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1 Introduction

I will discuss the emerging area of algorithms for processing data streams and associated applications, as an
applied algorithms research agenda. That has its benefits: we can be inspired by any application to study
novel problems, and yet be not discouraged by the confines of aparticular one. The discussion will be
idiosyncratic. My personal agenda is to be ascientist, mathematicianandengineer, all in one. That will
be reflected, some times one more than the others. Art, Nature, Homeland Security and other elements will
make a cameo. The tagline is IMAGINE, THINK and DO: one imagines possibilities and asks questions,
one seeks provable solutions and finally, one builds solutions. This writeup will present a little of each
in data streaming. (See Barry Mazur’s book for the imaginaryand Math [65].) The area has many open
problems.

Let me begin with two puzzles.

1.1 Puzzle 1: Finding Missing Numbers

Let π be a permutation of{1, . . . , n}. Further, letπ−1 beπ with one element missing. Paul shows Carole
elements from setπ−1[i] in increasing orderi, one after other. Carole’s task is to determine the missing
integer. This is trivial to do if Carole can memorize all the numbers she has seen thus far (formally, she has
ann-bit vector), but ifn is large, this is impractical. Let us assume she has only a few—sayO(log n)—bits
of memory. Nevertheless, Carole must determine the missinginteger. This starter has a simple solution:
Carole stores

s =
n(n + 1)

2
−
∑

j≤i

π−1[j],

which is the missing integer in the end. Each input integer entails one subtraction. The total number of bits
stored is no more than2 log n. On the other hand, Carole needs at leastlog n bits in the worst case. (In fact,
Carole has an optimal algorithm. Sayn is a power of2 for convenience. For eachi, store the parity sum
of the ith bits of all numbers seen thus far. The final parity sum bits are the bits of the missing number.)
Similar solution will work even ifn is unknown, for example by lettingn = maxj≤i π−1[j] each time.
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Paul and Carole have a history. It started with the “twenty questions” problem solved in [25]. Paul,
which stood for Paul Erdos, was the one who asked questions. Carole is an anagram for Oracle. Aptly, she
was the one who answered questions. Joel Spencer and Peter Winkler used Paul and Carole to coincide with
Pusher and Chooser respectively in studying certain chip games in which Carole chose which groups the
chips falls into and Paul determined which group of chips to push. Joel introduced them to me during my
thesis work. I used them in a game in which Paul put coins on weighing pans (panned them!) [6]. In the
puzzle above, Paul permutes and Carole cumulates. In a little while, they will play other P/C roles.

Generalizing the puzzle a little further, letπ−2 beπ with two elements missing. Most of the students
in my graduate Algorithms class suggested Carole now stores = n(n+1)

2 −∑

j≤i π−2[j] andp = n! −
∏

j≤i π−2[j], giving two equations with two unknown numbers, but Carole can use far fewer bits tracking

s =
n(n + 1)

2
−
∑

j≤i

π−2[j] & ss =
n(n + 1)(2n + 1)

6
−
∑

j≤i

(π−2[j])
2

In general, what is the smallest number of bits needed to identify the k missing numbers inπ−k? Fol-
lowing the approach above, the problem may be thought of as having power sums

sp(x1, . . . , xk) =
∑

i=1···k

(xi)
p,

for p = 1, . . . , k and solving forxi’s. A different but provably equivalent method useselementary symmetric
polynomials. The ith such polynomialσi(x1, . . . , xk) is the sum of all possiblei term products of the
parameters, i.e.,

σi(x1, . . . , xk) =
∑

j1<...<ji

xj1 · · · xji
.

Carole continuously maintainσi’s for the missingk items in fieldFq for primeq ≥ n (and≤ 2n suffices),
as Paul presents the numbers one after the other (the detailsare omitted). Since

∏

i=1,...,k

(z − xi) =
k
∑

i=0

(−1)iσi(x1, . . . , xk)z
k−i,

Carole needs to factor this polynomial inFq to determine the missing numbers. No deterministic algorithms
are known for this problem, but randomized algorithms take roughly O(k2 log n) bits and time [23]. The
power sum method is what colleagues typically propose over dinner. The elementary symmetric polynomial
approach comes from [24] where the authors solve theset reconciliation problemin the communication
complexity model. Thesubsetreconciliation problem is related to our puzzle.

Readers may have guessed that they may be a different efficient solution for this puzzle using in-
sights from error correcting codes or combinatorial group testing. Indeed true. We will later reference
anO(k log k log n) bits and time solution; in contrast, no algorithm can useo(k log(n/k)) bits in the worst
case.

It is no coincidence that this puzzle contains elements of data stream algorithms. Generalize it: Paul
presents a multiset of elements1, · · · , n with a single missing integer, i.e., he is allowed tore-present integers
he showed before; Paul presents updates showing which integers to insert and which to delete, and Carole’s
task is to find the integers that are no longer present; etc. All of these problems are no longer (mere) puzzles;
they are derived from motivating data stream applications.

1.2 Puzzle 2: Fishing

Doubtless it will be a more inspiring introduction to data streams if the puzzle was derived from nature. So,
say Paul goes fishing. There are many different fish speciesU = {1, · · · , u}. Paul catches one fish at a time,
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at ∈ U being the fish species he catches at timet. ct[j] = |{ai|ai = j, i ≤ t}| is the number of times he
catches the speciesj up to timet. Speciesj is rare at timet if it appears precisely once in his catch up to
time t. Therarity ρ[t] of his catch at timet is the ratio of the number of rarej’s to u:

ρ[t] =
|{ j | ct[j] = 1 }|

u
.

Paul can calculateρ[t] precisely with a2U -bit vector and a counter for the current number of rare species,
updating the data structure inO(1) operations per fish caught. However, Paul wants to store onlyas many
bits as will fit his tiny suitcase, i.e.,o(U), preferablyO(1) bits.

Suppose Paul has a deterministic algorithm to computeρ[t] precisely. Feed Paul any setS ⊂ U of fish
species, and say Paul’s algorithm stores onlyo(|S|) bits in his suitcase. Now we can check if anyi ∈ S
by simply feeding Pauli and checkingρ[t + 1]: the number of rare itemsdecreases by one if and only if
i ∈ S. This way we can recover entireS from his suitcase by feeding differenti’s one at a time, which is
impossible in general if Paul had only storedo(|S|) bits. Therefore, if Paul wishes to work out of his one
suitcase, he can not computeρ[t] exactly. This argument has elements of lower bound proofs found in the
area of data streams.

However, proceeding to the task at hand, Paul canapproximateρ[t]. Paul picksk random fish species
each independently, randomly with probability1/u at the beginning and maintains the number of times each
of these fish types appear in his bounty, as he catches fish one after another. SayX1[t], . . . ,Xk[t] are these
counts after timet. Paul outputŝρ[t] = |{ Xi[t] | Xi[t]=1 }

k as an estimator forρ. Since

Pr(Xi[t] = 1) =
|{j | ct[j] = 1}

u
= ρ[t]

, we have

Pr(ρ̂[t] ∈ [ρ[t] − ε, ρ[t] + ε]) =
∑

i∈[k(ρ[t]−ε),k(ρ[t]+ε)]

(

k

i

)

(ρ[t])i(1 − ρ[t])k−i.

If ρ[t] is large, say at least1/k, ρ̂[t] is a good estimator forρ[t] with arbitrarily smallε and significant
probability.

As an exercise in doing mathematics while fishing, this misses an ingredient:ρ is unlikely to be large
because presumablyu is much larger than the species found at any spot Paul fishes. Choosing a random
species from1..u and waiting for it to be caught seems an exercise in, well, fishing. We can make it more
realistic by redefining rarity wrt the species Paul in fact sees in his catch. Let

γ[t] =
|{ j | ct[j] = 1 }|
|{ j | ct[j] 6= 0 }| .

As before, Paul would have to approximateγ[t] because he can not compute it exactly using small number
of bits. Following [88], define a family of hash functionsH ⊂ [n] → [n] (where[n] = {1, . . . , n}) to be
min-wise independentif for any X ⊂ [n] andx ∈ X, we have

Pr
h∈H

[h(x) = min h(X)] =
1

|X|
Paul choosesk min-wise independent hash functionsh1, h2, . . . , hk for some parameterk to be determined
later and maintainsh∗

i (t) = minaj , j≤t hi(aj) at each timet, that is, min hash value of the multi-set
{. . . , at−2, at−1, at}. He also maintaink countersC1(t), C2(t), . . . , Ck(t); Ci(t) counts the number of
times the item with hash valueh∗

i (t) appears in{. . . , at−2, at−1, at}. It is trivial to maintain bothh∗
i (t) and

Ci(t) ast progresses and new items are seen. Let

γ̂[t] =
|{ i | 1 ≤ i ≤ k, Ci(t) = 1 }|

k
.
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Notice thatPr(Ci(t) = 1) is the probability thathi(t) is the hash value of one of the items that appeared
precisely once ina1, ..., at which equals|{ j | c[j]=1 }|

|{ j | c[j] 6=0 }| = γ[t]. Hence,γ̂[t] is a good estimator forγ[t]

providedγ[t] is large, say at least1/k. That completes the sketch of Paul’s algorithm.
It is ironic that Paul has adapted the cumulating task in the solution above, which is traditionally Carole’s

shtick. But we are not done. Paul needs to pickhi’s. If Paul resorts to his tendency to permute, i.e., picks
a randomly chosen permutationπ over [u] = {1, . . . , u}, thenhi’s will be min-wise hash functions. And
he will be done. However, it requiresΘ(u log u) bits to represent a random permutation from the set of all
permutations over[u]. Thus the number of bits needed to store the hash function will not fit his suitcase!

To overcome this problem, Paul has to do some math. He picks a family of approximatemin-hash
functions. A family of hash functions,H ⊂ [n] → [n] is calledε-min-wise independentif for any X ⊂ [n]
andx ∈ X, we have

Pr
h∈H

[h(x) = min h(X)] =
1

|X| (1 ± ε).

Indyk [18] presents a family—set of polynomials overGF (u) of degreeO(log(1/ε))—of ε-min-wise inde-
pendent hash functions such that any function from this family can be represented usingO(log u log(1/ε))
bits only and each hash function can be computed efficiently in O(log(1/ε)) time. Plugging this into the
solution above, Paul usesO(k log u log(1/ε)) bits and estimateŝγ[t] ∈ (1 ± ε)γ[t], providedγ[t] is large,
that is, at least1/k. It will turn out that in applications of streaming interest, we need to only determine if
γ[t] is large, so this solution will do.

