic substring s'. We refer to this as the successful preprocessing
assumption.

Assumption 4 (Successful Preprocessing Assumption) For each of the basic substrings s',
|fo(s") — no(s')| < m -n?/3, and the same bound holds for 1, (s').

3.3 Obtaining Estimates of Excess numbers

We first consider obtaining estimates for ng(s’) and nq(s’) for substrings s’ of s of the form defined
in the next claim.

Claim 5 Let s' = sy be any substring of s such that k = t1-(6-n?/3) +1 and £ =t - (5-n?/3), for
0<t1 <t < n1/3/5. Then s' is the concatenation of at most 2log |s'| + 1 of the basic substrings.

Proof: Let s® be the largest basic substring such that s® C s'. We now need to concatenate
at most log |s’| additional basic substrings to the right of s®, and at most log|s’| additional basic
substrings to the left of s®, where each time we choose the longest basic substring possible. The

total number of basic substrings in the concatenation is therefore at most 2log|s’|+1. W

Assume the substring s’ is the concatenation of the basic substrings s',...,s’. Then we can

estimate ng(s') by fo(s') = Yoi_; fio(s), where 7ig(s) is the estimate we got above for the basic
substring s’. Similarly, we can estimate nq(s’).

Corollary 6 Under Assumption 4, for every substring s' as in Claim 5, |fig(s") —no(s')| < g-nZ/g’
and | (s') —ni(s')] < § - n2/3.

We next consider how to obtain estimates for the excess number of opening parentheses of a
given substring s’ = si ¢ (where k,£,t1,ty are assumed to be as in Claim 5), and similarly for the
excess number of closing parentheses. To this end we appeal to Claim 2, and use our estimates for
the total number of opening and closing parentheses in certain prefixes and suffixes of s’. As we
show below, for the purpose of getting an additive estimate of the excess within & - n%/3 for any
substring, it is enough to use estimates of ny and n; for prefixes and suffixes of the substring that
are multiples of § - n?/3. Specifically,

Claim 7 Let s’ = sy be as in Claim 5, and define two sets
Prefiz = {s"|s" = sgp, €' =1ty (6- n?3) 41, t) <th < ty}

Suffiz = {s"|s" = s, K =11 - (6 n?3) +1, t; < t) <ty}.

Let
éo(s") = max (fg(s") — ny(s” é1(s") = max (A(s") —ng(s")).
0() s”ESutﬁw(0() 1()), 1() s”EPreﬁ:c(1() 0())

Then, under Assumption 4, |o(s') — eo(s')] < 6-n?3 and |é1(s") — e1(s")] < §-n?/3.

Proof: We prove the claim for é(s’). The proof for é(s’) is analogous. Let s” = s, be the
suffix of s’ for which the maximum is obtained in Equation (2) of Claim 2. (Recall that s
may be the empty string in which case b = £+ 1.) Let b’ be the index closest to b of the form
¥ =t - (§-n?3) + 1, where t; < t| < to. Since by definition of ¥ we have |b' — b < $6n%/3,
we know that no(sy ¢) — ni(sye) > no(see) — ni(sse) — % - (6 - n2/3). But by definition of s,
no(sp,e) — n1(sp,e) = eo(s’), and so

1
no(see) — n1(se) > eo(s’) — 5 (0 n?/3).

2/3 2/3.

By Corollary 6, |’fbo(sbl,g) — n0(8b1’5)| < g - n*/?, and |’fb1(sb/73) — nl(sb/,g)| < g n Hence,
fig(sy ¢) — 71 (sp ¢) > eo(s') — & -n?/3. But by definition, é(s') > fig(sy ¢) — 711 (s ¢), and the claim

follows. M

3.4 The Matching Graph

Before defining the matching graph, we extend the notion of the matching M (s) (see Definition 4)
to strings s such that p(s) ¢ D;. In this case we do not obtain a perfect matching, but rather
a matching of all the parentheses in the string that are not excess parentheses with respect to
the whole string. Specifically, by definition of the excess numbers, the string § = 0¢1(5)(s)1¢0(s)
belongs to D;. Thus we let M(s) be the restriction of M (3) to pairs of parentheses that are both in
s. For example, if s = “(]] ([)”, then M(s) matches between s; and so and between s5 and sg.

In all that follows we assume that n?/3
can be done without loss of generality. We partition the given string s into n
disjoint substrings, each of length n?/3, which we refer to as blocks.

is an even integer. It is not hard to verify that this
1/3 consecutive and

Definition 8 (Neighbor Blocks) We say that two blocks i and j are neighbors in a string s,
if the matching M (s) matches between excess opening parentheses in block i and excess closing
parentheses in block j.

Definition 9 (The Matching Graph of a String) Given a string s, we define a weighted graph
as follows. The vertices of the graph are the n'/3 blocks of s. Two blocks i < j are connected by an
edge (i,7) if and only if they are neighbor blocks (as defined above). The weight w(i,j) of the edge
(1,7) is the number of excess opening parentheses in block i that are matched by M(s) to excess
closing parentheses in block j. The resulting graph is called the matching graph of s, and is denoted
by G(s). The set of edges of the graph is denoted by E(G(s)).

Block 1 Block 2 Block 3 Block 4 Block 5

LLCLCL DICLO] 11O (1D [1)110]

Figure 1: An example of the matching graph of a string (in D). The string consists of 5 blocks
(outlined by rectangles), with 6 symbols in each block. The numbers below the edges are the
weights of the edges.

By definition of the matching M (s) between closing and opening parentheses we get:
Claim 8 For every string s, the matching graph G(s) is planar, and therefore |E(G(s))| < 3n'/3.

It is possible to determine which blocks are neighbors in G(s), and what is the weight of the
edge between them, using the excess numbers e; and ey as follows. We first introduce one more
definition.

Definition 10 (Intervals) For a given string s, let I; j denote the substring, which we refer to as
interval, that starts at block i and ends at block j (including both of them,).

Claim 9 Let s be a given string and let i < j be two blocks in G(s). Define:
.y def .
(6, 5) = min{er(lir1,5)s e0(Tii)} — e (lig1,4-1) - (4)

If i and j are neighbors in G(s) then w(i,j) = x(i,7), and if z(3,7) > 0 then i and j are neighbors
in G(s).

Proof: We first observe that for both parts of the claim the premise implies that eq(7; ;) > 0. That
is, the i’th block has excess opening parentheses. We next observe that the sequence e (I;11,;) is
monotonically non-decreasing with j. Let ¢ > ¢ be the maximum index such that ei(l;11:-1) <
eo(1i;), (so that in particular ei(I;1,) > eo(Zi;)), and for every j > ¢, e1(li+1,5) > eo(Z;;). Then
all the neighbors j > 4 of block ¢ are found in the interval I;;;;. The number of excess closing
parentheses of block j where i+1 < j < t—1, that are matched to block i, is e1 (£;41,;) —e1 (Li+1,j—1)-
Therefore, if ei(l;y1,;) — €e1(Li+1,-1) > 0 then blocks ¢ and j are neighbors. The number of
parentheses matched between block i and block ¢ is eg(; ;) — e1(fit1,t—1)- The claim follows. W

It is not hard to verify that based on the symmetry of the matching, if i and j are neighbors in
G(s) then also w(i,j) = min{eo(l; j—1),e1(Lj;)} — eo(Zi+1,j—1). Recall that if pu(s) € Dy then the
matching M(s) is a perfect matching between opening and closing parentheses in s. In particular
it contains all parentheses that are excess parentheses in the n'/3 blocks of s. We thus obtain:

Corollary 10 Let s be a string such that p(s) € Dy. Then,

nl/3
1
3 w(k, £) =5 > (eo(Ti) +e1(Liz)) -
(kO)EE(G(s)) ; k<l =1

We next turn to the case in which we only have estimates of the excess numbers. Here we define
a graph based on the estimates we have for the excess numbers. This graph contains only relatively
“heavy” edges in order to overcome approximation errors.

Definition 11 (The Approximate Matching Graph) Given a string s, we partition it into
blocks of size n®/3, and define a graph é(s) whose vertices are the n'/3 blocks of s. A pair of blocks
i < j will be connected by an edge (4, 7) if and only if min{é1 (I;11), e0(Li i)} —€1(Liv1,-1) > 46n%/3,
where €y and €1 are as defined in Claim 7.

The reason that in the definition we use the exact value eg(I;;), as opposed to the approximate
values é1(I;11,;), is that the value of ey(;;) is known to the algorithm. The following lemma is
central to our algorithm and its analysis.

Lemma 11 Suppose Assumption 4 holds. Then for any given string s, the graph G’(s) 18 a subgraph
of G(s), and every vertex in G(s) has degree at most 1/(26). Furthermore, if u(s) is §-close to a
string in D1, then G(s) “accounts for most of the excess” in s. Namely,

1/3
1 n
Z z(k, £) 2 2 Z(GO(IM) +ei1(L;;)) —194n.
(k,£)€E(G(s)), k<t i=1

Proof: By Claim 7, for every interval I; ; of the string s, |€o(Z;;) — eo(Lij)| < 6 - n?/3, and
e1(I; ;) — er(Iij)| < &-n%3. By definition of G(s), for every edge (i,7) € E(G(s)), we have
min{é1 (Ii—l—l,j),eO(Ii,i)} — él (Ii—|—1,j—1) Z 4(57),2/3. Therefore

:z:(z,j) = min{el (Ii+1,j)7 €q (Ii,i)} — €1 (Ii+1,j_1) Z 45’)%2/3 — 2(5712/3 = 25’)%2/3.

By Claim 9, this implies that there exists an edge (7,j) € E(G(s)), and that this edge has weight
x(i,7) > 20n?/3. Since this is true for every edge (i,j) € E(G(s)), we get that G(s) is a subgraph
of G(s), and every vertex in G(s) has degree at most n%/3/(26n/3) = 1/(26).

On the other hand, for every edge (i,j) € E(G(s)) such that w(i,j) = x(i,j) > 66n%/°, we
have min{é; (l;+1,7), e0(Lii)} — é1(Lit1,j—1) > 46n?/3, and so (4, j) is an edge in G(s) as well. Since
G(s) is planar, the total weight of edges (i,7) € E(G(s)) such that w(i,j) < 66n?/3, is at most
3n!/3 . 66n2/3 = 180n. Hence,

Z z(k,l) > Z z(k,£) | —18dn (5)

(k,0)€E(G(s)), k<t (k,0)€E(G(s)), k<t

If u(s) is d-close to Dy, then M (s) matches all parentheses in s but at most 2dn parentheses. To
verify this, assume in contradiction that more than 2dn parentheses are left unmatched by M(s).
In other words, that eg(s) + e1(s) > 26n. But in such a case it is necessary to modify more than

dn symbols in s so as to obtain a string § such that eg(5) = e1(5) = 0 (so that u(8) € D;). This
would contradict the fact that u(s) is d-close to Dy. By definition of G(s) this implies that

nl/3
1
> w(k,£) > 5 > leolTii) + e (Iig)) | —20n | . (6)
(k,L)EE(G(s)), k<t i=1

Combining Equations (5) and (6) together with Claim 9, we obtain

1/3
1 n
> z(k,€) 2 5 > (eo(Tiq) + e1(Tiz)) — 196n
(k,0)EE(G(s)), k<t i=1

and the proof of Lemma 11 is completed. W

3.5 Matching Between Neighbors

We define matching substrings as follows.

