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Abstract

Biomolecular data mining is the activity of finding significant information in protein, DNA and
RNA molecules. The significant information may refer to motifs, clusters, genes, protein signa-
tures and classification rules. This chapter presents an example of biomolecular data mining: the
recognition of promoters in DNA. We propose a two-level ensemble of classifiers to recognize E.
Coli promoter sequences. The first-level classifiers include three Bayesian neural networks that
learn from three different feature sets. The outputs of the first-level classifiers are combined in
the second level to give the final result. To enhance the recognition rate, we use the background
knowledge (i.e., the characteristics of the promoter sequences) and employ new techniques to
extract high-level features from the sequences. We also use an expectation-maximization (EM)
algorithm to locate the binding sites of the promoter sequences. Empirical study shows that a

precision rate of 95% is achieved, indicating an excellent performance of the proposed approach.

1 Introduction

As a result of the ongoing Human Genome Project [9], DNA, RNA and protein data are ac-
cumulated at a speed growing at an exponential rate. Mining these biomolecular data to ex-
tract significant information becomes extremely important in accelerating genome processing
[32]. Classification, or supervised learning, is one of the major data mining processes. Classifica-
tion is to classify a set of data into two or more categories. When there are only two categories, it

is called binary classification. In this chapter we focus on binary classification of DNA sequences.
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In binary classification, we are given some training data including both positive and negative
examples. The positive data belong to a target class, whereas the negative data belong to the
non-target class. The goal is to assign unlabeled test data to either the target class or the non-
target class. In our case, the test data are some unlabeled DN A sequences, the positive data are
promoters and the negative data are non-promoters. Since our goal is to identify promoters in the
unlabeled DNA sequences, we use the terms “classification” and “recognition” interchangeably

in the chapter.

1.1 Related Work

Table 1 summarizes some work in biomolecular data mining. The first column indicates the
“knowledge” to be mined in the biomolecular data, the second column shows the techniques used
and the third column provides references. The knowledge to be mined includes DNA sequence
signals such as splice sites and promoters, protein sequence classification rules and protein se-

quence motifs.

H Knowledge to be mined ‘ Techniques used ‘ References H
Genes in DNA Hidden Markov model Kulp et al. [14]
Neural networks Xu et al. [34]
Splice sites in DNA Pattern matching Wang et al. [31]
Markov chain Salzberg [26]
Promoters in DNA Neural networks Opitz et al. [21]
Decision tree Hirsh et al. [11]
Protein classification rules | Hidden Markov model Krogh et al. [13]
Neural networks Wu et al. [33]
Protein motifs Minimum description length | Brazma et al. [2]

Table 1: A summary of work performed for biomolecular data mining.

In this chapter we propose a two-level approach to recognizing E. Coli promoters in DNA
sequences. The first-level classifiers include Bayesian neural networks [18, 20] trained on different
feature sets. The outputs of the first-level classifiers are combined in the second level to give the
final classification result. Dietterich [8] recently indicated that using an ensemble of classifiers can
achieve a better recognition rate than using a single classifier when (i) the recognition rate of each
individual classifier of the ensemble is greater than 0.5; and (ii) errors made by each individual
classifier are uncorrelated. Our experimental results show that the proposed combined classifiers

indeed outperform the individual classifiers made up solely by Bayesian neural networks.



Using an ensemble of classifiers to process biomolecular data has been studied by Brunak et
al. [3], Wang et al. [30], and Zhang et al. [36]. In [3], Brunak et al. exploited the complementary
relation between exon and splice sites to build a joint recognition system by allowing the exon
signal to control the threshold used to assign splice sites. Specifically, a higher threshold was
required to avoid false positives for the regions where there are only small changes in the exon
activity. A lower threshold was used to detect the donor site for the regions where the exon
activity decreases significantly. Similarly, a lower threshold was used to detect the acceptor site
for the regions where the exon activity increases significantly. In [36], Zhang et al. developed
a hybrid system, which included a neural network, a statistical classifier and a memory-based
reasoning classifier, to predict the secondary structures of proteins. Initially, the three classifiers
were trained separately. Then a neural network used as a combiner was trained to combine the
outputs of the three classifiers by learning the weights for each classifier from the training data.
The result of the classification was given by the combiner. In [30], Wang et al. studied the
complementarity of five classifiers for protein sequence recognition, and proposed an ensemble of
the classifiers, which outperformed each individual classifier.