(As an aside, the problem of estimating the rarity is relatedto a different problem. Consider fishing
again and think of it as a random sampling process. There is anunknown probability distributionP on the
countable set of fish types withpt being the probability associated with fish typet. A catch is a sampleS
of f fishes drawn independently from fish types according to the distributionP . Let c[t] be the number of
timest appears inS ands[k] be the number of fish types that appeark times inS. Consider estimating the
probability of fish typet being the next catch. Elementary reasoning would indicate that this probability
is c[t]s[c[t]]/f . However, it is unlikely that all (of the large number of) fishtypes in the ocean are seen in
Paul’s catch, or even impossible if fish types is infinite. Hence, there are fish typest that donot appear
in the sample (i.e.,c[t] = 0) and they would have probability0 of being caught next, a conundrum in the
elementary reasoning ift is present in the ocean. Letm =

∑

t6∈S pt. The problem of estimatingm is called
themissing mass problem. In a classical work by Good (attributed to Turing too) [35],it is shown thatm
is estimated bys[1]/f , provably with small bias; recall that our rarityγ is closely related tos[1]/f . Hence,
our result here on estimating rarity in data streams is of independent interest in the context of estimating the
missing mass. Those interested in convergence properties of the Good-Turing estimator should see David
McAllester’s work.)

Once you generalize the fishing—letting the numerator be more generally|{ j | ct[j] ≤ α }| for some
α, letting Carole go fishing too, or letting Paul and Carole throw fish back into the sea as needed—there are
some real data streaming applications [19].

Honestly, the fishing motif is silly: the total number of fish species in the sea is estimated to be roughly
22000 and anyone can afford an array of as many bits. In the reality of data streams which I will describe
next, one is confronted with fishing in a far more numerous domain.

1.3 Lessons

I have noticed that once something is called a puzzle, peoplelook upon the discussion less than seriously.
The puzzle in Section 1.1 shows the case of a data stream problem that can be deterministically solved pre-
cisely withO(log n) bits (whenk = 1, 2 etc.). Such algoritms—deterministic and exact—are uncommon
in data stream processing. In contrast, the puzzle in Section 1.2 is solved only up to an approximation using
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a randomized algorithm in polylog bits. This—randomized and approximate solutions—is more represen-
tative of currently known data stream algorithms. Further,the estimation ofγ in Section 1.2 is accurate
only when it is large; for smallγ, the estimatêγ is arbitrarily bad. This points to a feature that generally
underlies data stream algorithmics. Such features which applied algorithmicists need to keep in mind while
formulating problems to address data stream issues will be discussed in more detail later.

2 Map

Section 3 will describe the data stream phenomenon. I have deliberately avoided specific models here
because the phenomenon is real, models are the means and may change over time. Section 4 will present
currently popular data stream models, motivating scenarios and other applications for algorithms in these
models beyond dealing with data streams.

Section 5 abstracts mathematical ideas, algorithmic techniques as well as lower bound approaches for
data stream models; together they comprise the foundation of the theory of data streams that is emerging.
This section is right now skimpy, and I will add to it over time. Section 6 discusses applied work on data
streams. It is drawn from different systems areas, and I havegrouped them into three categories which may
be useful for a perspective.

Section 7 contains new directions and open problems that arise in several research areas when the data
streaming perspective is applied. Some traditional areas get enriched, new ones emerge. Finally, in my
concluding remarks in Section 8, I will invoke Proust, show you streaming Art, history, and some notes on
the future of streaming. The most important part of this writeup is Section 9.

3 Data Stream Phenomenon

The web sitehttp://www.its.bldrdoc.gov/projects/devglossary/data stream.htmldefines a data stream to be
a “sequence of digitally encoded signals used to represent information in transmission”. We will be a little
more specific. Data stream to me represents input data that comes at a very high rate. High rate means it
stresses communication and computing infrastructure, so it may be hard to

• transmit(T) the entire input to the program,

• compute(C) sophisticated functions on large pieces of the input at the rate it is presented, and

• store(S), capture temporarily or archive all of it long term.

Most people typically do not think of this level of stress in TCS capacity. They view data as being stored in
files. When transmitted, if links are slow or communication is erroneous, we may have delays but correct
data eventually gets to where it should go. If computing power is limited or the program has high complexity,
it takes long (long longs!) time to get the desired response,but in principle, we would get it. Also, we save
almost all the data we need. This simplified picture of TCS requirements is reasonable because need has
balanced resources: we have produced the amount of data thattechnology could ship, process, store, or we
have the patience to manipulate.

There are two recent developments that have confluenced to produce new challenges to the TCS infras-
tructure.

• Ability to generate automatic, highly detailed data feeds comprising continuous updates.

This ability has been built up over the past few decades beginning with networks that spanned bank-
ing and credit transactions. Other dedicated network systems now provide massive data streams:
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satellite based, high resolution measurement of earth geodetics [118, 113], radar derived meteoro-
logical data [119]1, continuous large scale astronomical surveys in optical, infrared and radio wave-
lengths [117], atmospheric radiation measurements [108] etc. The Internet is a general purpose net-
work system that has distributed both the data sources as well as the data consumers over millions
of users. It has scaled up the rate of transactions tremendously generating multiple streams: browser
clicks, user queries, IP traffic logs, email data and traffic logs, web server and peer-to-peer downloads
etc. Internet also makes it to easier to deploy special purpose, continuous observation points that
get aggregated into vast data streams: for example, financial data comprising individual stock, bond,
securities and currency trades can now get accumulated frommultiple sources over the internet into
massive streams. Wireless access networks are now in the threshold of scaling this phenomenon even
more. In particular, the emerging vision of sensor networkscombines orders of more observation
points (sensors) than are now available with wireless and networking technology and is posited to
challenge TCS needs even more. Oceanographic, bio, seismicand security sensors are such emerging
examples.

• Need to do sophisticated analyses of update streams in near-real time manner.

With traditional datafeeds, one modifies the underlying data to reflect the updates, and real time
queries are fairly simple such as looking up a value. This is true for the banking and credit transac-
tions. More complex analyses such as trend analysis, forecasting, etc. are typically performed offline
in warehouses. However, the automatic data feeds that generate modern data streams arise out of
monitoring applications, be they atmospheric, astronomical, networking, financial or sensor-related.
They need to detect outliers, extreme events, fraud, intrusion, unusual or anomalous activity, etc.,
monitor complex correlations, track trends, support exploratory analyses and perform complex tasks
such as classification, harmonic analysis etc. These are time critical tasks in each of these applica-
tions, more so in emerging applications for homeland security, and they need to be done in near-real
time to accurately keep pace with the rate of stream updates and accurately reflect rapidly changing
trends in the data.

These two factors uniquely challenge the TCS needs. We in Computer Science community have tradi-
tionally focused on scaling wrt to size: how to efficiently manipulate large disk-bound data via suitable data
structures [15], how to scale to databases of petabytes [106], synthesize massive datasets [7], etc. However,
far less attention has been given to benchmarking, studyingperformance of systems under rapid updates
with near-real time analyses. Even benchmarks of database transactions [115] are inadequate.

There are ways to build workable systems around these TCS challenges. TCS systems are sophisticated
and have developed high-level principles that still apply.Make things parallel.A lot of data stream process-
ing is highly parallelizable in computing (C) and storage (S) capacity; it is somewhat harder to parallelize
transmission (T) capacity on demand.Control data rate by sampling or shedding updates.High energy par-
ticle physics experiments at Fermilab and CERN [120] will soon produce40TBytes/s which will be reduced
by real time hardware into800Gb/s data stream: is it careful sampling or carefree shedding? Statisticians
have the sampling theory: it is now getting applied to IP network streams [12, 3, 13].Round data struc-
tures to certain block boundaries.For example, the “Community of Interest” approach to findingfraud in
telephone calls uses a graph data structure up to and including the previous day to perform the current day’s
analysis, thereby rounding the freshness of the analysis toperiod of a day [14]. This is an effective way to
control the rate of real-time data processing and use pipelining. Use hierarchically detailed analysis. Use
fast but simple filtering or aggregation at the lowest level and slower but more sophisticated computation at

1John Bates, the Chief of Remote Sensing Applications Division of USNOAANDCC, gives a nice exposition at
http://www7.nationalacademies.org/bms/BatesPowerPoint.ppt and http://www7.nationalacademies.org/bms/AbstractBATES.html.
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higher levels with smaller data. This hierarchical thinking stacks up against memory hierarchy nicely. Fi-
nally, oftenasking imaginative questionscan lead to effective solutions within any given resource constraint,
as applied algorithms researchers well know.

Nevertheless, these natural approaches are ultimately limiting. They may meet ones’ myopic expecta-
tions. But we need to understand the full potential of data streams for the future. Given a certain amount of
resources, a data stream rate and a particular analysis task, what can (not) we do? Most natural approaches
to dealing with data streams discussed above involves approximations: what are algorithmic principles for
data stream approximation? One needs a systematic theory ofdata streams. To get novel algorithms. To
build data stream applications with ease, and proven performance.

What follows is an introduction to the emerging theory of data streams.
Before that, here is a note. The previous few paragraphs presented a case for data stream research. I

could have done it

• Using anecdotics.

Paul, now a network service Provider, has to convince Carole, his Customer, that IP hosts connecting
to her website get high quality real time media service. He needs to monitor IP traffic to her web site
and understand per-packet performance for each host. Plotting such statistics in real time is a good
way to convince Carole.

• Or using numerics.

A single OC48 link may transmit few hundred GBytes per hour ofpacket header information, which
is more than200Mbps. It takes an OC3 link to transfer this streaming log and it is a challenge to write
it into tapes or process it by the new 3GHz P4 Intel processor at that rate.

Or I could have used a limerick, haiku or a Socratic dialog. But I chose to describe data stream as a
phenomenon in words. Sometimes I think words have become less meaningful to us than greek symbols or
numerals. Nevertheless, I hope you would use your imagination and intuit the implications of data streaming.
Imagine we can (and intend to) collect so much data that we maybe forced to drop a large portion of it, or
even if we could store it all, we may not have the time to scan itbefore making judgements. That is a new
kind of uncertainty in computingbeyondrandomization and approximation: it should jar us, one way or the
other.

4 Data Streaming: Formal Aspects

This section will be more formal: define various models for dealing with data streams and present a moti-
vating application to internalize.

4.1 Data Stream Models

Input streama1, a2, . . . arrives sequentially, item by item, and describes an underlying signal A, a one-
dimensional functionA : [1 . . . N ] → R.2 Models differ on howai’s describeA.

• Time Series Model. Eachai equalsA[i] and they appear in increasing order ofi. This is a suitable
model for time series data where, for example, you are observing the traffic at an IP link each5
minutes, or NASDAQ volume of trades each minute, etc.

2Input may comprise of multiple streams or multidimensionalsignals, but we do not consider those variations here.
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• Cash Register Model.Hereai’s are increments toA[j]’s. Think of ai = (j, Ii), Ii ≥ 0, to mean
Ai[j] = Ai−1[j] + Ii whereAi is the state of the signal after seeing theith item in the stream.
Much as in a cash register, multipleai’s could increment a givenA[j] over time. This is perhaps the
most popular data stream model. It fits applications such as monitoring IP addresses that access a
web server, source IP addresses that send packets over a linketc. because the same IP addresses may
access the web server multiple times or send multiple packets on the link over time. This model has
appeared in literature before, but was formally christenedin [27] with this name.