Definition 12 (Matching substrings) Let s’ be a substring of opening parentheses and let s" be
a substring of closing parentheses. We say that s' and s" match if |s'| = |s'| and s's" € D,,.

Given a string s, it is possible to determine for any two neighbor blocks i < j in G(s), which
pairs of excess parentheses within these blocks should match. Let £y(i) denote the (non-consecutive)
substring of excess opening parentheses in block i, and let &£;(j) denote the substring of excess
closing parentheses in block j. By definition, |£y(¢)| = eo(l;;) and |&1(j)| = ei1(I}4)-

We first find &y(i) and £ (j). This is done by slight modifications of the Dyck-consistency
procedure. Namely, when reading block 7, the substring (%) consists of those opening parentheses
that are left on the stack when the procedure terminates. On the other hand, the substring & ()
consists of those closing parentheses, that when read, the stack is found to be empty.

Recall that by Claim 9, for every two blocks i < j that are neighbors in G(s), there are
w(t, j) = z(i, j) excess opening parentheses in block 7 that are matched to excess closing parentheses
in block j (where z(7,5) is as defined in Claim 9, Equation (4)). Note that there are e;(I;41,j-1)
excess opening parentheses in block 7 that are matched to excess closing parentheses in the interval
Ii11,—1. Similarly, there are eg(I;11,j—1) closing parentheses in block j that are matched to opening
parentheses in I; 1 1. Observe that either all eq([;;) excess opening parentheses in block 7 get
matched to excess closing parentheses in blocks i+1,---, 7, or all e;(I; ;) excess closing parentheses
in block j get matched to opening parentheses in blocks ¢,---,7 — 1. This leads to the following
exact matching procedure, with two cases: The first corresponds to the situation when all of the
excess closing parenthesis in block j are matched to parentheses in the interval I; j_;. In particular
this implies that those parentheses in block j that are matched to parentheses in block # constitute
a suffiz of the excess £1(j). The second case corresponds to the situation when all of the excess
opening parentheses in block 7 are matched to the interval I; 11 ; and so a prefiz of £(7) is matched
to a substring of &1(j).

In what follows, for a (consecutive) substring s’ of £y(i), we denote by F;(s') and L;(s’) the
positions in &£y(i) of the first and last symbols of s’, respectively. Similarly, for a substring s” of
£1(j), we denote by Fj;(s") and L;(s") the positions of the first and last symbols of s” in &;(j)
respectively.

10

Exact Parentheses Matching Procedure(i, j)

1. If e1(Ii41,5) < eo(Zi;): Let s” be the suffix of &£ (j) of length z(4, j), and let s’ be the substring
of &(7) such that L;(s") = eo(l; ;) — e1(Liy1,j—1), where |s'| = |s"|.

2. If e1(Li11,5) > eo(li): Let s’ be the prefix of £y(i) of length z(3, j), and let s” be the substring
of £(j) such that F;(s") = eo(Li41,-1) + 1, where |s"| = ||

3. If s’ and s"” match, then return success, otherwise return fail.

It may be verified that L;(s') = eo(Lii) — e1(Liy1,j—1) and Fj(S") = eo(fi+1,j—1) + 1, no matter
which step of the procedure is applied. Hence, the two cases can actually be merged into one, but
the above formulation will be helpful in understanding a variant of this procedure that is presented
subsequently.

An Example. Consider for example the string from Figure 1, and the neighboring blocks ¢ = 1
and j = 4. Then &(1) = “[[([([?, that is, the block consists only of excess parentheses, and
E1(4) = “])])”. Thus, eg(l1,1) = 6. The other relevant values are: z(1,4) = 2, e1(I24) = 3,
and ej(Iz3) = 1. Hence s” is the suffix of length 2 of £;(4), that is, s = “])”. We also get that
Li(s") =6 —1 =5, and so s’ is the substring of £y(1) of length 2 that ends at position 5, that is
s’ = “([”. The substrings s’ and s” match of course since s's” € D.

Since we only have estimates é;(f;41,j—1) and éy(f;41,j—1) of the excess numbers in the interval
Ii11 1, then we apply the following partial matching procedure to any pair of neighbor blocks
1<jin G (s). The procedure is basically the same as the exact matching procedure, but it searches
for a possibly smaller match in a larger range (where the size of the match and the range are
determined by the quality of the approximation we have). Thus we define

Ny . def . N ~
(i, 7) = min{é (L;41,5),e0(Liz)} — é1(Liy1,5-1) — 25n2/3,

and look for matching substrings of length #(%, j). Furthermore, we only allow matches of locations
that have an even number of symbols between them. If s € Dy, and blocks 7 and j are neighbors in
G(s), then the existing matching between excess opening parentheses in block 7 and excess closing
parentheses in block j, should in fact obey this constraint.

Partial Parentheses Matching Procedure(i, j)

L. If &1(Ti11,5) < eo(L;;) — 0n?/3: Let §" be the suffix of & (j) of length &(i,j). Search for a
matching substring §' of &)(4) such that L;(§') is in the range

(co(ii) = &1(Tigng-1) = 3002 , eo(li) = &1 (Tisrga) + on2/?) ()

and such that L;(3") has opposite parity from the parity of F;(8"). (If |£(¢,)| < O then §" is
the empty string, and a matching exists trivially.)

2. If é1(Iip14) > eo(li;) + dn?3: Let & be the prefix of & (i) of length 2(i,5). Search for a
matching substring §” of &£ (j) such that F;(8”) is in the range

(eo(Tis1,j-1) +1 — 603 | éo(Lip1,j-1) + 1+ 30n*/3) (8)

where again, F;(3") should have opposite parity from that of L;(8').

11

3. If |é1(Zig1,5) — eo(Ziz)] < én?/3: Search for a matching as described in Step 1 above. If a
matching is not found, search for a matching as described in Step 2 above.

4. If a matching was found, then return success, otherwise return fail.

To implement either step in the above procedure, we run a linear time string matching algo-
rithm [KMP77].

Lemma 12 Assume that Assumption 4 holds. Then we have the following.

1. If s € Dy,, then for every two neighbor blocks i < j in é(s), the partial matching procedure
described above succeeds in finding a matching.

2. Let s be any given string and consider any three blocks © < j1 < jo such that j1 and jo are
both neighbors of i in é(s) Suppose that the partial matching procedure succeeds in finding
a matching between substrings § and t of Ey(i) and substrings §" of £1(j1) and ' of &1 (j2),
respectively. Then, under Assumption 4, § and ¥ overlap by at most 66n2/3. An analogous
statement holds for triples i1 < ia < j such that i1 and i2 are both neighbors of 7 in G’(s)

Proof:

Part 1: By Lemma, 11, G‘(s) is a subgraph of G(s). In other words, every two blocks 7 < j that are
neighbors in G(s), are also neighbors in G(s). If s € Dy, then this implies that the exact matching
procedure would succeed in finding a match between substrings s’ of £y(i) and s” of £;(j) in either
Step 1 or Step 2 of the procedure.

We consider the first case, and show that in this case the partial matching procedure can
find a match between &' and §” in Step 1 (the second case is handled analogously). In this case,
e1(Li+1,5) < eo(li;), and there is a matching between the suffix s” of £;(j) that has length (4, 5),
and the substring s’ of £y(7) of the same length that ends in position L;(s") = e(I; ;) —e1(Liy1,j-1)-

By Claim 7, conditioned on Assumption 4, we know that for every k,¢, |é1(Ix) — e1(Ir)| <
én2/3. Tt follows that é1(Tiv1,5) < eo(liz) + én2/3 and that

z(,§) — 46?3 < 2(i,) < z(i, 7). (9)

Therefore, either é;(Ij11;) < eo(Li;) — 0n?/3, or |é1(Iiv1,7) — eo(li;)| < 0n?/3, and in either case,
the procedure tries to find a match as defined in Step 1.

Since #(%,j) < z(i,7), the substring §” defined in Step 1 is a suffix of s”. Since we know
that s’ matches s” in this case, then there is a prefix § of s’ that matches 8", and we just have
to show that the partial matching procedure can find it. Let é(Ii11,;) = ei1(Liy1,;) + v, and
é1(Lit1,j—1) = e1(Liy1,j—1) + z where —6n2/3 < y,z < dn?/3. Hence,

18| = 2(i,§) = x(i,5) +y — 2 — 26n%/3 = || +y — 2 — 26n%/3

and so
Li(8") = Li(s') — (y — z — 26n*/3) = eo(I;;;) — é1(Ii41,j-1) — (y — 20n*/3).

The matching substring that the partial matching algorithm searches for is allowed to end at a
position in the range (eq(;;) — €1 (Liy1,j—1) — 36n2/3 eo(Liz) — é1(Lig1,5—1) + 6n2/3), which contains
L;(8'). This ensures that a matching is found.

12

Part 2: Let 7 < j; < jo be a given triple as defined in the lemma. We first show that regardless of
whether p(s) € Dy or not, given the exact values of ey(I;41,5,-1), e1(Li+1,5,-1), €o(li+1,j,—1), and
e1(Z;41,j,—1), the matching defined by the exact matching procedure would not cause any overlaps.
This fact will be used to bound the overlap caused by the partial matching procedure.

Let s’ and ' be substrings of £y(i) that the exact matching procedure tries to match to substrings
s" of £1(j1) and ¢ of £1(j2) respectively. We next show the following inequalities:

1.

. As observed in Part 1 of this proof, (4, j) < z(,7) and so |§"| < |s

L;i(t") < F;(s'), that is, the exact matching algorithm would not cause any overlap: By
definition of the exact matching procedure, (no matter which step is applied), L;(t') =
eo(Lii) — e1(Liv1,4o—1), Li(s") = eo(Liz) — e1(Lit1,5,-1), and |s"| = |s'| = (4, j1). Thus,

Fi(s') = eo(liy) — ex(Lig1,,-1) —z(i,51) +1

(Zii) — er(Zit1,5,—1) — (min{e1 (Liv1,5,), eo(Zii)} — e1(Lit1,5-1)) +1
= eo(li;) — min{e1 (Zi+1,5,),e0(Lii) } + 1
> eo(Lii) — e z+111) +1 (10)

Since j1 < j2 — 1 and e;(/j4+1,;) is monotonically non-decreasing with j, we have that
e1(Lit1,j,—1) > e1(Liy1,5,), and so Li(t') < Fi(s") as desired.