In contrast to the previous work, we apply Bayesian neural networks to recognizing promoters
in DNA. The Bayesian neural networks make predictions by marginalization over the weight
distribution. Furthermore, the Bayesian neural networks control the model complexity to avoid
the overfitting problem [17].

The rest of the chapter is organized as follows. Section 2 describes the characteristics of E.
Coli promoters and our feature extraction methods. Section 3 and Section 4 present our two-level

classification approach. Section 5 presents experimental results. Section 6 concludes the chapter.

2 Promoter Recognition

2.1 Encoding Methods

One important issue in applying neural networks to biosequence analysis is regarding how to en-
code the biosequences, i.e., how to represent the biosequences as the input of the neural networks.
Good input representations make it easier for the neural networks to recognize the underlying
regularities. Thus, good input representations are crucial to the success of the neural network
learning [11].

One of the encoding methods is orthogonal encoding [21]. In orthogonal encoding, nucleotides
or amino acids in a biosequence are viewed as unordered categorical values, and are represented

by C' dimensional orthogonal binary vectors, where C is the cardinality of the 4-letter DNA



SLIDING WINDOW

Figure 1: An example of the orthogonal encoding of a DNA sequence.

alphabet D = {A, T, G, C}, or the cardinality of the 20-letter amino acid alphabet 4 = {A, C,
D, E, F, G,H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. That is, we use C binary (0/1)
variables, among which only one binary variable is set to 1 to represent one of the C' possible
categorical values and the rest are all set to 0. For instance, we represent the nucleotide A by
“1000”, and amino acid Y by “00000000000000000001”. The orthogonal encoding was frequently
used in the early 1990s [6, 12]. Figure 1 shows an example of the orthogonal encoding of a DNA
sequence.

The orthogonal encoding requires that the biosequences be equal in length, or one must sample
the biosequences of variable lengths by a window of fixed size. Another disadvantage is that it
wastes a lot of input units in the input layer of a neural network. For instance, for a protein
sequence of 100 amino acids, 2000 input units are required to represent the protein sequence.
This requires many neural network weight parameters as well as many training data, making it
difficult to train the neural network.

An alternative encoding method, as proposed in this chapter, is to use high-level features ex-
tracted from biosequences. The high-level features should be relevant and biologically meaningful.

By “relevant”, we mean that there should be high mutual information between the features and



-44 region -29 region -10 box franscriptional start site
CIMGTAGCoCTITCACggTAGCGAAACGHagMGAATGGAAAGATgCctgCAgacacataa
-b4 region -35 box -22 region +1region

Figure 2: An example promoter sequence. The regions are highlighted by upper case letters. The
-54 region, -44 region, -35 box, -29 region, -22 region, -10 box, and +1 region are CTTTGTAGC,
CTTTCAC, TAGCGA, AACG, GAATGG, AAAGAT and CA, respectively.

the output of the neural network, where the mutual information measures the average reduction
in uncertainty about the output of the neural network given the values of the features. By “bi-
ologically meaningful”, we mean that the features should reflect the biological characteristics of

the sequences.