• Turnstile Model.3 Hereai’s are updates toA[j]’s. Think of ai = (j, Ui), to meanAi[j] = Ai−1[j] +
Ui whereAi is the signal after seeing theith item in the stream, andUi may be positive or negative.
This is the most general model. It is mildly inspired by a busyNY subway train station where the
turnstile keeps track of people arriving and departing continuously. At any time, a large number of
people are in the subway. This is the appropriate model to study fully dynamic situations where there
are inserts as well deletes, but it is often hard to get interesting bounds in this model. This model too
has appeared before under different guises, but it gets christened here with its name.

There is a small detail: in some cases,Ai[j] ≥ 0 for all i. We refer to this as thestrict Turnstile model.
Intuitively this corresponds to letting people only exit via the turnstile they entered the system in: it
is a unrealistic intuition, but it fits many applications. For example, in a database, you can only delete
a record you inserted. On the other hand, there are instanceswhen streams may benon-strict, that
is, Ai[j] < 0 for somei. For example, when one considers a signal over the difference between two
cash register streams, one obtains a non-strict Turnstile model. We will avoid making a distinction
between the two Turnstile models unless necessary.

The models in decreasing order of generality are as follows:Turnstile, Cash Register, Time Series. (A
more conventional description of models appears in [27].) From a theoretical point of view, of course one
wishes to design algorithms in the Turnstile model, but froma practical point of view, one of the other
models, though weaker, may be more suitable for an application. Furthermore, it may be (provably) hard to
design algorithms in a general model, and one may have to settle for algorithms in a weaker model.

We wish to compute various functions on the signalA at different times during the stream. There are
different performance measures.

• Processing time per itemai in the stream. (Proc. Time)

• Space used to store the data structure onAt at timet. (Storage)

• Time needed to compute functions onA. (Compute time)4

Here is a rephrasing of our solutions to the two puzzles at thestart in terms of data stream models and
performance measures.

Puzzle Model Function Proc. Time Storage Compute Time
Section 1.1 cash registerk = 1, {j|A[j] = 0} O(log n) O(log n) O(1)
Section 1.2 cash register γ[t] O(k log(1/ε)) O(k log u log(1/ε)) O(k)

We can now state the ultimatedesideratathat is generally accepted:

3I remember the exhilaration we felt when Martin Farach-Colton and I coined the nameDisk Access Machinemodel or the
DAM model during a drive from New York city to Bell labs. The DAM model is catching on.

4There is also the work space needed to compute the function. We do not explicitly discuss this because typically this is ofthe
same order as the storage.
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At any timet in the data stream, we would like the per-item processing time, storage as well as the
computing time to be simultaneouslyo(N, t), preferably,polylog(N, t).

Readers can get a sense for the technical challenge this desiderata sets forth by contrasting it with a
traditional dynamic data structure like say a balanced search tree which processes each update inO(log N)
time and supports query inO(log N) time, but uses linear space to store the input data. Data stream algo-
rithms can be similarly thought of as maintaining a dynamic data structure, but restricted to use sublinear
storage space and the implications that come with it. Sometimes, the desiderata is weakened so that:

At any timet in the data stream, per-item processing time and storage need to be simultaneously
o(N, t) (preferably,polylog(N, t)), but the computing time may be larger.

This was proposed in [10], used in few papers, and applies in cases where computing is done less
frequently than the update rate. Still, the domainN and inputt being so large that they warrant using only
polylog(N, t) storage may in fact mean that computing time even linear in the domain or input may be
prohibitive in applications for a particular query.

A comment or two about the desiderata.
First, why do we restrict ourselves to only a small (sublinear) amount of space? Typically, one says

this is because the data stream is so massive that we may not beable to store all of what we see. That
argument is facetious. Even if the data stream is massive, ifit describes a compact signal (i.e.,N is small),
we can afford space linear inN , and solve problems within our conventional computing framework. For
example, if we see a massive stream of peoples’ IDs and their age in years, and all we wish to calculate
were functions on peoples’ age distribution, the signal is over N less than150, which is trivial to manage.
What makes data streams unique is that there are applications where data streams describe signals over a
very large universe. For example,N may be the number of source, destination IP address pairs (which is
potentially264 now), or may be the number of time intervals where certain observations were made (which
increases rapidly over time), or may be the http addresses onthe web (which is potentially infinite since web
queries get sometimes written into http headers). More generally, and this is significantly more convincing,
data streams are observations over multiple attributes andany subset of attributes may comprise the domain
of the signal in an application and that leads to potentiallylarge domain spaces even if individual attribute
domains are small.

Second, why do we use the polylog function? Well, log in the input size is the lower bound on the
number of bits needed to index and represent the signal, and poly gives us a familiar room to play.

Finally, there is a cognitive analogy that explains the desiderata qualitatively, and may appeal to some
of the readers (it did, to Mikkel Thorup). As human beings, weperceive each instant of our life through an
array of sensory observations (visual, aural, nervous, etc). However, over the course of our life, we manage
to abstract and store only part of the observations, and function adequately even if we can not recall every
detail of each instant of our lives. We are data stream processing machines.

4.2 A Motivating Scenario

Let me present a popular scenario for data streaming. The Internet comprises routers connected to each other
that forward IP packets. Managing such networks needs real time understanding of faults, usage patterns,
and unusual activities in progress. This needs analysis of traffic and fault data in real time. Consider traffic
data. Traffic at the routers may be seen at many levels.

1. At the finest level, we have thepacket log: each IP packet has a header that contains source and
destination IP addresses, ports, etc.
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2. At a higher level of aggregation, we have theflow log: each flow is a collection of packets with same
values for certain key attributes such as the source and destination IP addresses and the log contains
cumulative information about number of bytes and packets sent, start time, end time, protocol type,
etc. per flow.

3. At the highest level, we have theSNMP log, which is the aggregate data of the number of bytes sent
over each link every few minutes.

Many other logs can be generated from IP networks (fault alarms, CPU usage at routers, etc), but the
examples above suffice for our discussion. You can collect and store SNMP data. (I store6 months worth of
this data of a large ISP in my laptop for the IPSOFACTO tool I will reference later. I could store data up to a
year or two without stressing my laptop.) The arguments we presented for data streaming apply to flow and
packet logs which are far more voluminous than the SNMP log. Amore detailed description and defense of
streaming data analysis in IP network traffic data is presented in [26], in particular, in Section 2.

Here are some queries one may want to ask on IP traffic logs.

1. How much HTTP traffic went on a link today from a given range of IP addresses? This is an example
of a slice and dice query on the multidimensional time seriesof the flow traffic log.

2. How many distinct IP addresses used a given link to send their traffic from the beginning of the day,
or how many distinct IP addresses are currently using a givenlink on ongoing flow?

3. What are the topk heaviest flows during the day, or currently in progress? Solution to this problem in
flow logs indirectly provides a solution to the puzzle in Section 1.1.

4. How many flows comprised one packet only (i.e., rare flows)?Closely related to this is the ques-
tion: Find TCP/IP SYN packets without matching SYNACK packets. This query is motivated by the
need to detect denial-of-service attacks on networks as early as possible. This problem is one of the
motivations for the fishing exercise in Section 1.2.

5. How much of the traffic yesterday in two routers was common or similar? This is a distributed query
that helps track the routing and usage in the network. A number of notions of “common” or “similar”
apply. The IPSOFACTO system supports such similarity queries on the SNMP logs for an operational
network provider [57].

6. What are the topk correlated link pairs in a day, for a given correlation measure. In general a number
of correlation measures may be suitable. Those that rely on signal analysis—wavelet, fourier etc.—of
the traffic pattern prove effective. We will later describe algorithms for computing wavelet or fourier
representation for data streams.

7. For each source IP address and each five minute interval, count the number of bytes and number of
packets related to HTTP transfers. This is an interesting query: how do we represent the output which
is also a stream and what is a suitable approximation in this case?

The questions above are simple slice-and-dice or aggregateor group by queries. This is but a sparse
sample of interesting questions. Imagine the setup, and youwill discover many more relevant questions.
Some of the more complex queries will involvejoins between multiple data stream sources. For example,
how to correlate

Let me formalize one of the examples above in more detail, sayexample two.
First, how many distinct IP addresses used a given link to send their traffic since the beginning of the

day? Say we monitor the packet log. Then the input streama1, a2, . . . is a sequence of IP packets on the
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given link, with packetai having the source IP addresssi. LetA[0 . . . N − 1] be the number of packets sent
by source IP addressi, for 0 ≤ i ≤ N − 1, initialized to all zero at the beginning of the day. (This signal is
more general for reasons that will be clear in the next paragraph.) Each packetai adds one toA[si]; hence,
the model is Cash Register. Counting the number of distinct IP addresses that used the link during the day
thus far can be solved by determining the number of nonzeroA[i]’s at any time.

Second, now, consider how many distinct IP addresses are currently using a given link? More formally,
at any timet, we are focused on IP addressessi such that some flowfj began at time beforet and will end
after t, and it originates atsi. In the packet log, there is information to identify the firstas well as the last
packets of a flow. (This is an idealism; in reality, it is sometimes to hard to tell when a flow has ended.) Now,
letA[0 . . . N−1] be the number of flows that source IP addressi is currently involved in, for0 ≤ i ≤ N−1,
initialized to all zero at the beginning of the day. If packetai is the beginning of a flow, add one toA[sj ]
if sj is the source of packetai; if it is the end of the flow, subtract one fromA[sj] if sj is the source of
packetai; else, do nothing. Thus the model is Turnstile. Counting thenumber of distinct IP addresses that
are currently using a link can be solved by determining the number of nonzeroA[i]’s at any time.

Similarly other examples above can be formalized in terms ofthe data stream models and suitable
functions to be computed.

A note: There has been some frenzy lately about collecting and analyzing IP traffic data in the data
stream context. Analyzing traffic data is not new. In telephone and cellular networks, call detail records
(CDRs) are routinely collected for billing purposes, and they are analyzed for sizing, forecasting, trou-
bleshooting, and network operations. My own experience is with cellular CDRs and there is a lot you can
do to discover engineering problems in a network in near-real time with the live feed of CDRs from the
cellular network. The angst with IP traffic is that the data isfar more voluminous, and billing is not usage
based. The reason to invest in measurement and analysis infrastructure is mainly for network maintenance
and value-added services. So, the case for making this investment has to be strong, and it is now being made
across the communities and service providers. Both Sprint [109] and AT&T [30] seem to be engaged on this
topic. That presents the possibility of getting suitable data stream sources in the future, at least within these
companies.

At this point, I am going to continue the theme of being imaginative, and suggest a mental exercise.
Consider a data streaming scenario from Section 3 that is different from the IP traffic log case. For example,

Exercise 1 Consider multiple satellites continuously gathering multiple terrestial, atmospheric and ocean-
surface observations of the entire earth. What data analysis questions arise with thesespatialdata streams?

This is a good homework exercise if you are teaching a course.The queries that arise are likely to be
substantially different from the ones listed above for the IP traffic logs case. In particular, problems naturally
arise in the area of Computational Geometry. Wealth of (useful, fundamental) research remains to be done.