= 60

II|

. Li(8) > Lis') — 46n*3: We first observe that by Lemma 11, z(i,jo) =

min(el(IH_l,h),eO(Ii’i)) — 61(],'4_1,]'2,1) > 6(5712/3. Since j1 < jg — 1 and 61(’[5 + 1,j) is
monotonically non-decreasing with j, necessarily ei(liy1,5,) < eo(fi;) — 66n2/3. Therefore,
é1(liv15:) < eo(lis) — 56n2/3, and so the partial matching procedures would apply Step 1.
Thus, the substring 8’ may end in the worst case in position

eo(Ii,i) — él(Ii—l—l,jl—l) - 3(5712/3 Z eo(Ii,Z’) — 61(Ii+1,j1_1) — 45%2/3 = LZ'(SI) — 4(57’L2/3.
F;(8') > Fy(s") — 46n?/3: Using the previous inequalities we get,
Fi(s) = Li(¥) - 2(i,5)

> Li(s') — 46n*/® — 2(i,)
= (Fy(s') + z(i,5)) — 46n*/® — 3(i, j)
> Fy(s') — 46n2/® (11)

. Li(#") < Li(t') + 26n%/3: As noted previously, by definition of the exact matching procedure,

Li(t") = eo(I;;) — e1(Li+1,5,—1) + 1. If the match between # and #” is found in Step 1 of the
partial matching procedure, then

Li(#) < eo(ig) — 1 (Tig1,jo—1) + 003 < eo(Lig) — ex(Ti jp—1) + 20n°/® = Li(t) + 20n%/3.
If the match is found in Step 2, then
Li(f") = 2(i,5) < eo(Tig) — &1 (Tig1,4y-1) — 200%/% < Li(t').

As a result we get

F;(8') > Fy(s') — 46n%/® > Li(t') — 46n%/® > Li(#) — 65n%/.

and therefore the overlap is at most 66n%/%. We have thus proved the claim for triples i < j; < jo.
The analogous claim for triples i; < i3 < j is proved similarly. W

13

3.6 Putting it all together

Algorithm 1 Test for Dy,
1. Let 6 = o5;-

2. Test that p(s) € Dy with distance parameter § and confidence 9/10. If the Dy test rejects,
then reject.

2/3

3. Partition the string into n'/3 substrings of length n2/3 each, which we refer to as “blocks”.

4. Select 100/e blocks uniformly, and check that they are D,, consistent.

5. Perform the preprocessing step on the basic substrings of s (defined based on the above setting

of 6).

6. Uniformly select 100/e blocks and for each find its neighboring blocks in G’(s) For each
selected block, and for each of its neighbors, check that their excess parentheses match correctly
by invoking the partial matching procedure.

Theorem 1 If s € D, then the above testing algorithm accepts with probability at least 2/3, and
if s is e-far from Dy, then the above test rejects with probability at least 2/3.

. . . . /3.10g3
The query complezity and running time of the algorithm are O (Lé("/e))

€
Proof: Consider first the (easier) case in which s € D,,. The D;-test (Step 2) passes with
probability at least 9/10, and the block consistency check (Step 4) always passes. By Lemma 11,
if Assumption 4 holds, then G(s) is a subgraph of G(s). By Lemma 12 (using Assumption 4 once

again), for every two neighboring blocks 7 and j, the matching of excess parentheses must succeed.
Since by Lemma, 3, Assumption 4 holds with high probability, this part of the theorem follows.

We now turn to the second part of the theorem. We shall show that conditioned on Assumption 4
holding, if s is accepted with probability greater than 1/6, then it is e-close to D,,. This implies
that conditioned on Assumption 4 holding, if s is e-far from D, then it is rejected with probability
at least 5/6. Since Assumption 4 holds with probability at least 5/6, this implies that if s is e-far
from D,, then it is rejected with probability at least 2/3, as required. ;From now on we thus
assume that Assumption 4 holds.

If s is accepted with probability greater than 1/6 then necessarily it must pass each part of the
test with probability greater than 1/6. This implies that:

1. u(s) is d-close to D; (or else it would be rejected in the first step of the algorithm with
probability at least 9/10);

2. All but at most an f-fraction of the blocks of s are D,,-consistent (or else an inconsistent
block would be selected in Step 4 with probability greater than 5/6, causing the algorithm to
reject in this step with probability greater than 5/6);

3. The fraction of blocks i that have a neighbor j in G (s) for which the partial matching pro-
cedure would fail if executed on 4 and j is at most § (or else one of these blocks would be
selected in Step 6 with probability greater than 5/6, causing the algorithm to reject in this
step with probability greater than 5/6);

14

4. Combining the first item above (u(s) is d-close to D;) with Assumption 4, we know by
Lemma 11, that G(s) is a planar graph, and furthermore,

nl/3
1
> wlk0 25D (eolli) +ei(li) - 196m
(k,£)EE(G(s)), k<t i=1

(where z(k,£) is as defined in Claim 9, Equation (4)).

To show that s is e-close to D,,, we show how to modify s in at most en positions so that it
becomes a string in D,,. In particular we show the existence of a nested (non-crossing) matching
between opening and closing parentheses in the modified string, such that every matched pair
match in type.

Making all blocks D, consistent. First we consider all blocks that are not D,, consistent,
and turn them into consistent blocks without modifying their excess parentheses. Recall that for
every block s', u(s’) is Di-consistent. Hence this modification can be done simply by considering
the matching induced on the non-excess parentheses, and modifying at most 1/2 of the non-excess
parentheses in the block. Since the fraction of inconsistent blocks is at most £-fraction of the blocks
of s, the total number of symbols modified is at most gn.

Adjusting matched excess parentheses. Next we need to “fix” the excess parentheses. Con-
sider the graph G(s), and for every two blocks i < j that are neighbors in G(s), consider (as a
mental experiment) the result of running the partial matching algorithm on their excess parenthe-
ses substrings £y(i) and &£1(j) as described in Subsection 3.5. Suppose that we succeed and find
a matching between substring s’ of & (i) and substring s” of & (j). Then we shall “commit” to
the two matched substrings with the exception of the last 66n2/3 symbols of s’ and the first 66n2/3
symbols of s”. In “committing” we mean that these symbols will not be modified, and that the
matching between the respective symbols in s’ and s” will be maintained in all future modifications.
Note that by Lemma 12, each excess opening parenthesis is matched in this way to at most one
excess closing parenthesis in one of the neighbors of block 1.

If the matching algorithm does not succeed then we modify a substring s’ of £y(i) so that it
matches a designated substring s” of £1(j), with the exception of 66n2/3 consecutive symbols, and
we commit to the two matched substrings. More precisely, if e1(1; ;) < eo(l;;) (so that é(I;;) <
eo(I; ;) +n?/3) then we let T be the suffix of £ (5) of length #(i, j) —66n2/3 (where i (4, 5) is as defined
in the partial matching procedure). We then modify the substring of £ (i) of length #(i, j) — 66n/3
that ends at position eg(;;) — €1(Lit1,j—1) — 66n2/3 so that it matches 7. If e; (I i) > eo(1i;) then
we modify the prefix of length Z (i, j) — 66n2/3 of £(i) so that it matches the substring 7 of length
(4, j) — 66n%/3 of £ (i) that starts at position Fj(1) = éo(li41,j-1) + 1 + 66n?/3. Tt is not hard to
verify that in this manner we do not introduce any errors into the matching.

Since the fraction of blocks that have at least one neighbor on which the partial matching
procedure fails is at most £, the total number of symbols modified in this stage is at most {n. Note

that since G(s) is planar, the matching defined so far is nested as required.

Adjusting non-matched excess parentheses. At this stage the string s is composed of three
types of consecutive substrings: (1) substrings inside the blocks that are strings in D,,, themselves;

15

(2) excess parentheses in one block that are matched to excess parentheses in another block, to
which we committed; (3) excess parentheses that are not matched.

We now show how to change s into a string in D,,, but first let us bound the total number
of parentheses of type (3), which must still be modified. The total number of excess parentheses
is 2?21/13 (eo(I;;) + e1(I;;)). Let us think of each edge (4,5) in G(s) as “having to account for”
x(4,7) pairs of excess parentheses. By Lemma 11, the total number of excess parentheses that
are not accounted to by the edges of G(s) is at most 2 - 196n. In addition, by definition of the
approximate matching procedure, the length of the matched substring corresponding to the edge
is (i,§) > x(i,j) — 46n?/3 (see Equation 9). By our committing strategy, for every edge (i, ;)
in G(s), the number of pairs of symbols among the matched (i, j) pairs that we did not commit
to is 66n2/3. Thus the total number of uncommitted excess parentheses pairs per edge is at most
106n2/3. Since G(s) is planar, the total number of uncommitted pairs is at most 306n. Hence there
are at most 60dn excess parentheses that are accounted for by the edges of G (s), but uncommitted
for. If we add the 360n parentheses that are not accounted form we get a total of at most 96dn
parentheses of type (3). We now show how to modify these at most 966n parentheses, so that we

get a string in Dy,. Since § = 555 we modify in this step at most §n symbols.

Let ¢ be the string obtained from s by removing all consecutive substrings of type (1). Note
that by removing such substrings that are always even in length, we do not change the parity of the
length of substrings between two matched excess substrings of type (2). We show how to modify ¢
in a recursive way. Let ¢’ and " be two matched substrings such that between them there is only
a substring 7 of parentheses of type (3) (7 may be empty). Thus, ¢ is of the form ¢ = o't'7t"o".
Note that |7| must be even, since the position of the last symbol of ¢ has opposite parity than that
of the position of the last symbol of #. Therefore, we modify 7 so that it is a string in D,,, and
continue recursively with the string o’'c”. This string is even in length since |t| and |7| are even
and |#'| = |¢"|. Also as noted above by removing consecutive substrings that are even in length, we
do not change the parity of the length of substrings between two matched excess substrings of type
(2).

Finally we turn to the query complexity and running time of the algorithm. Testing that
w(s) € Dy with distance parameter € = § takes time O (k)g&;,/el)) [AKNS99] which is O (%)

Testing Dyck consistency of O(1/€) blocks takes time O (@) The preprocessing step takes time

n?/3.log3(n/e)
3

linear in the sample size, which by Lemma 3 is O (-

). Finally, since by Lemma 11 the
degree of every vertex (block) in G(s) is at most 1/(28) = O(1/€), the last step takes time O (%2/3)

C o 2/3.1003
The total running time and query complexity is hence O (%%("/6)) |

4 Testing uwu'vv" in O(%y/n) time

Let Lrgv = {uu"vv" : u,v € £*}, where ¥ is any fixed alphabet and u" denotes the string u in
reverse order. In this section, we show that the following algorithm tests whether w = wg + - wy,_1 €
3" belongs to Lyrgy or is e-far from any word in the language. The query complexity and running
time of the algorithm are O(%\/ﬁ) Recall that Alon et. al. [AKNS99] have shown a lower bound
of Q(y/n) (for constant €) on the query complexity of testing algorithms for this class.

16

Algorithm 2 Test for Lrgyv

1. Let I ={0,...,v/n—1} and J = {0,+/n,24/n,...,n — y/n}.
2. Pick m = 01% logn indices p1,...,pm independently and uniformly from {0,...,n — 1}.