2.2 Characteristics of E. Coli Promoters

The E. Coli promoter is located immediately before the E. Coli gene. Thus, successfully locating
the E. Coli promoter conduces to identifying the E. Coli gene. The uncertain characteristics
of the E. Coli promoters contribute to the difficulty in the promoter recognition. The E. Coli
promoters contain two binding sites to which the E. Coli RNA polymerase, a kind of protein,
binds [16]. The two binding sites are the -35 hexamer box and the -10 hexamer box, respectively.
Each binding site consists of 6 bases (nucleotides). The central nucleotides of the two binding
sites are roughly 35 bases and 10 bases, respectively, upstream of the transcriptional start site.
The transcriptional start site is the first nucleotide of a codon where the transcription begins; it
serves as a reference point (position +1). The consensus sequences, i.e., the prototype sequences
composed of the most frequently occurring nucleotide at each position, for the -35 binding site
and the -10 binding site are TTGACA and TATAAT, respectively. But none of the promoters can
exactly match the two consensus sequences. The average conservation is about 8 nucleotides,
meaning that a promoter sequence can match, on average, 8 out of the 12 nucleotides in the
two consensus sequences. Figure 2 shows an example promoter sequence with the -35 binding
site being TAGCGA and the -10 binding site being AAAGAT. The conservation here includes only 6
nucleotides.

The two binding sites are separated by a spacer. The length of the spacer has an effect on
the relative orientation between the -35 region and the -10 region. A spacer of 17 nucleotides
is most probable. The promoter sequence in Figure 2 has a spacer of 17 nucleotides. Another
spacer between the -10 hexamer box and the transcriptional start site also has a variable length.

The most probable length of this spacer is 7 nucleotides. The promoter sequence in Figure 2



has a spacer of 6 nucleotides.! Because of the variable spacing, it is not appropriate to use the
orthogonal encoding to encode or view a promoter sequence as an n attribute tuple, where n is
the length of the promoter sequence. Many promoter sequences have the pyrimidine (C or T) at
the position -1 (one nucleotide upstream of the transcriptional start site), while the purine (A or
G) is at the transcriptional start site (position +1). The +1 region includes the nucleotides at the
position -1 and the transcriptional start site. The promoter sequence in Figure 2 has a nucleotide
C at the position -1 and a nucleotide A at the transcriptional start site.

In addition to these salient characteristics in the two binding sites and the transcriptional
start site, there are some non-salient characteristics in other regions. In Galas et al. [10] and
Mengeritsky et al. [19], a pattern matching method was applied to the characterization of E. Coli
promoters. Some weak motifs were found around the -44 and the -22 regions. A weak motif is a
subsequence, which occurs frequently in a region. We use the term “weak”, since the frequency
of a base of the motif is not as significant as the frequency of a base of the consensus sequences
occurring in the binding sites. In Cardon et al. [5], as many as 8 nucleotides (weak motifs)
within the spacer region between the two binding sites were found to have contributions to the
specificity of the promoter sequences. Recently, Pedersen and Engelbrecht [24] adopted a neural
network to characterize E. Coli promoters. The significance of a weak motif was measured by the
decrease in the maximum correlation coefficient when all motifs except that weak motif were fed
into the neural network. By using this method, the authors found some weak motifs in the 41,
-22, and -44 regions. It is interesting to observe that these weak motifs are spaced regularly with
a period of 10-11 nucleotides corresponding to one helical turn. This phenomenon suggests that
the RNA polymerase makes contact with the promoter on one face of the DNA. Subsequently, the
characterization of E. Coli promoter sequences was carried out by the hidden Markov model [23].
It was observed that the position of the -35 box relative to the transcriptional start site is very
flexible. More recently, a clustering analysis was carried out on a larger set of E. Coli promoter
sequences containing 441 promoters [22]. Some weak motifs were found in the -54 region.

These weak motifs were also revealed by the sequence logos described in Schneider and
Stephens [27]. Figure 3 displays the sequence logos of 438 E. Coli promoters aligned according

to the transcriptional start site.? Given a set of aligned sequences, the sequence logos measure

'In general, the distance between the -10 binding site and the transcriptional start site varies from 3 to 11
bases. The distance between the -35 binding site and the -10 binding site varies from 15 to 21 bases. These varying
distances render promoter recognition difficult, as both the contents and positions of the binding sites are uncertain.
In the following subsection, we present an expectation-maximization (EM) algorithm to locate the binding sites of
the promoter sequences.