Those who want a mental exercise more related to the ComputerScience concepts can consider the
streaming text scenario [110].

Exercise 2 We have distributed servers each of which processes a streamof text files (instant messages,
emails, faxes, say) sent between users. What are interesting data analysis queries on suchtextdata streams?

For example, one may now look for currently popular topics ofconversation in a subpopulation. This
involves text processing on data streams which is quite different from the IP traffic logs or the satellite-based
terrestial or stellar observation scenarios.

We need to develop the two examples above in great detail, much as we have done with the IP traffic
analysis scenario earlier. We are far from converging on thebasic characteristics of data streams or a building
block of queries that span different application scenarios. As Martin Strauss quips, hope this is not a case of
“insurmountable opportunities”.
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4.3 Other Applications for Data Stream Models

The data stream models are suitable for other applications besides managing rapid, automatic data feeds.
In particular, they find applications in the following two scenarios (one each for cash register and Turnstile
models).

One pass, Sequential I/O. Besides the explicit data stream feeds we have discussed thus far, there are
implicit streams that arise as an artifact of dealing with massive data. It is expensive to organize and access
sophisticated data structures on massive data. Programs prefer to process them in one (or few) scans. This
naturally maps to the (Time Series or Cash Register) data stream model of seeing data incrementally as a
sequence of updates. Disk, bus and tape transfer rates are fast, so one sees rapid updates (inserts) when
making a pass over the data. Thus the data stream model applies.

Focus on one (or few) pass computing is not new. Automata theory studied the power of one versus
two way heads. Sorting tape-bound data relied on making few passes. Now we are seeking to do more
sophisticated computations, with far faster updates.5

This application differs from the data streaming phenomenon we saw earlier in a number of ways. First,
in data streaming, the analysis is driven by monitoring applications and that determines what functions you
want to compute on the stream. Here, you may have in mind to compute any common function (transitive
closure, eigenvalues, etc) and want to do it on massive data in one or more passes. Second, programming
systems that support scans often have other supporting infrastructure such as a significant amount of fast
memory etc. which may not exist in IP routers or satellites that generate data streams. Hence the one pass
algorithms may have more flexibility. Finally, the rate at which data is consumed can be controlled and
smoothed, data can be processed in chunks etc. In contrast, some of the data streams are more phenomena-
driven, and can potentially have higher and more variable update rates. So, the data stream model applies to
one pass algorithms, but some of the specific concerns are different.

Monitoring database contents. Consider a large database undergoing transactions: inserts/deletes and
queries. In many cases, we would like to monitor the databasecontents. As an example, considerselectivity
estimation.Databases need fast estimates of result sizes for simple queries in order to determine an efficient
query plan for complex queries. The estimates for simple queries have to be generated fast, without running
the queries on the entire database which will be expensive. This is the selectivity estimation problem. Here
is how it maps into the data stream scenario. The inserts or deletes in the database are the updates in the
(Turnstile model of a data) stream, and the signal is the database. The selectivity estimation query is the
function to be computed on the signal. Data sream algorithmstherefore have the desirable property that
they represent the signal (i.e., the database) in small space and the results are obtained without looking at
the database, in time and space significantly smaller than the database size and scanning time. Thus, data
stream algorithms in the Turnstile model naturally find use as algorithms for selectivity estimation.

Other reasons to monitor database contents areapproximate query answeringanddata quality monitor-
ing, two rich areas in their own right with extensive literatureand work. They will not be discussed further,
mea culpa. Again data stream algorithms find direct applications in these areas.

Readers should not dismiss the application of monitoring database content as thinly disguised data
streaming. This application is motivated even if updates proceed at a slow rate; it relies only on small

5Anecdotics. John Batesof US National Oceanographic and Atmospheric Administration (http://www.etl.noaa.gov/ jbates/)
faces the task of copying two decades worth of data from legacy tapes into current tapes, which will take a couple of years of
continuous work on multiple tape readers. His question: during this intensive copying process, blocks of data reside ondisk for
a period of time. In the interim, can we perform much-needed statistical analyses of historic data? This is apt for data stream
algorithms.
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space and fast compute time aspect of data stream algorithmsto avoid rescanning the database for quick
monitoring.

5 Foundations

The main mathematical and algorithmic techniques used in data stream models are collected here, so the
discussion below is technique-driven rather than problem-driven. It is sketchy at this point with pointers to
papers.

5.1 Basic Mathematical Ideas

5.1.1 Sampling

Many different sampling methods have been proposed: domainsampling, universe sampling, reservoir sam-
pling, distinct sampling etc. Sampling algorithms are known for:

• Find the number of distinct items in a Cash Register data stream. See [85].

• Finding the quantiles on a Cash Register data stream. See [83] for most recent results.

• Finding frequent items in a Cash Register data stream. See [84].

Each of these problems has nice applications (and many otherresults besides the ones we have cited
above). Further, it is quite practical to implement sampling even on high speed streams. (In fact, some of the
systems that monitor data streams—specially IP packet sniffers—end up sampling the stream just to slow
the rate down to a reasonable level, but this should be done ina principled manner, else, valuable signals
may be lost.) Also, keeping a sample helps one estimate many different statistics, and additionally, actually
helps one return certain sample answers to non-aggregate queries. Consider:

Problem 3 Say we have data streams over two observed variables(xt, yt). An examplecorrelated aggregate
is {g(yt) | xt ≤ f(x1 · · · xt)}, that is, computing some aggregate functiong—SUM, MAX, MIN—on those
yt’s when the correspondingxt’s satisfy certain relationshipf . For what f ’s and g’s (by sampling or
otherwise) can such queries be approximated on data streams? See [87] for the motivation.

There are two main difficulties with sampling for data streamproblems. First, sampling is not a pow-
erful primitive for many problems. One needs far too many samples for performing sophisticated analyses.
See [86] for some lower bounds. Second, sampling method typically does not work in the Turnstile data
stream model: as stream unfolds, if the samples maintained by the algorithm get deleted, one may be forced
to resample from the past, which is in general, expensive or impossible in practice and in any case, not
allowed in data stream models.

5.1.2 Random Projections

This approach relies on dimensionality reduction, using projection along random vectors. The random
vectors are generated by space-efficient computation of random variables. These projections are called the
sketches. This approach typically works in the Turnstile model and istherefore quite general.

Building on the influential work [1], Indyk [89] proposed using stable distributions to generate the
random variables. Sketches with different stable distributions are useful for estimating variousLp norms on
the data stream. In particular, sketches using Gaussian random variables get a good estimate of theL2 norm
of data streams, using Cauchy distributions one gets a good estimate for theL1 norm etc. I have not found a
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lot of motivation for computing theL1 or L2 norm of a data stream by itself, although these methods prove
useful for computing other functions. For example,

• Using Lp sketches forp → 0, we can estimate the number of distinct elements at any time in the
Turnstile data stream model [90].

• Using variants ofL1 sketches, we can estimate the quantiles at any time in the Turnstile data stream
model [91].

• Using variants ofL1 sketches and other algorithmic techniques, we can dynamically track most fre-
quent items [92], wavelets and histograms [93], etc. in the Turnstile data stream model.

• Using L2 sketches, one can estimate the self-join size of database relations [97]. This is related to
estimating inner product of vectors, which is provably hardto do in general, but can be estimated to
high precision if the inner product is large.

There are many variations of random projections which are ofsimpler ilk. For example, Random subset
sums [27], counting sketches [28] and also Bloom filters [29]. A detailed discussion of the connection
between them is needed.

Problem 4 Design random projections using complex random variables or other generalizations, and find
suitable streaming applications.

There are instances where considering random projections with complex numbers or their generalization
have been useful. For example, letA be a0, 1 matrix andB be obtained fromA by replacing each1
uniformly randomly with±1. ThenE[(det(B))2] = per(A) wheredet(A) is the determinant of matrixA
andper(A) is the permanent of matrixA. While det(A) can be calculated in polynomial time,per(A) is
difficult to compute or estimate. The observation above presents a method to estimateper(A) in polynomial
time usingdet(A), but this procedure has high variance. However, ifC is obtained fromA by replacing
each1 uniformly randomly by±1,±i, thenE[(det(C))2] = per(A) still, and additionally, the variance
falls significantly. By extending this approach using quaternion and clifford algebras, a lot of progress
has been made on decreasing the variance further, and deriving an effective estimation procedure for the
permanent [58].

A powerful concept in generating a sequence of random variables each drawn from a stable distribution is
doing so with the property that any given range of them can be summed fast, on demand. Such constructions
exist, and in fact, they can be generated fast and using smallspace. Number of constructions are now known:
preliminary ones in [94], Reed-Muller construction in [27], general construction in [93] withL1 andL2

sketches, and approach in [95] for stable distributions with p → 0. They work in the Turnstile model and
find many applications including histogram computation andgraph algorithms on data streams.

5.2 Basic Algorithmic Techniques

There are a number of basic algorithmic techniques: binary search, greedy technique, dynamic program-
ming, divide and conquer etc. that directly apply in the datastream context, mostly in conjunction with
samples or random projections. Here are a few other algorithmic techniques that have proved powerful.

5.2.1 Group Testing

This goes back to an earlier Paul and Carole game. Paul has an integerI between1 andn in mind. Carole
has to determine the number by asking “IsI ≤ x?”. Carole determines variousx’s, and Paul answers them
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truthfully. How many questions does Carole need, in the worst case? There is an entire area of Combinatorial
Group Testing that produces solutions for such problems. Inthe data stream case, each question is a group
of items and the algorithm plays the role of Carole. This set up applies to a number of problems in data
streams. (It may also be thought of as coding and decoding in small space.) Examples are found in:

• FindingB most frequent items in Turnstile data streams [92].

• Determining the highestB Haar wavelet coefficients in Turnstile data streams [93].

• Estimating topB fourier coefficients by sampling [96].

Problem 5 Paul sees data stream representingAP and Carole sees data stream representingAC , both
on domain1, . . . , N . Design a streaming algorithm to determine certain number of i’s with the largest

AP [i]
max 1,AC [i] .

Monika Henzinger and Jennifer Rexford posed this problem tome at various times. It has a strong
intuitive appeal: compare today’s data with yesterday’s and find the ones that changed the most. Certain
relative norms similar to this problem are provably hard [95].

5.2.2 Tree Method

This method applies nicely to the Time Series model. Here, wehave a (typically balanced) tree atop the data
stream. As the updates come in, the leaves of the tree are revealed in the left to right order. In particular,
the path from the root to the most currently seen item is the right boundary of the tree we have seen. We
maintain small space data structure on the portion of the tree seen thus far, typically, some storage per level;
this can be updated as the leaves get revealed by updating along the right boundary. This overall algorithmic
scheme finds many applications:

• Computing theB largest Haar wavelet coefficients of a Time Series data stream [97].

• Building a histogram on the Time Series data stream [98]. This also has applications to finding certain
outliers called the deviants [105].