3. For each index ¢ € I, let the backward pattern of ¢ be the wector z =
W(i—py) modns -+ s Wii—pp) mod n- For each index j € J, let the forward pattern of j be the

vector Y = W(itp,) mod ns - -+ s W(i+pym) mod n-

4. Output accept if there exists a pair i € I and j € J (where not both are 0) such that the
backward pattern of i and the forward pattern of j are the same. Otherwise output reject.

In order to implement the last step we simply construct a trie that contains both the backward
patterns of the indices 7 € I and the forward patterns of the indices j € J. That is, we construct a
tree whose edges are labeled by alphabet symbols in Y. Each leaf of the tree is associated with two
subsets: the subset of indices in I whose backward pattern corresponds to the path from the root
of the tree to the leaf, and the subset of indices in J whose forward pattern corresponds to this
path. If for some leaf both subsets are non-empty, then the algorithm accepts. Hence the above
algorithm runs in time (|I| + |J|) - m = O(1y/nlogn).

Theorem 2 The above algorithm is a property tester for Lrgv. Furthermore, the algorithm has a
one-sided error.

Proof: We first show that if w € Lgygy then the test always accepts. Let w = uu"vv". We say that
i,j € [n] are paired with respect to w if i+j = (2|u| — 1) mod n. In other words, 7 and j are either in
symmetric positions with respect to uu”, or with respect to vv”. By definition, if 7 and j are paired
with respect to w, then w; = w;. Furthermore, for every offset p, (w; —p) mod n = (w; +p) mod n
(and vice versa). In particular, for any selection of pi,...,pnm, the forward pattern of ; and the
backward pattern of ¢ are identical. But by our selection of I and J, there must exist ¢+ € I and
Jj € J that are paired with respect to w. To see why this is true, observe that (2|u|—1) mod n, which
ranges between 1 and n — 1, can be written as (a1 - v/n + ag) mod n, for some 0 < a1,a9 < /n—1.
Hence, ag € I and a; - y/n € J, and the test necessarily accepts w.

Next we show that if w is e-far from Lrgvy, then the test rejects it with probability at least
2/3. We say that i,5 € {0,...,n — 1} are a compatible pair with respect to w if (j — i) mod n is
odd, and if W(;_g) modn = W(j+e) mod n for at least a 1 — e fraction of the indices £ € [n]. We claim
that if there exists a compatible pair ¢, j with respect to w, then w is e-close to Lrgy. To see this,
assume that ¢ < j, and let u = wy, . .. Y Wik | and v = Wjqiq1,... W nekiskiz1). It is not hard to
verify that w is e-close to uu"vv".

Thus, if w is e-far from Lygy, then there is no compatible pair with respect to w. It follows
that for every fixed pair ¢ € I and j € J (that are necessarily not compatible), the probability that
the backward pattern of ¢ is identical to the forward pattern of j is at most (1 — e)clélog" <n e
Applying the union bound, and using the fact that the total number of pairs considered by the

algorithm is n, if ¢; > 2 then the probability that the test accepts w is smaller than 1/3, as required.
|

17

5 A Lower Bound for D,

In this section we give a lower bound of Q(n'/!'/logn) on the query complexity of any algorithm
for testing Dy (and hence for testing all Dyck languages). We first provide such a bound for the
language PARs which is a variant of Dy (PAR,, is defined below), and then discuss how a very
similar argument can be applied to obtain the same lower bound for D,.

Definition 13 (Parenthesis Languages) The parenthesis language PAR,,, over strings in %, U
Y where X' is any alphabet that has no intersection with ¥,,, can be defined recursively as follows:

1. Any string s € (X')* belongs to PAR,,.

2. If 8 € PAR,,, 0 = 2i is an opening parenthesis and 7 = 21 + 1 is a matching closing
parenthesis (for some 0 <i <m — 1, then os't € PAR,,.

3. If §',s" € PAR,,, then s's" € PAR,,.

Theorem 3 Any algorithm for testing PARy with distance parameter ¢ < 27 (and success prob-

ability at least 2/3) requires an'/'*/logn queries, where a = e™".

The high-level structure of our proof is similar to other lower-bound proofs for testing (see for
example [GR99, PR99, BR00]). In order to prove the theorem we define two distributions on strings
over Yo U {‘a’} (that is, there are two types of parentheses and one extra non-parenthesis symbol).
Since we have only two types of parentheses, it will be convenient to let X5 = {(,),[,]}. The support
of the first distribution only contains strings in PARs, while with extremely high probability, a
string selected according to the second distribution is 2 %-far from PAR,. Roughly speaking, what
we show is that an algorithm that asks less than an'/!! /logn queries cannot distinguish with
sufficiently high probability between a string selected according to the first distribution (which
should be accepted) and a string selected according to the second distribution (which should almost
always be rejected).

5.1 The Two Distributions

In what follows we assume for simplicity that the length of the strings, n, is divisible by 32. In both
distributions the support of the distributions is only on strings s such that pi(s) € PAR; (where
we extend p1(-) so that it maps every ‘a’ to ‘a’). Furthermore, the strings have a relatively simple
structure: there are always n/4 opening parentheses among the first n/2 symbols (the left half of
the string), and n/4 closing parentheses among the last n/2 symbols (the right half of the string).
All other symbols are ‘a’s. The strings differ only in the actual positions of the parentheses in the
string and in their type:

Definition 14 (Parenthesis Types) We say that an opening parenthesis is of type 0 if it is ‘(’,

and is of type 1 if it is ‘[. Similarly, we say that a closing parenthesis is of type 0 if it is ‘), and
it is of type 1 if it is *]’. Thus, ‘(" and’)’ (similarly, ‘[’ and ’]’) are said to have the same type.

18

5.1.1 The First Distribution, POS,,.

This distribution is simply uniform over all strings in PARy that have n/4 opening parentheses
among the first n/2 positions, and n/4 closing parentheses (of corresponding types) among the last
n/2 positions. To be precise, a string s is generated in the following manner:

1. Uniformly select a subset L C {1,...,n/2} such that |L| = n/4 (these will be the positions
in s of the opening parentheses).

2. Uniformly select a subset R C {n/2+1,...,n} such that |R| = n/4 (these will be the positions
in s of the closing parentheses).

3. Uniformly select a binary string z € {0,1}*/* (z will be used to determine the type of
parentheses).

4. Consider a sorted order of the indices in L so that n/2 > j; > jo > -+ > Jnja > 1. Then, for
every 1 <i <n/4,if z; = 0 then s;; ='(’, and if z; = 1 then s;; =*[".

5. Similarly, consider a sorted order of the indices in R, only here the order is reversed so that
n/2+1 <k <ky<---<ky/y <n. Then, for every 1 <4 <n/4, if z; = 0 then s;, =*)’, and
if z; = 1 then s;, =]".

6. For every i ¢ L UR, let s; =‘a’.

—2
Thus, each string in the support of POS,, has probability (Zﬁ) .o/,

5.1.2 The Second Distribution, NEG,,.

This distribution is similar to POS,, (and in particular its support contains the support of POS,,),
with the exception that not all pairs of parentheses (j;,k;) as defined above have the same type.
In particular, the generating procedure is the same as that of POS,, described above, with the
exception of Steps 3 and 5 that are modified below.

1,2. As described for POS,,.
3. Uniformly select a binary string = € {0,1}™%, and a binary string y € {0, 1}"/8.
4. As described for POS,,.

5. Consider a sorted order of the indices in R so that k1 < k2 < --- < k4. Then, for every i
such that 1 <4 <n/16 or n/4—n/16+1 <i < n/4, if z; = 0 then s, =*)’, and if z; = 1 then
sg; =']". For every n/16 +1 <i <n/4 —n/16, if y; /16 = 0 then s, =), and if y; /16 = 1
then sg; =]

That is, as opposed to POS,,, here the string = determines only the type of the first n/16
and the last n/16 parentheses on the right side of the string, while the string y determines
the type of the remaining n/8 middle parentheses.

6. As described for POS,,.

—2
Thus, each string in the support of NEG,, has probability (Zﬁ) .9—3n/8,

19

matching parentheses

significant significant
range range

N6 n8 w16 ni6 n8 N6

Figure 2: An illustration of strings in the two distributions. The horizontal line represents a
string. The central vertical line represents the middle of the string — to the left of it there are
only opening parentheses and to the right only closing parentheses. The other dashed vertical
lines represent the borders of the regions in which reside the first and last n/16 parentheses
and the middle n/8 parentheses in each side. The middle n/8 pairs must match in POS,, and
do not necessarily match in NEG,,.

5.1.3 Properties of the Distributions

The following definitions will be central to our analysis.

Definition 15 (Parenthesis Index) Let s be a string in the support of NEG,, (which in partic-
ular contains the support of POS,,), and let 1 < j < n/2 be a position such that s; is an opening
parenthesis. The parenthesis index of j in s is the number of opening parentheses sj such that
j < j'<n/2. We denote the parenthesis index of j in s by ms(j).

Analogously, for a position n/2+1 < k < n such that sy is a closing parenthesis, the parenthesis
index of k in s is the number of closing parentheses sy such that n/2+1 < k' <k.

Definition 16 (Significant Range) We say that a parenthesis index 1 < m < n/4 is significant
if n/16 +1 < 7w <n/4 —n/16. Otherwise, it its non-significant. We shall call the range of indices
between n/16 + 1 and n/4 —n/16, the significant range.

Note that the parenthesis index of a position is not determined by the position itself but rather
by the number of parentheses between this position and the middle of the string. Observe that for
every string s in the support of POS,,, and for every two positions 1 < j <n/2andn/2+1 < k < n,
such that s; is an opening parenthesis and s, is a closing parenthesis, if 74(j) = 75(k), then s; and
s, must be of the same type. For a string s in the support of NEG,,, the above is necessarily true
only for pairs j, k such that 74(j) = 74(k) = 7 and 7 is not a significant parenthesis index.

Lemma 13 Let € < 276, Then the probability that a string generated according to NEG,, is e-far
from PARg, is at least 1 — exp(—Q(n)).

Proof: Consider all possible ways in which a given string s that is generated according to NEG,
can be modified in at most en places. There are (g}) selections of subsets C C {1,...,n}, |C| = en,
and for each ¢ € C the symbol s; can be modified to any one of five symbols (this includes not
changing s; which accounts for the possibility of modifying less than en positions). That is, there
are

(;) - 5en < 9((1+o(1)-H(e)+(l0g 5)-¢)n (12)

20

possible ways to modify the string.

For each string s in the support of NEG,, and for each C C {1,...,n}, |C| = n/4 and
t € {3 U {a}}", we say that the pair (C,t) corrects s if the string s() defined as follows is in
PARg: For every i ¢ C, sgc’t) = s;, and for every i € C, 8@(_0,:&) = t;. The probability that a string
generated according to NEG, is e-close to PARj is the probability over the choice of s according to
NEG,, that there exists a pair (C,t) that corrects s. We thus consider any particular subset C' and
a string ¢ and show that the probability over the choice of s that (C,t) corrects s is exponentially

smaller than the number of pairs (C,t). By applying a union bound we prove the lemma.