• Building a parse tree atop the Time Series data stream seen asa string [81]. This has applications
to estimating string edit distances as well as estimating size of the smallest grammar to encode the
string.

Here is a problem of similar ilk, but it needs new ideas.

Problem 6 Given a signal of sizeN as a Time Series data stream and parametersB and k, the goal is
to findk points (deviants) to remove so that finding theB largest coefficients for the remaining signal has
smallest sum squared error. This is the wavelet version of the problem studied in [99].

There are other applications, where the tree hierarchy is imposed as an artifact of the problem solving
approach. Thek-means algorithm on the data stream [100] can be seen as a treemethod: building clusters
on points, building higher level clusters on their representatives, and so on up the tree.

Finally, I will speculate that Yair Bartal’s fundamental result of embedding arbitrary metrics into tree
metrics will find applications in data streams context, by reducing difficult problems to ones where the tree
method can be applied effectively.
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5.2.3 Robust Approximation

This concept is a variation on the local minima/maxima, but suited for approximations. Consider construct-
ing a near-optimalB bucket histogram for the signal. An approximationH to the optimal histogramH∗

is calledrobust if it has the property that when refined further with a few buckets, the resulting histogram
is only a little better thanH itself as an approximation toH∗. This is a powerful concept for constructing
histograms: to get aB bucket optimal histogram, we first pull out apoly(B, log N) bucket histogram that is
robust and then cull aB bucket histogram from it appropriately which is provably1 + ε approximate. The
details are in [93]. We suspect that robust approximations will find many applications.

In a recent result [101] on an improved algorithm for thek-median problem on data streams, in the first
phase, aO(k polylog(n)) facility solution is obtain from which the algorithm culls thek facilities which is
provably1+ ε accurate. This is reminiscent of robust approximation, butthere is a technical distinction: the
O(k polylog(n)) facility solution does not seem to have the robustness property.

5.2.4 Exponential Histograms

To algorithms designers, it is natural to think of exponential histograms—dividing a line into regions with
boundaries at distance2i from one end or keep dividers after points of rank2i—when one is restricted to use
a polylog space data structure. This technique has been usedin one dimensional nearest neighbor problems
and facility location [46], maintaining statistics withina window [36], and from a certain perspective, for
estimating the number of distinct items [34]. It is a simple and natural strategy which is likely to get used
seamlessly in data stream algorithms.

5.3 Lower Bounds

A powerful theory of lower bounds is emerging for data streammodels.

• Compressibility argument.

In Section 1.2 there is an example. One argues that if we have already seen a portionS of the data
stream and have stored a data structureD on S for solving a problemP , then we can design the
subsequent portion of the stream such that solvingP on the whole stream will help us recoverS
precisely fromD. Since not everyS can be compressed into small spaceD, the lower bound on size
of D will follow.

• Communication Complexity.

Communication complexity models have been used to establish lower bounds for data stream prob-
lems. In particular, see [1]. Estimating set disjointness is a classical, hard problem in Communication
Complexity that underlies the difficulty in estimating someof the basic statistics on data streams.
See [102] for a few different communication models in distributed stream settings.

• Reduction.

One reduces problems to known hard ones. Several such results are known. See [95] for some
examples.

An information-based approach to data stream lower bounds is in [103].

5.4 Summary and Data Stream Principles

The algorithmic ideas above have proved powerful for solving a variety of problems in data streams. On
the other hand, using the lower bound technology, it followsthat many of these problems—finding most

17



4e+16

6e+16

8e+16

1e+17

1.2e+17

1.4e+17

1.6e+17

1.8e+17

2e+17

0 200 400 600 800 1000 1200 1400

S
S

E

B

 

"wavelets-src"
"wavelets-dest"

Figure 1: Decay of SSE of top wavelet coefficients on IP data.

frequent items, finding small error histograms, clustering, etc.—have versions that are provably hard to
solve exactly or even to approximate on data streams. However, what makes us successful in solving these
problems is that in real life, there are two main principles that seem to hold in data stream applications.

• Signals in real life have “few good terms” property.

Real life signalsA[0 · · ·N − 1] have a small numberB of coefficients that capture most of the trends
in A even if N is large. For example, Figure 1 shows the sum squared error inreconstructing a
distribution withB highest coefficients for various values ofB, and two different distributions: the
number of bytes of traffic involving an IP address as the source and as the destination. So, here
N = 232, total number of IP addresses possible. Still, withB = 800 or so, we get the error to drop by
more than50%. For capturing major trends in the IP traffic, few hundred coefficients prove adequate.

In IP traffic, few flows send large fraction of the traffic [3]. That is, of the264 possible(src, dest) IP
flows, if one is interested in heavy hitters, one is usually focused on a small number (few hundreds?)
of flows. This means that one is typically interested in tracking k most frequent items, for smallk,
even ifN is large inA.

This phenomenon arises in other problems as well: one is typically interested in small numberk of
facilities or clusters, etc.

• During unusual events in data streams, exceptions are significantly large.

The number of rare flows—flows involving a small number of packets—and the number of distinct
flows is significantly large during network attacks.

When there are data quality problems in data streams—say an interface is polled more often than
expected—the problem is abundant, eg., the number of polls may be far more than expected.

These two principles are used implicitly in designing many of the useful data stream algorithms. Applied
algorithmicists need to keep these principles in mind whileabstracting the appropriate problems to study.
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6 Streaming Systems

There are systems that (will) process data streams. I think of them in three categories.
First, is the hands-on systems approach to data streams. Oneuses operating system support to capture

streams, and perhaps use special hooks in standard programming languages likeC to get additional facility
in manipulating streams. The work at AT&T Research on Call Detail Records analysis falls in this category;
Hancock [67] is a special-purpose language. Researchers like Andrew Moore [124] work in this framework,
and quite successfully process large data sets. Ultimatelyhowever, I do not know of such work that processes
data at the stream rate generated by IP network routers.

Second, there are systems that let a high performance database process updates using standard technol-
ogy like bulk loading, or fast transaction support. Then onebuilds applications atop the database. IPSO-
FACTO [57] is such a system that lets Daytona database handleSNMP log updates and provides application
level support for visualizing and correlating traffic patterns on links between IP routers. This works well
for SNMP logs and is used on production quality datafeed, butwill be highly stressed for packet or flow
logs. Bellman [66] which monitors data quality problems in databases takes this approach as well, capturing
transactions from a generic database and performing statistical analysis on relationships between attributes
in various database tables. It needs further work to scale tolarge transaction rates.

Finally, there are database systems where the internals aredirectly modified to deal with data streams.
This is an active research area that involves new stream operators, SQL extensions, novel optimization tech-
niques, scheduling methods, the continuous query paradigm, etc., the entire suite of developments needed
for a data stream management system (DSMS). Projects at various universities of this type include Nia-
garaCQ [70], Aurora [72], Telegraph [73], Stanford Stream [71] etc. They seem to be under development,
and demos are being made at conferences (see SIGMOD 2003). Another system I know of in this category
is Gigascope [74] which is operationally deployed in an IP network. It does deal with stream rates generated
in IP networks, but at this point, it provides only features geared towards IP network data analysis. It is not
yet suitable for general purpose data stream management fora variety of data streams.

One of the outstanding questions with designing and building DSMSs is whether there is a need. One
needs multiple applications, a well-defined notion of stream common to these applications, and powerful
operators useful across applications in order to justify the effort needed to actualize DSMSs. At this fledgling
point, the IP network traffic monitoring is a somewhat well developed application. But more work needs to
be done—in applications like text and spatial data stream scenarios—to bolster the need for DSMSs.

To what extent have the algorithmic ideas been incorporatedinto the emerging streaming systems?
Both Bellman and IPSOFACTO use some of the approximation algorithms including sampling and random
projections. Most of the systems in the third category have hooks for sampling. There is discussion of
testing random projection based estimations using Gigascope, and reason to believe that simple, random
projections technique will be useful in other systems too.

7 New Directions

This section presents some results and areas that did not getincluded above. The discussion will reveal
open directions and problems: these are not polished gems, they are uncut ideas. Sampath Kannan has an
interesting talk on open problems in streaming [17].

7.1 Related Areas

In spirit and techniques, data streaming area seems relatedto the following areas.
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• PAC learning:In [47] authors studied sampling algorithms for clusteringin the context of PAC learn-
ing. More detailed comparison needs to be done for other problems such as learning fourier or wavelet
spectrum of distributions between streaming solutions andPAC learning methods.

• Online algorithms:Data stream algorithms have an online component where inputis revealed in steps,
but they have resource constraints that are not typically incorporated in competitive analysis of online
algorithms.

• Property testing: This area focuses typically on sublinear time algorithms for testing objects and
separating them based on whether they are far from having a desired property, or not. Check out
Ronitt Rubinfeld’s talk on what can be done in sublinear time[123]. Typically these results focus on
sampling and processing only sublinear amount of data. As mentioned earlier, sampling algorithms
can be simulated by streaming algorithms, and one can do morein streaming models.

• Markov methods.Some data streams may be thought of as intermixed states of multiple markov
chains. Thus we have to reason about maximum likelihood separation of the markov chains [49],
reasoning about individual chains [48], etc. under resource constraints of data streams. This outlook
needs to be developed a lot further.

7.2 Functional Approximation Theory

One of the central problems of modern mathematical approximation theory is to approximate functions
concisely, with elements from a large candidate setD called adictionary; D = {φi}i∈I of unit vectors that
spanRN . Our input is a signalA ∈ RN . A representationR of B terms for inputA ∈ RN is a linear
combination of dictionary elements,R =

∑

i∈Λ αiφi, for φi ∈ D and someΛ, |Λ| ≤ B. Typically,B � N ,
so thatR is a concise approximation to signalA. The error of the representation indicates by how well it
approximatesA, and is given by‖A− R‖2 =

√
∑

t |A[t] − R[t]|2. The problem is to find the bestB-term
representation,i.e., find aR that minimizes‖A− R‖2. I will only focus on theL2 error here. A signal has
aR with error zero ifB = N sinceD spansRN .

Many of us are familiar with a special case of this problem if the dictionary is a Fourier basis, i.e.,φi’s
are appropriate trigonometric functions. Haar wavelets comprise another special case. Both these special
cases are examples oforthonormaldictionaries: ||φi|| = 1 and φi ⊥ φj . In this case,|D| = N . For
orthonormal dictionaries whenB = N , Parseval’s theorem holds:

∑

i

A[i]2 =
∑

i

α2
i .

For B < N , Parseval’s theorem implies that the bestB term representation comprises theB largest inner
product| 〈A, φ〉 | overφ ∈ D.

In functional approximation theory, we are interested in larger—redundant—dictionaries, so called be-
cause whenD > N , input signals have two or more distinct zero-error representation usingD. Different
applications have different natural dictionaries that best represent the class of input signals they generate.
There is a tradeoff between the dictionary size and the quality of representation when dictionary is properly
chosen. Choosing appropriate dictionary for an application is an art. So, the problem of determining an
approximate representation for signals needs to be studiedwith different redundant dictionaries.