We shall actually prove a slightly stronger claim. For a fixed choice of (C,t), consider the
process of selecting a string s according to NEG,. Recall that a string s is generated by first
uniformly selecting the sets of parentheses positions L and R, and then randomly setting the types
of parentheses in these positions (according to the choice of the strings 2 and y). We shall show
that for every choice of L and R, the probability, taken only over the choice of types of parentheses,
that the resulting string is corrected by (C,t), is sufficiently small. Details follows.

For a given choice of L C {1,...,n/2}, |L| = n/4 and R C {n/2 +1,...,n}, |R| = n/4, let
S(L, R) denote the subset of words in the support of NEG,, that have opening parentheses in the
positions in L and closing parentheses in the positions in R. Then either for every string s € S(L, R)
we have that u; (s(®Y) € PARy, or for every string s € S(L, R), p1(s(“")) ¢ PAR,. In other words,
in the latter case, no matter how the types of parentheses are set in the positions determined by L
and R, the resulting string is not corrected by (C,t). Thus assume from now on that L and R are
such that u;(s(®?) € PAR;. Note that for every s € S(L, R), the matching M (s(C?) is exactly
the same. Let us thus denote it by M (L, R, C,t).!

Let n/24+1<k; <ky<...< kn/s < n be the indices in R in sorted order. Since |C| = en, the
number of indices k; such that either k; € C or k; is matched by M (L, R, C,t) to some £ € C is at
most 2en. Therefore, there must be at least n/8—2en positions k; for i € {n/16+1,...,n/4—n/16},
such that k; ¢ C, and M (L, R, C,t) matches k; to some jy € L such that jz ¢ C. If (C,t) corrects
a string s € S(L, R), then it must be the case that the strings z and y (as defined in the description
of NEG,,) are such that all the above n/8 — 2en pairs of positions matched by M (L, R, C,t), have
the same type of parentheses within each pair. The probability of this event, taken over the choice

of z and y is at most 27 (n/8—2en)

Since the above is true for every L and R (such that u;(s(©*) € PAR, for every s € S(L, R)),
we obtain a bound on the probability that the given (C,t) corrects a string s generated according
to NEG,,.

Applying Equation (12), which gives a bound on the number of choices of (C,t), we see that if
we select € so that (H(e) + (logb) - €) is sufficiently smaller than (1/8 — 2¢), then we are done. A
choice of e =1/64 willdo. W

The following simple claim will be useful. It states that with sufficiently high probability over the
choice of a string generated by one of the two distributions defined above, the parenthesis index of
every position does not deviate by much from its expected value.

Claim 14 With probability at least 7/8 over the choice of a string s according to POS,, (similarly,
NEG,,), for every 1 < j < n/2 such that s; is an opening parenthesis, and for everyn/2+1 <k <n

1 This matching clearly does not depend on the type of parentheses in ¢ but only on whether they are opening or
closing parentheses, but for simplicity we denote it as if it depends on t.

21

such that sy is a closing parenthesis,

n/2—j

ms(j) — < /logn - min{(n/2 — 5), 4}

and
(k) — ’“_T”/Q‘ < Viogn - min{(k = n/2), (n B}

Proof: We prove the claim concerning 1 < j < n/2. The second claim concerning n/2 < k < n is
proved analogously. Let as fix an index j and assume, without loss of generality, that j < n/4, so
that min{(n/2 — j),j} = j. Recall that for any string in the support of NEG,,, the total number
of opening parentheses among the first n/2 positions is exactly n/4. Hence, 75(j) deviates by more
than /logn - j from "/QT_J if and only if the numbqr of opening parentheses in s among the first
J positions deviates by more than v/logn - j from % (the expected number of parentheses). The
probability that there are at most 4 — v/logn - j parentheses in these positions is

GO BTG

0 /(g) R INCIE T
AT

= 0% -n2.279) = O(n?) (13)

Similarly, the probability that there are at least % + vlogn - j parentheses in these positions is
O(n~2) as well. By applying a union bound over all positions j, we get that the probability that
there is a large deviation from the expection for any of the indices is O(n~1), which for a sufficiently
large n is smaller than 1/8. W

5.2 On Distinguishing POS,, from NEG,

Let A be a possibly randomized testing algorithm for PAR that asks at most an!/!! /log n queries
for @ < e~7. We consider two randomized processes that interact with A. The distribution on
answers provided by the first process, denoted Pp(sg, is equivalent to those obtained from querying
a string that is randomly generated according to POS,,. Similarly, the distribution on answers
provided by the second process, denoted Pnrg, is equivalent to those obtained from querying a
string that is randomly generated according to NEG,,. In particular, at any stage of the interaction,
each process considers the set of strings that are consistent with the interaction so far. Given a new
query, the probability distribution on the answer is determined by the relative fraction of strings
in the set that are consistent with that answer (because both distributions are uniform over their
support). While we won’t be able to compute these probabilities exactly, we shall be able to bound
them, and this will suffice for our proof.

5.2.1 The Process Ppos-

We start by describing Pppsg. At each step of the interaction the process maintains the set of
positions already queried by the algorithm, and the answers it has provided (that is, what is the

22

symbol in each queried position). In addition, the process Ppog maintains a subset, denoted
MATCHED, of disjoint pairs (j,k) of previously queried positions, where 1 < j < n/2, n/2+1 <
k < n, and both positions were answered by parentheses having the same parenthesis index (as
explained next). With each such pair it associates a common parenthesis index 1 < 7 < n/4. The
final generated string s will be such that for every pair (j, k) € MATCHED, 75(j) = ms(k) = 7, and
for any other two queried positions j', k' such that (j',k") ¢ MATCHED, 7(j') # ms(k'). We stress
that the process only “commits” to the parenthesis index of a subset of pairs of queried positions,
and not to the parenthesis index of every queried position that is answered by a parenthesis.

Before continuing with the description of the process, we introduce two definitions. The first
definition is of the query-answer history of an interaction between a testing algorithm and the
process Ppog- This history contains the positions queried by the algorithm and the symbols that
the process returns as answers. In addition it includes the information concerning queried positions
that the process decides to match. Clearly, in an actual execution of the algorithm such information
is not provided directly. However, it is also clear that giving this extra information to the algorithm
can only help it.

Definition 17 (Query-Answer History) The query-answer history h at time T is a sequence of
T triples (qu;,ans;, may),. .., (qup, ansy, may) such that for every 1 <i < T the following holds:

e The query qu; s an indez in 1,...,n.
e The answer ans; is either an ‘a’ or a parenthesis.

e The matching information ma; is either NO-MATCH or a pair (quy,m;) where i’ < i, and
m € {1,...,n/4}. In the latter case (quy,qu;) € MATCHED, with the associated parenthesis
index ws(quy) = ms(qu;) = ;. In the former case there is no quy, i’ < i such that (quy,qu;) €
MATCHED. In particular, if ans; = ‘a’, then necessarily ma; = NO-MATCH.

We note that if for some 7 the matching information ma; is NO-MATCH then it only means that
qu; is not matched to any previous query qu; where i’ < 7. It is possible that there may be a
subsequent query qu;» where 3" > i such that (qu;,qu;») € MATCHED.

Definition 18 (Compatibility) We say that a string s of length n and a history h =
(quy,ans;,maq), ..., (quy, ansp, may) are compatible if the following holds:

1. For every 1 <1 <T, squ, = ans;;
2. If ma; = (quy,m;) for i <i, then ms(qu;) = ms(quy) = 7.
3. If ma; = NO-MATCH then for every i’ < i such that ans; is a parenthesis, ws(qu;) # 7s(quy).

The set of strings in the support of POS,, that are compatible with h is denoted by S(h).

Given a new query qup,; following a history h = (quy,ans;,mai),...,(quy,ansr, mar), we
would like to determine the distribution on ansy,; and mag, 1, conditioned on the history. Since
POS,, is uniform over its support, the response provided by the process is determined by the relative
fraction of strings in S(h) that are consistent with each possible response. We thus partition S(h)
into disjoint subsets as follows:

23

Definition 19 Let S%(h,qup,) denote the subset of all strings s € S(h) such that sq.,., = ‘a’,
and let SP* (h,quy, 1) denote the subset of all strings s € S(h) such that sq,.,, is a parenthesis.

For every 1 <7 < nf/4 and 1 < i < T, let S™i(h,quy,) denote the subset of all strings
s € SP9(h,qup,q) such that ms(qur,y) = ms(qu;) = 7, and let S™ ™ (h, qur,) denote the
subset of all strings s € SP*" (h,quy, 1) such that ms(quy) # 7s(qu;) for every 1 <i < T.

Note that there may exist 1 <7 <n/4 and 1 <i <T, such that the set S™%i(h,quy,) is empty
due to the compatibility requirement with h.

The Distribution on Pppg’s answers. Given the above definition, the probability that ansy

a par
is an ‘a’ is %, and the probability that it is a parenthesis is %. Conditioned

on it being a parenthesis, Ppog needs to determine its type, and it needs to determine magq (if
ansy41 is ‘a’ then necessarily mar,; is NO-MATCH).

For each such qu; where 1 < i < T and for each 1 < 7 < n/4, the probability that mar; =

(qu;,) is % The probability that mary; = NO-MATCH, conditioned on position

[Smommateh (b quyyy)|
|SpaT(haquT+1)|

determine anspi1: If map,; = (qu;,7) for some 1 < 4 < T, then anspy; is a parenthesis of the
same type as ans;. If mar;; = NO-MATCH then one of the two types of parentheses is selected

with equal probability.

qup,; being a parenthesis, is . Finally, after determining magz; the process can

5.2.2 The Process PNrG-

The process Pxeg is almost identical to Ppog. Here too, for every history A of length 7" and new
query qup, 1, PNEg considers the set S(h) of strings in the support of NEG,, that are compatible
with h, and the corresponding subsets S®(h, qur,,) and S™(h,qup,) C SP* (h,qup, ;) which
are defined analogously to the way that they were defined above. Given these subsets, the proba-
bility that the answer ans7 is set to ‘a’ or is a parenthesis whose type is yet to be determined,
is the same as described for Pppg, and the same holds for the setting of magz;. The difference
between the two processes is in the choice of the type of parenthesis, in case the process decides
that ansyy; is a parenthesis that is matched to a previous query. Suppose that mari; = (qu;, 7)
for some 1 <4 < T. Then the setting of ansy;; depends on 7: If 7 is non-significant, then ansy, is
of the same type as ans;, and if 7 is significant, then one of the two types of parentheses is selected
with equal probability (as in the case of NO-MATCH).

Thus the two processes differ only in the way they answer queries whose position is matched to a
previously answered query, and the common parenthesis index is significant. Therefore, conditioned
on the history containing no such match, the two corresponding distributions on query-answer
histories are exactly the same.

5.3 Interacting with Ppos (and Pneg)

The next lemma is central to the proof of Theorem 3. In the lemma and in all that follows we
assume that the testing algorithm A receives, for each query qu; it asks, not only the answer
ans; but also the matching information ma;. Clearly, any lower bound that holds also under this
assumption also holds when the algorithm is not provided with this extra information.