There are two directions: studying specific dictionaries derived from applications or studying the prob-
lem for an arbitrary dictionary so as to be completely general.

Studying specific dictionaries.One specific dictionary of interest isWavelet Packets. Let W0(x) = 1 for
0 ≤ x < 1. DefineW1,W2, . . . as follows.

W2n(x) = Wn(2x) − Wn(2x − 1)
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W2n+1(x) = Wn(2x) − Wn(2x − 1)

Wavelet packets comprises vectors defined bywj,n,k(x) = 2j/2Wn(2jx − k) for different values ofj, n, k.
They are richer than the well known Haar wavelets, and hence potentially give better compression. As
before, the problem is to represent any given functionA as a linear combination ofB vectors from the
wavelet packets. Two such vectorsw andw′ are not necessarily orthogonal, hence merely choosing theB
largest| 〈A, wj,n,k〉 |’s.

A gem of a result on this problem is in [80]: the author proves that the best representation ofA usingB
terms can be obtained usingO(B2 log n) orthogonal terms. (Representing signals using orthogonalwavelet
packet vectors is doable.) Presumably this result can be improved by allowing some approximation to the
bestB term representation.

Problem 7 There are a number of other special dictionaries of interest—beamlets, curvelets, ridgelets,
segmentlets, etc.—each suitable for classes of applications. Design efficient algorithms to approximate the
best representation of a given function using these dictionaries.

Studying general dictionaries.A paper that seems to have escaped the attention of approximation theory
researchers is [63] which proves the general problem to be NP-Hard. This was reproved in [60]. In addi-
tion, [63] contained the following very nice result. Say to obtain a representation with errorε one needs
B(ε) terms. LetD be theN × |D| matrix obtained by havingφi as theith column for eachi. Let D+ be the
pseudoinverse ofD. (The pseudoinverse is a generalization of the inverse and exists for any(m,n) matrix.
If m > n andA has full rankn, thenA+ = (AT A)−1AT .) The author in [63] presents a greedy algorithm
that finds a representation with error no more thanε but using

O(B(ε/2)||D+||22 log(||A||2))

terms. [63] deserves to be revived: many open problems remain.

Problem 8 Improve [63] to use fewer terms, perhaps by relaxing the error achieved. Is there a nontrivial
non-greedy algorithm for this problem?

Problem 9 A technical problem is as follows: The algorithm in [63] takes |D| time for each step of the
greedy algorithm. Using dictionary preprocessing, designa faster algorithm for finding an approximate
representation for a given signal using the greedy algorithm. This is likely to be not difficult: instead of
finding the “best”, find the “near-best” in each greedy step and prove that the overall approximation does
not degrade significantly.

Both these questions have been addressed for a fairly general (but not fully general) dictionaries. Dic-
tionaryD hascoherenceµ if ‖φi‖ = 1 for all i and for all distincti andj, | 〈φi, φj〉 | ≤ µ. (For orthogonal
dictionaries,µ = 0. Thus coherence is a generalization.) Nearly exponentially sized dictionaries can be
generated with small coherence. For dictionaries with small coherence, good approximation algorithms
have been shown:

Theorem 10 [64] Fix a dictionary D with coherenceµ. LetA be a signal and suppose it has aB-term
representation overD with error ‖A− Ropt‖ = δ, whereB < 1/(32µ). Then, in iterations polynomial in
B, we can find a representation with error at most

√

(1 + 2064µB2)δ.

This line of research is just being developed; see [68] for new developments.
Further in [64], authors used approximate nearest neighboralgorithms to implement the iterations in

Theorem 10 efficiently, and proved that approximate implementation of the iterations does not degrade the
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error estimates significantly. I think this is a powerful framework, and efficient algorithms for other problems
in Functional Approximation Theory will use this frameworkin the future. Recently, Ingrid Daubechies
spoke some of these results at the AMS-MAA joint meetings [69].

Functional approximation theory has in general focused on characterizing the class of functions for
which error has a certain decay asN → ∞. See [62] and [61] for many such problems. But from an
algorithmicists point of view, the nature of problems I discussed above are more clearly more appealing.
This is a wonderful area for new algorithmic research; a starting recipe is to study [62] and [61], formulate
algorithmic problems, and to solve them.

Let me propose two further, out-there directions: Can we design new wavelets based on general two
dimensional tiling (current wavelet definitions rely on rather restricted set of two dimensional tiling)? Can
we design new wavelets based on the2 − 3 tree decomposition a la ESP in [81]? In both cases, this gives
vectors in the dictionary defined over intervals that are notjust dyadic as in Haar wavelets. Exploring
the directions means finding if there are classes of functions that are represented compactly using these
dictionaries, and how to efficiently find such representations.

7.3 Data Structures

Many of us have heard of the puzzle that leaves Paul at some position in a singly linked list, and he needs
to determine if the list has aloop. He can only rememberO(log n) bits, wheren is the number of items
in the list. The puzzle is a small space exploration of a list,and has been generalized to arbitrary graphs
even [22]. One of the solutions relies on leaving a “finger” behind, doing2i step exploration from the finger
eachi, i = 1, . . .; the finger is advanced after each iteration. This puzzle hasthe flavor of finger search trees
where the goal is to leave certain auxiliary pointers in the data structure so that a search for an item helps
the subsequent search. Finger search trees is a rich area of research. Richard Cole’s work on dynamic finger
conjecture for splay trees is an example of deep problems to be found [21].

Recently, a nice result has appeared [20]. The authors construct O(log n) space finger structure for an
n node balanced search tree which can be maintained under insertions and deletions; searching for item of
rankj after an item of ranki only takesO(log |j − i|) time. (Modulo some exceptions, most finger search
data structures prior to this work neededΩ(n)) bits.) I think of this as a streaming result. I believe and hope
this result will generate more insights into streaming datastructures. In particular, two immediate directions
are to extend these results to external memory or to geometric data structures such as segment trees, with
appropriate formalization, of course.

Let me present a specific data structural traversal problem.

Problem 11 We have a graphG = (V,E) and a memoryM , initially empty. Vertices have to be explicitly
loaded into memoryM ; at mostk vertices may reside inM at any time. We say an edge(vi, vj) ∈ E is
evaluatedwhen bothvi andvj are in the memoryM at the same time. What is the minimum number of loads
needed to evaluate all the edges of the graphG?

For k = 2, a caterpillar graph can be loaded optimally easily. Fork = 3, Fan Chung pointed out that
the dual of the graph obtained by looking at triangles ofG may have certain structure for it to be loaded
optimally. I think this problem arises in query optimization for tertiary databases from Sunita Sarawagi’s
thesis work.

7.4 Computational Geometry

Computational Geometry is a rich area. Problems in computational geometry arise because there are
applications—earth observations for example—that naturally generate spatial data streams and spatial queries.
Also, they arise implicitly in modeling other real life scenarios. For example, flows in IP networks may be
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thought of intervals [state time, end time], text documentsget mapped to high dimensional vector spaces,
etc.

Consider the problem of estimating the diameter of points presented on a data stream. Two results are
interesting.

Indyk considers this problem in the cash register model where points ind dimensions arrive over time.
His algorithm usesO(dn1/(c2−1)) space and compute time per item and producesc-approximation to the
diameter, forc >

√
2. The algorithm is natural. Choosel random vectorsv1, . . . , vl and for eachvi, maintain

the two points with largest and smallestvip over all pointp’s. For sufficiently largel, computing diameter
amongst these points will give ac-approximation.

For d = 2, a better algorithm is known. Take any point in the stream as the center and draw sectors
centered on that point of appropriate angular width. Withineach sector, we can keep the farthest point from
the center. Then diameter can be estimated from the arcs given by these points. One gets anε-approximation
to the diameter withO(1/ε) space andO(log(1/ε)) compute time per inserted point [45].

I know of other results in progress, so more computational geometry problems will get solved in the data
stream model in the near future.

Let me add a couple of notes. First, in small dimensional applications liked = 2 or 3, keeping certain
radial histograms, i.e., histograms that emanate in sectors from centers and use bucketing within sectors,
will find many applications. This needs to be explored. Second, I do not know of many nontrivial results for
the computational geometry problems in the Turnstile model. To understand the challenge, consider points
on a linebeing inserted and deleted, all insertions and deletions coming only at the right end (the minimum
point is fixed). Maintaining the diameter reduces to maintaining the maximum value of the points which
is impossible witho(n) space when points may be arbitrarily scattered. Instead, let me say the points are
in the range1 · · ·R: then, usingO(log R) space, we can approximate the maximum to1 + ε factor. This
may be an approach we want to adopt in general, i.e., have a bounding box around the objects and using
resources polylog in the area of the bounding box (or in termsof the ratio of min to the max projections of
points along suitable set of lines). Finally:

Problem 12 (Facility location) Say Paul tracksn potential sites on the plane. Carole continuously either
adds new client points or removes an existing client point from the plane. Paul can use spacen polylog(n),
but onlyo(m), preferablypolylog(m), wherem is the total number of points at any time. Solve thek-means
or k-medians facility location problem on the set ofn sites.

This problem arises in a study of sensors on highways [46].

7.5 Graph Theory

The graph connectivity problem plays an important role in log space complexity. See [41] for some de-
tails. However, hardly any graph problem has been studied inthe data stream model where (poly)log space
requirement comes with other constraints.

In [42], authors studied the problem of counting the number of triangles in the cash register model.
GraphG = (V,E) is presented as a series of edges(u, v) ∈ E in no particular order. The problem is to
estimate the number of triples(u, v,w) with an edge between each pair of vertices. LetTi, = 0, 1, 2, 3,
be the number of triples withi total edges between the pairs of vertices. Consider the signal A over the
triples (u, v,w), u, v,w ∈ V , whereA[(u, v,w)] is the number of edges in the triple(u, v,w). Let Fi =
∑

(u,v,w)(A[(u, v,w)])i . It is simple to observe that
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Solving, T3 = F0 − 1.5F1 + 0.5F2. Now, F1 can be computed precisely. ButF0 andF2 can only be
approximated. This needs a trick of considering the domain of the signal in a specific order so that each
item in the data stream, ie., an edge, entails updating a constant number ofintervals in the signal. Using
appropriate rangesum variables, this can be done efficiently, so we find a use for the rangesum variables
from Section 5.1. As a resultT3 can be approximated. In fact, this method works in the Turnstile model as
well even though the authors in [42] did not explicitly studyit.

The general problem that is interesting is to count other subgraphs, say constant sized ones. Certain
small subgraphs appear in web graphs intriguingly [43], andestimating their number may provide insights
into the web graph structure. Web crawlers spew nodes of the web graph in data streams. So, it is a nicely
motivated application.

Many graph problems need to be explored in data stream models. But they appear to be difficult in
general. One has to find novel motivations and nifty variations of the basic graph problems.

Let me propose a direction.

Problem 13 Consider thesemi-streamingmodel, ie., one in which we have space to store vertices, say
O(|V |polylog(|V |) bits, but not enough to store the edges. So we haveo(|E|) bits. Solve interesting (in
particular, dense) graph problems in this model.

7.6 Databases

Databases research has considered streaming extensively,far too much to be summarized here. I will high-
light a few interesting directions.

Consider approximate query processing.

Problem 14 Consider a signalA whereA[i] is a subset of1, · · ·U . Each query is arange query[i..j] for
which the response is|⋃i≤k≤j A[k]|. Build a histogram ofB buckets that is “optimal” for this task. First
consider a staticA and later streaming signals.

A lot has to be formalized in the problem above (See [79] for some related details). Histograms have
been studied extensively in Statistics and find many applications in commercial databases. In general they
study signals whereA[i] is the number of tuples in a database with valuei. Instead, if we interpretA[i] as
the set of pages that contain tuples with valuei, histogram described in the problem above is relevant. To
those with the background, I can say, this is an attempt at modeling thepage selectivityof queries.

A somewhat related problem concerns multidimensional signals.

Problem 15 Consider two dimensional signalAt[i][j], i, j ∈ [1..n]. Design algorithms for building (near)
optimal two dimensional histogram withB partitions.

Readers should not think of this as a straightforward generalization of one dimensional problem to
multiple dimensions. The problem is, but the details are quite different. There are many ways to partition two
dimensional arrays. While one dimensional problem is polynomial time solvable, two dimensional problems
are NP-hard for most partitions. Further, as I argued earlier, even if one-dimensional domains are small
enough to fit in to given memory, streaming algorithms may well be appropriate for the multidimensional
version.

In [75], authors proposed efficient approximation algorithms for a variety of two dimensional histograms
for a static signal. Some preliminary results were presented in [76] for the streaming case: specifically, the
authors proposed a polylog space,1+ε approximation algorithm usingO(B log N) partitions, takingΩ(N2)
time. Using the ideas in [75] and robustness, I believe that atruly streaming algorithm can be obtained, i.e.,
one that is aB partitions,1 + ε approximation usingbothpolylog space as well as polylog time, but details
will be published soon.
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Both the questions above are rather technical. From a database point of view, there are many conceptual
questions to be resolved: How to scale continuous queries, how to develop a notion of stream operator that
is composable so complex stream queries can be expressed andmanaged, etc. Let me propose a direction
that is likely to be interesting.

Problem 16 What is an approximation for aStream In, Stream Out(SISO) query? Can one develop a
theory of rate of input stream and rate of output stream for various SISO queries? Both probabilistic and
adversial rate theories are of relevance.

7.7 Hardware

An important question in data streaming is how to deal with the rate of updates. Ultimately, the rate of
updates may be so high that it is not feasible to capture them on storage media, or to process them in
software. Hardware solutions may be needed where updates, as they are generated, are fed to hardware
units for per-item processing. This has been explored in thenetworking context for a variety of per-packet
processing tasks (see eg. [5]) previously, but more needs tobe done. There is commercial potential in such
hardware machines. Consider:

Problem 17 Develop hardware implementation of the inner product basedalgorithms described in Sec-
tion 5 for various data stream analyses.

Here is a related topic. The trend in graphics hardware is to provide a programmable pipeline. Thus,
graphics hardware that will be found in computing systems may be thought of as implementing a stream
processing programming model. Tasks will be accomplished in multiple passes through a highly parallel
stream processing machine with certain limitations on whatinstructions can be performed on each item at
each pixel in each pass. See [38] for an example, [39] for a suitable model, and [82] for stream-related
results. Generic graphics hardware may not be suitable for processing data streams coming in at a high rate,
but stream algorithms may find applications in using graphics hardware as a computing platform for solving
problems. Lot remains to be explored here; see overview [40].

7.8 Streaming Models

Models make or mar an area of foundational study. We have a thriving set of streaming models already, but
some more are likely, and are needed.

7.8.1 Permutation Streaming

This is a special case of the cash register model in which items do not repeat. That is, the input stream is a
permutation of some set, and items may arrive in a unordered way. (This fits Paul’s avocation of permuting
from Section 1.1.)

A number of problems have already been studied in this model.In [37], authors studied how to estimate
various permutation edit distances. The problem of estimating the number of inversions in a permutation
was studied in [33]. Here is an outline of a simple algorithm to estimate the number of inversions [31]. Let
At is the indicator array of the seen items before seeing thetth item, andIt be the number of inversions so
far. Say thetth item isi. Then

It+1 = It + |{j | j > i & At[j] = 1}|.

The authors in [31] show how to estimate|{j | j > i & At[j] = 1}| for any i, up to 1 + ε accuracy
using exponentially separated quantiles. They use randomization, and an elegant idea of oversampling (and
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retaining certain smallest number of them) for identifyingthe exponentially separated quantiles. An open
problem here is what is the best we can do deterministically,or in the Turnstile model.

A deeper question is whether there is a compelling motivation to study this model, or the specific prob-
lems. There is some theoretical justification: permutations are special cases of sequences and studying
permutation edit distance may well shed light on the notoriously hard problem of estimating the edit dis-
tance between strings. However, I have not been able to find anoverwhelming inspiration for these problems
and this model. Yet, here is a related problem that does arisein practice.

Problem 18 Each TCP flow comprises multiple consecutively numbered packets. We see the packets of the
various flows in the Cash Register model. Packets get transmitted out of order because of retransmissions in
presence of errors, ie., packets may repeat in the stream. Estimate the number of flows that have (significant
number of) out of order packets at any time. Space used shouldbe smaller than the number of distinct TCP
flows.

7.8.2 Windowed Streaming

It is natural to imagine that the recent past in a data stream is more significant than distant past. How to
modify the streaming models to reemphasize the data from recent past? There are currently two approaches.

First is combinatorial. Here, one specifies a window sizew, and explicitly focuses only on the most
recent stream of sizew, i.e., at timet, only consider updatesat−w+1, . . . , at. Items outside this window
fall out of consideration for analysis, as the window slidesover time. The difficulty of course is that we can
not store the entire window, onlyo(w), or typically onlyo(polylog(w)) bits are allowed. This model was
proposed in [36] and is natural, but it is somewhat syntheticto put a hard bound ofw on the window size,
for example, irrespective of the rate of arrival of the stream.

The other model istelescopic. Here, one considers the signal as fixed size blocks of sizew andλ-ages
the signal. LetAi represent the signal from blocki. We (inductively) maintainβi as the meta-signal after
seeingi blocks. When thei + 1th block is seen, we obtain

βi+1 = (1 − λi+1)βi + λi+1σi+1.

If we unravel the inductive definition, we can see that the signal from a block affects the meta-signal expo-
nentially less as new blocks get seen. This model has certainlinear algebraic appeal, and it also leverages
the notion of blocks that is inherent in many real life data streams. The original suggestion is in [32] where
the block amounted to a days worth of data, andλi’s were kept mostly fixed. The drawback of this model
is clearly that it is difficult to interpret the results in this model in an intuitive manner. For example, if we
computed the rangesum of the metasignalβi[a · · · b], what does the estimate mean for the data stream at any
given time?

Let me propose another natural model, ahierarchical block model, described by Divesh Srivastava.
Informally, we would like to analyze the signal for the current day at the granularity of a few minutes,
the past week at the granularity of hours, the past month at the granularity of days, the past year at the
granularity of weeks, etc. That is, there is a natural hierarchy in many of the data streams, and we can
study the signals at progressively higher level of aggregation as we look back in to the past. There are very
interesting research issues here, in particular, how to allocate a fixed amount of space one has amongst the
different signal granularities, etc. that is being investigated now.

7.8.3 Synchronized Streaming

A puzzle, due to Howard Bergerson, is as follows. Imagine thefirst one thousand vigintillion minus one
natural numbers arranged in two lists, one in numerical order and the other in lexicographic order. How
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many (if any) numbers have their positions same in both lists? There is nothing special about vigintillion,
anyn will do.

This has a Paul-Carole North American version. Carole counts up1, . . . , n. Paul counts too, but in
permuted order given by the lexicographic position of numbers when written in English. For example, if
n = 4, Carole goes1, 2, 3, 4 but Paul goesFour,One,Three,Two. Both count in lock step. When, if
ever, do they say “Jinx!”?

Answer of course depends onn, and not by a formula. See [116] for some answers.
This puzzle contains the elements of what I call thesynchronized streaming model. Say we wish to

compute a function on two signalsA1 andA2 given by a data stream. All updates to both the signals are
simultaneous and identical except possibly for the update values. That is, if thetth item in the data stream
that specifiesA1 is (i, C1(i)), then thetth item in the data stream that specifiesA1 is (i, C2(i)), too. Both
these updates are seen one after the other in the data stream.Our goal as before is to compute various
functions of interest onA1 andA2 satisfying the desiderata of streaming algorithms.

In the synchronized streaming model, one can do whatever canbe done in the generic streaming model
in which one of the signals is presented before the other, or thetth updates of the two signals are arbitrarily
separated. The interest is if synchronized model can accomplish more. We believe that to be the case. For
example, if the two signals are two strings read left to rightin synchronized streaming, one can estimate if
their edit distance if at mostk, usingO(k) space. In contrast, this is difficult to do in a generic streaming
model. Synchronized streaming is quite natural; more research is needed on this model.

7.9 Data Stream Quality Monitoring.

Any engineer having field experience with data sets will confirm that one of the difficult problems in reality
is dealing with poor quality data. Data sets have missing values, repeated values, default values in place
of legitimate ones, etc. Researchers study ways to detect such problems (data quality detection) and fixing
them (data cleaning). This is a large area of research, see the book [77].

In traditional view of databases, one setsintegrity constraintsand any violation is considered a data
quality problem and exceptions are raised. Bad quality data(eg., age of a person being more than200) is
never loaded into the database. This is a suitable paradigm for databases that are manually updated by an
operator.

In emerging data streams, data quality problems are likely to be manifold. For example, in network
databases, data quality problems have to do with missing polls, double polls, irregular polls, disparate traffic
at two ends of a link due to unsynchronized measurements, outof order values, etc. Now it is unrealistic
to set integrity constraints and stop processing a high speed data feed for each such violation; furthermore,
appearance of such problems in the feed might by itself indicate an abnormal network phenomena and
cleaning it off in the database may hide valuable evidence for detecting such phenomena. Developing
algorithms to detect one data quality problem after anotheris simply not a scalable or graceful approach,
one needs a different principled approach.

I am a believer indata quality monitoringtools. They operate as database applications, monitoring its
state by measuring statistics: strong deviation from expected statistics may be projected as a ping for the
database administrator or the user to react to. To be useful,the tool has to be configured to monitor most
suitable statistics and thresholds need to be set to releasesuitable number of pings while suppressing false
alarms. This is an engineering challenge. There are many ways the database and users may deal with these
pings: writing their queries in an informed way is my choice.See [78] for related discussions.

Bellman [66] is such a tool for traditional database systems; it monitors the structure in the database
tables using various statistics on the value distribution in the tables. PACMAN [78] is another tool; it uses
probabilistic, approximate constraints(PACs) to monitor SNMP data streams and works operationallyfor
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a large ISP. PACs are also a principled way to determine what are data quality problems. More needs to be
done.