24

" and

Lemma 15 Let A be an algorithm that asks at most om,l/n/logn queries for a < e~
is provided, for each query qu;, with an answer ans; and the matching information ma;, gen-
erated by Ppos (similarly, Pxgg). Consider the distribution on query-answer histories h =
(quq,ansy, maq),. .., (quy, ansy, may) for T < anl/n/logn, that is induced by the random de-
cisions of A and Ppos (similarly, Pxgg). Then the probability that there exists an index 1 < i <T

such that ma; = (quy, ™) where i' < i and 7 is a significant parenthesis indez, is at most 1/4.

Proof: We shall refer to a match as described in the lemma, as a successful match. Since as long
as a successful match does not occur, the two processes behave exactly the same, it suffices to prove
the lemma for one of them. Let this process be Ppos.

We shall break the interaction between A and Ppos into phases. A phase ends whenever
the process responds with a match between the newly queried position and a previously queried
position. We may assume, without loss of generality, that once the algorithm views a match between
positions 1 < j < n/2 and n/2 + 1 < k < n with parenthesis index m < n/16, then it does not
ask any additional queries in the intervals [j,n/2] and [n/2 4+ 1,k]. Similarly, if the match has
parenthesis index m > n/4 — n/16, then the algorithm does not ask any additional queries in the
intervals [1, j] and [k, n].

Hence, as long as a successful match does not occur, at the end of each phase we either have a
new match 7 < n/16 that is greater than any previous match 7' < n/16, or we have a new match
m > n/4 —n/16 that is smaller than any previous match 7' > n/4 — n/16. We next define the
progress that a new query can make in terms of getting a new match that is closer to the significant
range [n/16 +1,n/4 —n/16].

Definition 20 (Progress) Let h = (qu;,ans;, may),..., (qup,ansy, may) be a given history that
does not contain a match in the significant range, and let wo(h) be the mazimum over all m; < n/16
such that ma; = (quy,m;) for some i’ < i. If no such match ezists then mo(h) = 0. Similarly, let
mo(h) be the minimum over all m; > n/4 —n/16 such that ma; = (quy,;), where if no such match
exists then my(h) = n/4 + 1. Let z be a given integer. We say that a new query qup,, makes
progress x if:

1. anspy1 € {(,[,),]} for some j <T (the new query is answered by a parenthesis).

2. mayqq = (quj,7rT+1) for some 1 < j < T (the new query is matched to a previously queried
position), where i1 > mo(h) +z and 7wy < wj(h) — .

—~
—
~
~
—
~
—
—
—
~—

—~
—
—
—~
—~
—
—~

AT~

J0\/k0 ql++1
_U

Try>% To+X

Mo

Figure 3: An illustration for Definition 20 and Claim 15.1. The new query, qu;,; is matched
to an opening parenthesis on the left side of the string. Here jy, k¢ and mg, stand for jo(h),
ko(h) and my(h), respectively.

25

The following claim is central to the proof of Lemma 15, and will be proved subsequently.

Claim 15.1 Let h = (qu;,ans;, may),..., (qQup,ansy, may) be a query-answer history h of length

T < an/™ [logn and let wo(h) and h(h) be as in Definition 20. Let (jo(h), ko(h)) and (55 (R), kb (h)),
where jo(h), jo(h) < n/2 and ko(h), k{(h) > n/2, be the corresponding pairs of matched queried po-

sitions having parenthesis index mo(h) and w(h), respectively. Suppose that mo(h) < n/(4logn),

and that mo(h) does not deviate by more than \/logn - min{(n/2 — jo(h)), jo(h)} from M and
by more than \/logn - min{(ko(h) — n/2), (n — ko(h))} from M Suppose that an analogous

bounds hold for wy(h). Then for any possible new query qur,, € {1,...,n}, the probability that the

new query makes progress at least n10/11’ is at most n~ /1L,

Completing the proof of Lemma 15. Recall that for every algorithm A, the distribution on
answers provided by Ppog is identical to those obtained from querying a string that is randomly
generated according to POS,,. By Claim 14, the probability that a string generated by POS,, does
not obey the inequalities in Claim 14 is at most 1/8. Hence, for any length of interaction, the
probability that there exists a stage at which either my(h) or m((h), as determined in that stage
for the current history h, deviate by more than the claim allows from their expected values, is
at most 1/8. Conditioned on such an event not occurring, we can apply Claim 15.1 as long as
mo(h) < n/(4logn) and wh(h) > n/4 —n/(4logn). If the algorithm performs at most an'/!!/logn
queries, and in each it in fact makes progress at most n'®/!', then mo(h) and 7}(h) will be as
required by Claim 15.1 prior to each query. Hence, by applying Claim 14 and Claim 15.1, if the
algorithm asks at most ant/1t /log n queries, then the probability that it obtains a successful match
is at most
1/8 4 an'/*/logn -n Y1 < 1/8 + a < 1/4.

Lemma 15 follows. W

It thus remains to prove Claim 15.1.

5.3.1 An Intuitive Discussion of the Validity of Claim 15.1
Assume first, without loss of generality, that the following conditions hold:

1. qup,q > n/2, and in particular, ko(h) + n'%! < qugy; < Kh(h) — n'%! (or else clearly the
algorithm cannot make sufficient progress).

2. qupy; —ko(h) < ky(h) — qupy so that qup, is closer to ko(h) than to kj(h).

The probability that quy, ; makes progress at least n'9/11 ig the probability, conditioned on a string

s generated according to POS,, being compatible with h, that for some query-position qu; < jo(h),
we have m,(qu;) = ms(quyy).

In order to bound this probability, suppose we generate s by first randomly selecting the set
L of all n/4 parentheses positions on the left half of the string, in a manner consistent with the
history h. Each such choice of L determines the parentheses indices of all gueries on the left half of
the string that were answered by parentheses. Denote the set of parentheses indices corresponding
to the query positions by II(L). Next we consider the selection of the parentheses positions on the
right half of the string, once again in a manner consistent with the history h. In particular, in order
to be consistent, the number of parentheses positions selected between ko(h) and kj(h) is exactly
n /4 — (mo(k) + Th(R)).

26

Fixing I, consider each index 7 € TI(L), where there are at most an'/''/logn such indices.
The probability that ms(quz, ;) = 7, taken over the selection of parentheses positions on the right
half of the string, is the probability that there are ezactly m — mo(h) parentheses between kq(h) and
qur, (including quy,), and exactly ng(h) — 7 parentheses between quy; and ky(h).

For the sake of this discussion, let us now make the following simplifying assumption by which we
shall lose generality. Suppose that there is no query qu;, 1 < i < T such that ky(h) < qu; < kj(h).
That is, qupq is the first query in this region. Consider in this case the selection of parentheses
positions on the right side of the string, and in particular the selection of n/4 — (mo(h) + m(h))
positions between ko(h) and kgy(h). Since there is no conditioning on the way these parentheses
are allowed to be distributed (as there are no other queries in this region), it is not very hard
to verify that the probability that there are m — mo(h) parentheses between ko(h) and qur,; and
mo(h) — m parentheses between quy,; and kj(h) is relatively small. In particular, it is of the order
of 1/v/(quyy; — ko(R)) < n %/t

In general there may be up to an'/!'/logn queried positions between ko(h) and kj(h) that
in particular may contain parentheses, and we must select s conditioned on these positions not
matching any queried position on the left hand side. Hence our argument is more complicated.

5.3.2 Proof of Claim 15.1

We need to show that among all strings compatible with the given query-answer history h, the
fraction of strings in which the new query qup,; makes progress of at least n'9/11 s at most
n~Y/1". Recall that we assume that the history h does not contain any match in the significant
region. We may assume without loss of generality that quy,; > n/2 and that Ppog decides that
this position should contain a parenthesis (or else clearly no progress is made). In order to simplify
our presentation, we also assume that n((h) = n/4 + 1, that is, the history does not contain any
match m; > n/4 —n/16. It is not hard to verify that while this simplifies the already cumbersome
notation involved, removing the assumption does not change the essence of the argument.

For a given history h and a new query quy_; > n/2, consider all the strings that are compatible
with h and have a parenthesis in position qu, ;. That is, consider the set SP*"(h, qur, 1) as defined
in Definition 19. Then

Z’]T>7l’0 h)+n10/11 Zl<i<T |‘S ’ l(h’7 quT—|—1)|
>mo(h) 1S
|‘S T(hu quT—|—1)‘

Prlquy,; makes progress n'%/! | h] < (14)

(where S™9% (h,qup,) is also defined in Definition 19). To this end it will be convenient to use
a finer partition of SP*"(h,qus,), since it will be easier for us to relate the sizes of the subsets
in this partition. In particular, the strings within each subset have the following in common: The
subset L of n/4 parentheses positions in the left half of each string is the same for all strings in the
subset. Furthermore, the substring sy ko(n) (Where jo(h) and kq(h) are as defined in Claim 15.1)
is also the same for all strings in the subset. A formal definition follows.

Definition 21 Let h, quy,, mo(h), jo(h), and ko(h) be as defined in Claim 15.1, and assume
that quypy > n/2 and my(h) = n/4+ 1. Let w be a fized substring of length ko(h) — jo(h) + 1,
and let L' C {1,...,j0(h) — 1}, |L'| = n/4 — mo(h) be a subset of parentheses positions. We define
SP(h, quy, 1, w, L) to be the subset of all strings in SP*" (h,qur,,) such that:

1. 8j5(h) ko(h) = W5

27

2. For every j € L', s; is a parenthesis, and for every j € {1,...,jo(h) — 1} \ L', the symbol s;
is an ‘a’.

Note that there may exist L' and w for which SP%"(h,quyq,w, L") is empty.

w
minAin) AlAMMmMm (Y 1Y 9 1 Y]
S = == U= = R G A I 1 1
o ko QUr41
Ty

Figure 4: An illustration for Definition 21. The asteriks on the left half of the string represent
the selected positions in L' (that include in particular all queries positions that were answered
by parentheses). The question mark on the right represents the position of the new query,
qur,,. Here jy, ky and g, stand for j,(h), ko(h) and mo(h), respectively.

Observe that for a fixed w and L’ and for every qu; < n/2 (such that ans; is a parenthesis), 75(qu;) =
mg(qu;) for every s,s' € SP%(h,quyq, w,L'). This is clearly true for every jo(h) < qu; < n/2,
since sy (h),n/2 is completely determined. As for qu; < jo(h), the parenthesis index of qu; is simply
mo(h) + {7 € L', j > qu;}|. In the next definition we consider subsets of SP%"(h,quy 1, w,L') in
which for all strings s in the subset, m4(quy, 1) = 74(qu;) for some qu; < jo(h) (as determined by
L' and).

Definition 22 Let h, qur,, mo(h), jo(h), and ko(h) be as defined in Claim 15.1, and assume that
qury; > n/2 and my(h) = n/4+ 1. Let w and L' be as in Definition 21. We denote by II(L')
the set of parentheses indices of query-positions qu; < jo(h) that is induced by L' (and mo(h)).
For each © € II(L'), let S™(h,qup,(,w,L") C SP(h,qup,,w, L") be the subset of strings in
SPAT (h, quy, 1, w, L") such that position qup,, has parenthesis indezx .