In general, our communities have approached data quality problems as “details” and dealt with indi-
vidual problems as the need arises. (In Computational Biology for example, one deals with noisy data by
redefining a particular problem.) I think there is a need to develop more principled methods—theory and
systems—for dealing with poor quality data.

Here is a specific technical problem not restricted to streams.

Problem 19 Given a setS of stringss1, . . . , sn and setT of stringst1, . . . , tn, find amatching(ie., one-
to-one mapping)f : S → T such that

∑

i d(si, f(si)) is (approximately) minimized. Letd(x, y) be the
edit distance between stringsx and y. This problem can be done by computingd(si, tj) for all pairs i, j
and finding min cost matching, but the goal is to get a substantially subquadratic (say near linear) time
approximate algorithm. The underlying scenario isS andT are identical lists of names of people, but with
some errors;f is our posited (likely) mapping of names of people in one listto the other.

7.10 Fish-eye View

Let me do a fish-eye view of other areas where streaming problems abound. The discussion will be elliptical:
if you mull over these discussions, you can formulate interesting technical open problems.

7.10.1 Linear Algebra

Many matrix functions need to be approximated in data streammodel. Let me propose a specific problem.

Problem 20 Given a matrixA[1 · · · n, 1 · · · n] in the Turnstile Model (i.e., via updates toA), find an ap-
proximation to the bestk-rank representation toAt at any timet. More precisely, findD∗ such that

||At − D∗|| ≤ f( min
D, rank(D)≤k

||At − D||)

using suitable norm||.|| and functionf .

Similar result has been proved in [51] using appropriate sampling for a fixedA, and recent progress is in [50]
for similar problem using a few passes, but there are no results in the Turnstile Model. A lot of interesting
technical issues lurk behind this problem. One may have to beinnovative in seeking appropriate||.|| and
f . Other linear algebraic functions are similarly of interest: estimating eigenvalues, determinants, inverses,
matrix multiplication, etc.

7.10.2 Statistics

We saw how to estimate simple statistical parameters on datastreams. We need vastly more sophisticated
statistical analyses in data stream models, for example, kernel methods, scan statistics, kurtosis parameters,
data squashing, etc., the whole works. In statistics, researchers seem to refer to “recursive computing” which
resonates with the cash register model of computation. There is an inspiring article by Donoho [52] which is
a treasure-tove of statistical analyses of interest with massive data. Another resource is http://www.kernel-
machines.org/. Any of the problems from these resources will be interesting in data stream models. Let me
propose a general task:

Problem 21 Assume a model for the signalA and estimate its parameters using one of well known methods
such as regression fitting or maximum likelihood estimation, etc. on the data stream.
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7.10.3 Complexity Theory

Complexity theory has already had a profound impact on streaming. Space-bounded pseudorandom generators—
developed chiefly in the complexity theory community—play an important role in streaming algorithms. No
doubt more of the tools developed for small space computations will find applications in data streaming.

In a recent lunk talk with David Karger, the question arose whether quantum phenomenon can com-
press computations into much smaller space than conventional computations, i.e., quantum memory is more
plentiful than conventional memory.

Let me propose a question, which is likely to have been in researchers’ minds; Sivakumar has some
notes.

Problem 22 Characterize the complexity class given by a deterministiclogspace verifier with one-way
access to the proof.

7.10.4 Privacy Preserving Data Mining

Peter Winkler gives an interesting talk on the result in [53]which is a delightful read. Paul and Carole each
have a secret name in mind, and the problem is for them to determine if their secrets are the same. If not,
neither should learn the other’s secret. The paper [53] presents many solutions, and attempts to formalize
the setting. (In particular, there are solutions that involve both Paul and Carole permuting the domain, and
those that involve small space pseudorandom generators.) Yao’s “two millionaires” problem [54] is related
in which Paul and Carole each have a secret number and the problem is to determine whose secret is larger
without revealing their secrets.

These problems show the challenge in the emerging area of privacy preserving data mining. We have
multiple databases (sets or multisets). Owners of these databases are willing to cooperate on a particular
data mining task such as determining if they have a common secret, say for security purposes or because it
is mandated. However, they are not willing to divulge their database contents in the process. This may be
due to regulatory or proprietary reasons. They need privacypreserving methods for data mining.

This is by now a well researched topic with positive results in very general settings [56]. However,
these protocols have high complexity. But there is a demand for efficient solutions, perhaps with provable
approximations, in practice. In [55] authors formalized the notion of approximate privacy preserving data
mining and presented some solutions, using techniques similar to ones we use in data stream algorithms.
Lot remains to be done.

The database community is researching general, efficient methods to make databases privacy-preserving.
Let me propose a basic problem.

Problem 23 Paul hasm secrets, and Carole hasn secrets. Find an approximate, provably privacy-preserving
protocol to find the common secrets. As before, the unique secrets of Paul or Carole should not be revealed
to each other.

Other problems arise in the context of banking, medical databases or credit transactions. This gives new
problems, for example, building decision trees, detectingoutliers, etc. For example:

Problem 24 Paul, Carole and others have a list of banking transactions (deposits, withdrawal, transfers,
wires etc.), each oftheir customers. Say the customers have common IDs across the lists. Design an
approximate, provably privacy-preserving protocol to findthe “heavy hitters”, i.e., customers who executed
the largest amount in transactions in thecombinedlist of all transactions.
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8 Concluding Remarks

In How Proust can Change Your Life, Alain de Botton wrote about “the All-England Summarise Proust
Competition hosted by Monty Python ... that required contestants to précis the seven volumes of Proust’s
work in fifteen seconds or less, and to deliver the results first in a swimsuit and then in evening dress.” I
have done something similar with data stream algorithms in what amounts to an academic15 seconds sans
a change of clothes.

I think data streams are more than the topic de jour in Computer Science. Data sources that are massive,
automatic (scientific and atmospheric observations, telecommunication logs, text) data feeds with rapid
updates are here to stay. We need the TCS infrastructure to manage and process them. That presents
challenges to algorithms, databases, networking, systemsand languages. Ultimately, that translates into new
questions and methods in Mathematics: approximation theory, statistics and probability. New mindset—say,
seeking only the strong signals, working with distributionsummaries—are needed, and that means a chance
to reexamine some of the fundamentals.

8.1 Data Stream Art

Trend or not, data streams are now Art.

• There are ambient orbs [121] dubbed “News that Glows” by the New York Times Magazine, Dec 15
2002, pages 104–105, that indicate fluctuations in Dow JonesIndustrial Average using continuously
modulated glow. Clearly they are useful for more than vetting financial obsessions.

• Dangling Stringcreated by (wonderful techno-)artist Natalie Jeremijenko, is a live wire connected to
a Ethernet cable via a motor; traffic level in the cable is shown by the range of motions from the tiny
twitch to a wild whirl, with associated sounds [111].

• Mark Hansen and Ben Rubin have theListening Postexhibit [114] at various locations including the
Brooklyn Academy of Music and the Whitney Museum of Contemporary Art in New York where
they convert the live text information in Internet chat rooms and message boards into light and sound,
described by NY Times as a “computer-generated opera”.

Besides being Art, ambient information displays like the ones above are typically seen as Calming Technol-
ogy [2]; they are also an attempt to transcode streaming datainto a processible multi-sensory flow.

8.2 Short Data Stream History

Data stream algorithms as an active research agenda has emerged only over the past few years. The concept
of making few passes over the data for performing computations has been around since the early days of
Automata Theory. Making one or few passes for selection [8] or sorting [9] got early attention, but the area
seems to have evolved slowly. Computer architecture research has long considered data flow architectures
which may be thought of as an approach to data streaming, but the area did not address complex operations
on each data item.

There was a gem of a paper by Munro and Paterson [8] in 1980 thatspecifically defined multi-pass algo-
rithms and presented one pass algorithms and multi-pass lower bounds on approximately finding quantiles
of a signal.

In early90’s, I remember Raghu Ramakrishnan of U. Wisconsin, Madison,asking me what I can do if
I was allowed to make only one pass over the data. Presumably others had this question in their mind too.
“Not much”, I told Raghu then, but that has changed in the past6 years.
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Phil Gibbons and Yossi Matias at Bell Labs synthesized the idea of Synopsis Data Structures [59] that
specifically embodied the idea of small space, approximate solution to massive data set problems. The in-
fluential paper [1] used limited independence for small space simulation of sophisticated, one-pass norm
estimation algorithms. This is a great example of ideas thatemerged from complexity-theoretic point of
view—pseudo random generators for space-bounded computations—getting applied to algorithmic prob-
lems that are motivated by emerging systems. The paper by Henzinger, Raghavan and Rajagoplan [10] for-
mulated one (and multiple) pass model of a data stream and presented a complexity-theoretic perspective;
this is also an insightful paper with several nuggets of observations some of which are yet to be developed.
Joan Feigenbaum, working with researchers at AT& T Research, identified, developed and articulated the
case for the network traffic data management as a data stream application. This was a great achievement
and it is now widely accepted as one of the (chief?) inspiringapplications for the area. Significant work was
done at research labs—IBM Research and Bell Labs— and selectuniversities about the same time.

Since these early developments, a lot has been done in Theoretical Computer Science community and in
others including programming languages, KDD, Databases, Networking, etc. Hancock, a special purpose C
based programming language that supports stream handling,got the best paper award in KDD 2000. There
is focus on decision trees on data streams in KDD community. Rajeev Motwani gave a thoughtful plenary
talk at PODS 2002 on data stream systems focusing on the fundamental challenges of building a general-
purpose data stream management system. The associated paper [11] is well worth reading, in particular,
for a database perspective. There have been tutorials in both SIGMOD and VLDB in year 2002. [107]
DIMACS gathered working groups on data streams. George Varghese addressed the problem of computing
at link speed in router line card and focused on simple data stream problems at a SIGCOMM 2002 tutorial.
Sprint Labs work on IP monitoring was presented at the SIGMETRICS 2002 tutorial [4]. Jiawei Han has
tutorials and talks on data mining problems in data streams [104].

The wonderful website [122] has a lot of information.

8.3 Perspectives

Doubtless more tutorials, workshops and other academic adventures will happen over time; the main point
is that data stream agenda now pervades many branches of Computer Science. Industry is in synch too:
several companies are promising to build special hardware to deal with incoming data at high speed. I
was at a National Academy of Sciences meeting recently [112], where data stream concerns emerged from
physicists, atmospheric scientists and statisticians, soit is spreading beyond Computer Science.

Unlike a lot of other topics we—algorithmicists—poured energy into, data streams is an already accepted
paradigm in many areas of CS and beyond.6 I think if we keep the spirit of stream data phenomenon in
mind, and be imaginative in seeking applications and models, potential for new problems, algorithms and
mathematics is considerable. I hope the perspective I have presented in this writeup helps you ideate.

I have mixed exposition with reflections. Thanks to the SODA 2003 PC for giving me the opportunity.
I have left out image, audio and video streams, XML streams, etc.
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