Note that by definition of II(L'), each 7 € II(L") corresponds to a unique query position qu; < jo(h).
Recall that S™9%(h,quy, ;) denotes the set of all strings compatible with A in which qup,; is
matched with qu; and both are assigned parenthesis index 7. Hence, for each 7 € II(L') there
exists a unique qu; such that S™(h,quy 1, w,L") C S™i(h,quyy,).

Claim 15.2 For every h, quy,y, w, and L' as in Definition 21, and for every = € II(L'),
7 > mo(h) +nlo/11,
|S™ (h, quyy 1, w, L')| < 1 .p—2/11

|Spar(h’quT+lawaL,)| «

Before proving Claim 15.2, we apply it to obtain Claim 15.1. By definition, SP*"(h,qup,) =
U SP" (h, qupy g, w, L'). The subset of strings in SP*"(h, quy,) in which qup; makes progress
n'0/11is the union over 7 > mo(h) + n'%!" and over all qu; < T of the sets S™% (h, qur,q). This
in turn (by our observation following Definition 22), is equivalent to the union over all w, L' and
7 € I(L') such that 7 > mo(h) +n'%', of the sets S7(h, qur, 1, w, L'). Since these sets are disjoint
and since |TI(L')| < an'/*'/logn, using Equation (14) we get

Pr[qur,; makes progress n'o/1 | B

28

ZL’,w EweH(L’), w>mwo(h)+nl0/11 |S7r(ha qupy1, W, L')|

<
B ZL’,w ‘Spa'r(h’ qur1, W, L,)‘
Zﬂ'EH(L’), 7r27r0(h)—|—n10/11 |Sﬂ—(ha qQuz,1, W, L,) ‘
< max
L'yw ‘SP‘"(h, quT+1,w,L’)|
1
< |H(LI)‘ L. n—2/11 < n—l/ll (15)
(6

Claim 15.1 thus follows from Claim 15.2. N

5.3.3 Proof of Claim 15.2

Since h, qur, |, w and L' are fixed, we remove them from our notation. Namely we let o = mo(h),
Jo= jO(h)a ko = ko(h), = H(LI), S = Spar(haquT—f—l,waLl)a and S = Sﬁ(haquT—f—lawaLl)' Since
the claim should hold for every m € IL, 7 > mo(h) +n'%!", let us fix such a 7. Recall that we have
assumed without loss of generality that quy,; > n/2.

We start with a description of the underlying idea of the proof. One basic approach to proving
that S™ is relatively small with respect to S, is to define a one-to-many mapping from strings in
ST to relatively large subsets of strings in S. The mapping should be such that different strings in
S™ are mapped to different disjoint subsets of S. Our argument will be in similar vein: Instead of
mapping strings to subsets of strings, we do the following. We first partition S into disjoint subsets,
such that each subset U in the partition is either contained in S™ or is contained in S\ S™. We
then map each subset U C S™ in this partition to a relatively large collection of disjoint subsets
{U;} of S. We shall show that:

1. For every such subset U C S™ and for all but a small fraction of the U;’s in the corresponding
collection {U;}, the size of each Uj; is of the same order as the size of U.

2. There exists a family U of subsets U C S™ in the partition, such that

(a) For every two subsets U,U’ € U, the respective collections {U;} and {U]} are disjoint
(that is, for every 4,7, U;NU; = 0).

(b) |Uyey U] is relatively large (compared to all of ST).

More details follow.

Defining the Partition of S. Let k; <... < k; be all positions of queries in A including qu;, 4
that are greater than kg and were answered by parentheses, where quy,; = k; for some 1 <¢ <.
We assume without loss of generality that k — ko < n — k; (the case in which k; is closer to n than
to ko is symmetric). Recall that kg is the queried position on the right half of the string having
the largest matched parenthesis index where the matched position is jo < n/2. Hence, with the
possible exception of k;, no k; > ko is matched to any queried position qu, < n/2. Since II is the
set of all parentheses indices of queried position qu, < jp that is induced by L/, we have that for
every string s € S, for every k; # k; and for every 7 € II, m,(k;) # 7.

We partition S into disjoint subsets according to the number of parentheses between every two
positions k;_1 and k;. For ¢ = 1,...,7r + 1, let b = k; — k;_1 — 1 be the number of positions
(strictly) between k;_; and k;, and let ¢; be the number of queries between k; and k;—1. That
is, q; = \{quj tokicl < quy < k;}|. Since the k;’s were defined to be the query positions that

29

were answered by parentheses, all the query positions strictly between k;_; and k; were necessarily
answered by an ‘a’.

Given the above notations b; and g¢;, for every string s € S and for every 1 < ¢ < r + 1, the
number of parentheses between positions k;_1 and k; ranges between 0 and b; — ¢g;. Recall that
each such string contains a total of n/4 parentheses among positions n/2 + 1,...,n, where there
are my parentheses among positions 1,...,kg, and r parentheses in positions ki,..., k.. Hence
the total number of parentheses between the k;’s is n/4 — r — my. We shall partition the strings
in S according to the number of parentheses they have between every consecutive k;_; and k;.
Specifically, consider any sequence D = d;,...,d,4+1 that satisfies the following constraints:

Cl. Forevery 1 <¢<r+1, we have 0 < d; <b; — ¢;;
C2. Yitld; =n/4 —r —m.

Let S(D) denote the subset of words in S such that for every 1 < ¢ < r + 1, there are exactly d;
parentheses in positions k;_1 < k < k;.

Note that given 7y, the sequence D determines the parenthesis index of every k;, and in par-
ticular of k. Specifically, the parenthesis index of k; in every string in S(D) is mp + EKQ (di +1).
The reason we add 1 to each d;, ¢ < j, is that we need to account for the parentheses in the queried
positions ki, ..., k;, where d; is the number of parentheses strictly between these positions. Thus,
if D determines that the parenthesis index of some k; # k; is in II, then S(D) is empty, since
there is no string compatible with A such that the number of parentheses between the k;’s is as D
designates. Otherwise, S(D) is non-empty, since all other compatibility requirements are obeyed.
In this case either S(D) C S™ if 1o+ Y, c;cp(di +1) =7, or S(D) C S\ S”.

If S(D) is non-empty, then the number of strings in S(D) depends on: (1) The number of ways
to select d; positions for parentheses among the b; — ¢; available positions between k; 1 and k; for
every 1 <i <r+1, (2) The number of ways to set the types of the parentheses in the selected
positions (that do not correspond to previous queries) on both sides of the string.

Specifically, for any fixed sequence D = di,...,d,+1 that satisfies conditions C1 and C2, the
total number of ways to select d; positions for parentheses between k;_1 and k;, for every 1 <4 <
r + 1, is simply HTJrl (b ql) Recall that the set of positions L’ of all parentheses positions to the
left of Jo is already fixed for all strings in S, and that assuming S(D) is non-empty, the parenthesis
position of each k;, 7 # t differs from the parenthesis position of each of the |II| positions qu; < jo
that were answered by a parenthesis. Therefore, the number of ways to set the types of parentheses
in the selected positions to the left of jo and to the right of k¢ (including k) is either on/4—(mo+ Il +)
or 2n/4=(mo+[I[+r=1) "The first value corresponds to the case in which the parenthesis index of k; is
not in IT (and so the type of parenthesis in position &; is not determined), and the second value to
the case in which the parenthesis index of k; belongs to II. Given the above discussion,

[t SR b — g
(1 (%, 7)) -aevemmcnn < sy < (T (%, 7)) -2ormammer

i=1 =1

Defining the One-to-Many Mapping from each S(D) C S™ to subsets in S. Consider any
fixed sequence D = di,...,d,;1 that satisfies conditions C1 and C2 and such that S(D) is non-
empty and S(D) C S™. Let m = n*/11 and suppose that there exist two indices, 1 < u < t and
t+1<wv <r+1such that d, < b, — g, —m and d, > m. Then, for every 1 < g < m, we consider
the subset of all strings that result from taking a string in S(D) and “moving” g parentheses from

30

the interval between k,_1 and k, to the interval between %k, 1 and k,. More precisely, for each
such g we define the subset S(D,) of strings that correspond to the sequence

Dg=d1,...,du_1,du—|—g,du+1,. dv 1,d g,dv+1,...,d,«+1, (17)

where the d;’s on which D and D, differ are underlined. As we shall show momentarily, all but a
relatively small number of these m = n*/11 gubsets are non-empty. Furthermore, under somewhat
stronger conditions on d,, and d,, each of these subsets is not much smaller than S(D). Finally we
show that for every D' # D such that S(D') C S™, the subsets Dy that are defined analogously to
the Dgy’s in Equation (17) are all disjoint from the Dy’s. More details are next provided. Recall
that D is fixed, and so the following holds for every D such that S(D) C S™.

Properties of the Mapping from D to the D,’s.
P1. For all but at most (r — 1) - |TI| < a?n??/log?n of the D,’s, S(Dy) # 0.

This is true since for every k; # k¢, the number of indices g such that m4(k;) € II for some string
s € S(D,), is at most |TI| < an'/*'/logn, and the number of k;’s is r — 1 < an'/!!/log n.

P2. For every D' # D such that S(D') is not empty and S(D') C S™, the sequences D},..., D/,
all differ from D1, ..., Dy,.

To verify this, assume in contradiction that for D' # D, D' = dj,...,d;, we have Dy = Dy,.
That is, d; = d} for every i # w,v; d, +9 = d;, + ¢'; and d, — g = d}, — ¢’. But, since
St di=Yt ld; =7 —my—t, we have g = ¢/, and so D = D'.

P3. For every Dy such that S (D) is non-empty, if

dytm< =9 L BHTT0S and dy—m > 2 2q 3(by — by) (18)
then 15D 2 e I5(0).
To verify this, consider the ratio |S(Dy)|/|S(D)|. By Equation (16) this ratio equals at least
bu* u bvf v
(du—i—qg) ’ (d,,—qg)
bu* u bvf v
(duq) ' (dvq)
Let us lower bound (% %)/ (b“d;q“) A lower bound on (IZ’)/ (% 4 %) is obtained similarly. If

dy+g g

dy+9 < (by —qu)/2 then (b(;u?;) > (b“duq“) and we are done. Otherwise, d, +¢ > (b, —qu)/2,

but by our assumption on d, in Equation (18), we also know that d, + g < (by — qu)/2 +

3(by — qy). On the other hand, (b“ q”) < ((b:“_;%/z), and so

— bu—qu
(b;u‘f'qgu) > ((bu_qu)/2+ V3 bu_(Iu))
(bu_qu) = (bu—qu)
du (bu qu)/2
Let us denote b, — g, by b. Then the expression we have is:

(bj2ivas) Hm‘l(b/%') I i (2/)

b2 IIP02+9) %0+ - (2/8))
_) V/3b

> [eXp(_?Z/b)) = exp|-(6/0)Y i) > e (19)
Hz % exp(3i/b) i=1

31

Clearly the above can be extended to the case in which the roles of v < ¢ and v > t are reversed:
that is, D is such that

dy—m > > @ _ \/3(by — qu) and dy +m < b%q +1/3(by — by). (20)

In this case the D,’s are defined the same as in Equation (17) except that d,, is decreased by g and
dy is increased by g,

Defining Families of Subsequences D. If there existed one fixed choice of 4 and v for which
the constraints on d,, and d, described in Equation (18) or in Equation (20) were valid for every
D such that S(D) C S™, then we would be essentially done with our proof. While this is not the
case, we shall show that there exists a choice of u, v for which the sum of the sizes of the sets S(D)
such that D obeys the constraints in one of the two equations is relatively large. This will suffice
for our purposes. (Note that if we allow different choices of pairs (u,v) then the disjointness claim
in Property P2 does not necessarily hold.)

Let

D, %ef {D: Equation (18) holds for d,, and d, } (21)
and

D,’, def {D: Equation (20) holds for d,, and d, } (22)
Let

def

Duw = Dy UDZU and ﬁu,v = {Dg: De Du,v}

u,U

Then by Properties P1-P3,

U sy = > 18Dy = > 1S(Dy)]

Dy€Dy, 0 Dy€Dy, 0 Dy€Dy,p: S(Dg)#0
> Y (m—a’n??/log’n)-e®|S(D)|
DeEDy
> e 3" |S(D) (23)
DEDy,v

Every D Belongs to at Least one Family D, ,. We next show that for every D such that
S(D) C S™, there exist v < ¢t and v > t such that D € D,,. Let us fix D. By our assumption on
the query-answer history (i.e., the deviation of 7y from its expected value),

k‘o—n/2
2

T —

‘ < y/logn - min{ (kg — n/2), (n — ko)} = /logn(ko —n/2) (24)

where in the equality we have used the assumption that kg is closer to n/2 than to n. Let

r+1

1
xziz;bi—(n/él—r—wo)
1=

What does z measure? Recall that Z:;Lll b; is the number of positions between ky + 1 and n that
have not been queried, and amongst which it remains to select Z:ill d; = (n/4 — r — my) positions

32

for parentheses. Let us refer to these positions as undetermined. Since the overall number of
parentheses in the right half of the string is exactly half the total number of positions in that
half, £ measures the deviation from the expected value amongst the undetermined positions. By
definition, Y71 b; = n — 7 — k. Therefore, z = n/2 — /2 — ky/2 — n/4 + 7 4+ mp. Combining this
equality with Equation (24) we get

—Vlogn(ko —n/2) +71/2 < z < +/logn(ky —n/2)+1/2

Let
1 t 1 r+1
371:52;[%—(”—75—%) and wgzﬁ.;lbi—(n/él—(r—t)—w)
1= 1=

Recall that we are considering a setting D such that S(D) C S™. That is, for every s € S(D)
we have 7s(k:) = m. In other words, there are m — g — ¢ parentheses amongst the undetermined
positions between kg + 1 and k; — 1. Thus z; measures the deviation from the expectation of the
number of parentheses amongst the undetermined positions between ky + 1 and k; — 1. Similarly,
zo measures the deviation from the expectation of the number of parentheses amongst the unde-
termined positions between k; 4+ 1 and n. By definition, 1 + o = z. We consider the following
cases:

1. z1 and z9 have an opposite sign (or at least one of them is 0). That is, there is an “extra
number” of parentheses between ky + 1 and k; — 1 and a “missing number” of parentheses
between k; + 1 and n (amongst the undetermined positions and with respect to the expected
numbers). Consider first the case that 1 > 0 and z2 < 0. Recall that m = n*/11 and that
t<r< anl/n/ log n. Also note that by definition of x we have 7 —t — 71y = % Zle b, — z1.
Therefore,

t
Z(di-f-’m) = (Zd’) +t-m
' i=1

< (m—t—m)+ (an'/1/logn) - n*/
¢
1
= §sz — z1 4+ an® ' /logn
i=1
1
< 3 Z bi + an®/M [logn (25)
i=1
1 (< 1
= o z , 5/11
= 3 (2:(bZ qz)> +3 Zq,-ﬁ-an M logn
1=1 1=1
A
< 3 (Z(bi - qz’)) + (26)
i=1

where Equation (25) follows from our assumption that z1 > 0, and the last inequality is due
to the fact that Zgzl b; > m — my — t (or else there cannot be m parentheses up till position

k), and so
¢

Z(bi —q) > 71 —m — an/ /logn > n'% — an/ /logn.
i=1

33

Similarly, using our assumption that zo < 0 we can obtain

r+1

D (di—m) > % (Z(bi - Qi)> -

1=t+1 i=1

For 1 <i <t let y; = (di + m) — %(bZ — ¢;). Then Equation (26) states that Zle yi <

b (b — g;). Since L y? < L y;)?, it follows that there must exist v < t such
=1 1=1 J4 =1

that y, < /by — gy, or else Zle y? > Zgzl(bi —q) > (Zle yi)?. That is, d, + m <
%(du — qu) + Vby — gy Similarly, it follows from Equation (26) that there exists v > ¢ such

that d, — m > %(bo — qv) — Vby — qy. Therefore, D € Dy ..
If 21 <0 and z9 > 0, then we can similarly show that D € D,?, for some u <t and v > t.

U,V

2. z1 and z9 have the same sign. Consider the case that this sign is negative (the positive case
is dealt with analogously). By definition of z and using Equation (24),

x> —+/logn - (kg —n/2) > —\/logn - 2(mg + y/logn - (n — ko))
Recall that by one of the premises of Claim 15.2, my < n/(4/logn), and so for a sufficiently
large n we have that > —+/(n — ko). Since x1+x2 = x, necessarily, either x1 > —+/(kt — ko)

or Ty > —+/(n — k) (or both). If 21 > —+/(k; — ko) = —+/t + S°t_ b;, then by modifyin,
Vin—k) () i=1 bis y ying

Equation (26) so as to take into account this bound on z1, we can obtain that

t

t t t t
Y (di+m) < % (Z(bz’ - %')) + \ Sobi—a)+y|t+ Y g+ Y (b —a)
i=1 i=1

VAN

i=1 =1 =1

IN

% (Z(bi - Qi)> + \ 3 (b — a:)

=1 =1

and so there exists u < ¢ such that d, +m < %(bu — qu) + v/3(by — gu)- On the other hand,
using x2 < 0 we can apply the same argument as in the previous item to get that there exists
v > t such that d, — m > %(bv — @) — Vby — v, and hence D € Dy .

Finishing the Proof of Claim 15.2. Finally, let ug <t and vy > ¢ be such that > . [S(D)]

is maximized. The number of pairs u < ¢t and v > t is bounded by &?n2?/1! and every D such that
S(D) C S™ belongs to some D, ,. Thus by applying Equation (23), we get

—_

2,2/11
ST oY pen,, . [S(D)
‘ ~ | < DeD g OD < o2n?M - exp(19) op W < 22
5] S ot 15(05)]

Q

where the last inequality is by definition of @ = e~7. We have completed proving Claim 15.2 (and
hence Claim 15.1 and Lemma 15). W

34

5.4 Wrapping Up the Proof of Theorem 3.

Recall that the statistical difference between two distributions D; and D over a finite domain U is
defined as the maximum over all subsets U’ C U, of the difference between the probability weight
of U’ according to D; and the probability weight of U’ according to Dy. As an immediate corollary
of Lemma 15 we thus get:

Corollary 16 For any algorithm A that asks at most oml/ll/logn queries for o < e~ 7, consider
the distributions on query-answer sequences when it interacts with Ppos and Pngg respectively.
Then the statistical difference between the two distributions is at most 1/4.

Assume contrary to Theorem 3 that there exists a testing algorithm A that asks less than
ant/1 /logn queries and accepts with probability at least 2/3 every string in PARj, and rejects
with probability at least 2/3 every string that is 2~6-far from PAR;.

Let Dﬁ 0S and DﬁEG denote the distributions on query-answer sequences when algorithm
A interacts with Pppg and Pygrg respectively. By definition of Ppog, the distribution DﬁOS is
equivalent to the distribution on query-answer sequences resulting from the execution of A on a
string generated according to Ppog (where every such string belongs to PAR3). By our assumption
on A, we thus have

Pr [A(Dﬁos) = accept] >2/3. (28)

Since an analogous statement holds for DﬁEG’ then by applying Lemma 13 we obtain
Pr [A(DﬁEG) = accept] <1-1/3 + exp(—Q(n)) - 1. (29)

But by Corollary 16, if A asks ¢ < an!/! /logn queries, then the statistical differences between
the two distributions is at most 1/4. This implies that

|Pr[.A(D§OS) = accept | — Pr[A(DﬁEG) = accept | < 1/4

But this stands in contradiction to Equations (28) and (29).

5.5 Adapting the Lower-Bound Argument to D,

Given the distributions POS,, /; and NEG,, /5, we define distributions POS!, and NEG/, over strings
in Y9, where now there are two types of parentheses and no additional symbols. For every string s
of length n/2 generated by POS,, ; (similarly, NEG,,), consider the string s’ where each ‘a’ in s is
replaced by a matching opening and closing parenthesis in s’, and each parenthesis in s is replaced by
two parentheses of the same type in s’. The resulting string s’ is generated by POS!, (respectively,
NEG;,) with the same probability that s is generated by POS,,/, (respectively, NEG,,/3). Then it
is not hard to verify that using these two distributions we can obtain the following theorem.

Theorem 4 Any algorithm for testing Do with distance parameter ¢ < 275 (and success probability
at least 2/3) requires Q(n'/™ /logn) queries.

35

References

[AKNS99] N. Alon, M. Krivelevich, I. Newman, and M Szegedy. Regular languages are testable

[BROO]

[GGRYS]

[GROY]

[Har78|
[KMP77]

[Koz97]

[New00]

[PR99]

[Ron00]

[RS96]

[Sch63]

with a constant number of queries. In Proceedings of the Fortieth Annual Symposium
on Foundations of Computer Science, pages 656666, 1999.

M. Bender and D. Ron. Testing acyclicity of directed graphs in sublinear time. In
Proceedings of ICALP, pages 809820, 2000.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. JACM, 45(4):653-750, 1998.

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335-373, 1999.

M. Harrison. Introduction to formal language theory. Addison-Wesley, 1978.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6(2):323-350, 1977.

D. Kozen. Automata and Computability. Springer Verlag, 1997.

I. Newman. Testing of functions that have small width branching programs. In Proceed-
ings of the Forty-First Annual Symposium on Foundations of Computer Science, pages
251-258, 2000.

M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of RANDOM,
pages 85-96, 1999. To appear in Random Structures and Algorithms.

D. Ron. Property testing. To appear in the Handbook on Randomization. Currently
available from: http://www.eng.tau.ac.il/"danar, 2000.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

N. Chomsky M. P. Schotzenberger. The algebraic theory of context-free languages. In
Computer Programming and Formal Languages, P. Braffort and D. Hirschberg, Eds,
North Holland, pages 118-161, 1963.

36