The sequence logos were produced by wusing the software available at http://www-
lecb.ncifcrf.gov/~toms/delila.html.
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Figure 3: The sequence logos of 438 E. Coli promoter sequences. Position 0 in the figure is the
transcriptional start site, which is equivalent to position +1 described in the text. The negative
positions in the figure are consistent with those described in the text.

the non-randomness of each position [/ independently by the Shannon entropy for that position:

R(1) = logz(ID]) = (= D_ f(b,1)loga f(b,1)), (1)

beD
where |D| is the cardinality of the 4-letter DNA alphabet D, logs(|D|) = 2 is the maximum
uncertainty at any given position, — Y ,cp f(b,1)loga f(b,1) is the Shannon entropy of position I,
and f(b,!l) is the frequency of base b at position .

The height at each position represents the information content of that position. The higher
the information content, the less random that position is. The size of each base at each position
of the logos is proportional to the frequency of the base. Recall that a weak motif is a frequently
occurring subsequence in a region. In the sequence logos, a weak motif consists of positions
(bases) with non-zero information content. From Figure 3, it can be seen that some weak motifs
exist in the +1, -22, -29, -44, and -54 regions.

Based on the characteristics of the E. Coli promoter sequences reported in the literature, we
explore two methods for extracting high-level features in the following regions in the promoters:

the -54 region (9 nucleotides long), the -44 region (7 nucleotides long), the -35 region (6 nucleotides



long), the -22 region (6 nucleotides long), the -10 region (6 nucleotides long), and the +1 region
(2 nucleotides long) (see Figure 2). The first method is the Maximal Dependence Decomposition
(MDD) technique and the second one is a motif based method. Because the -29 region is 4
nucleotides long, and the 4 nucleotide long motif in the -29 region is not statistically significant,
we apply only the MDD method to extracting features in the -29 region. In order to calculate
these feature values, we must know, as precisely as possible, where these regions are. In the
following subsection, we present an expectation-maximization (EM) algorithm for locating the

binding sites of promoter sequences. Then we describe our feature extraction methods in detail.

2.3 Locating Binding Sites by the EM Algorithm

To align subsequences in the -35 region, the -29 region, the -22 region and the -10 region, we need
to locate the two binding sites in the E. Coli promoters. Locating the -35 box and the -10 box may
be done by the EM algorithm [7]. In general, the EM algorithm can be applied for the maximum
likelihood estimation when data are incomplete. Locating the binding sites by the EM algorithm
was first proposed by Lawrence et al. [15]. It was then generalized by Cardon et al. [5] to allow
for different spacers between the two binding sites. These published methods [1, 5, 15] either
assumed that the location of the binding sites is uniformly distributed or attempted to locate
one “continuous region” that included the -35 box, the -10 box and a spacer of variable length
between them. By contrast, our method does not make the assumption of uniform distribution
and considers the binding sites separately from the spacer.

Let T represent the set of promoter sequences in the training set, i.e., 1" contains all positive
training sequences. Let K denote the cardinality of 7. For a promoter sequence S; € T', the
length of the spacer between the -10 region and the transcriptional start site, denoted spig, and
the length of the spacer between the -35 region and the -10 region, denoted spss, are unobserved,
though S; is observed. Specifically, we refer to the positive training sequences as “observed” data
since they are given. These observed data are incomplete, because the lengths of the two spacers
are not given (the lengths are referred to as “unobserved” or “missing” data). The proposed
EM algorithm estimates the model parameters, defined later, from the incomplete data. Then
based on the estimates of the model parameters, the algorithm determines the locations of the
two binding sites for any DNA sequence.

In general, sp1g varies from 3 to 11 and sps5 varies from 15 to 21. Assume that the nucleotides
at all positions are independent. Then one can use the Position Weight Matrix (PWM) described
in Staden [28] to model nucleotides at each position. Each binding site consists of 6 bases. Let

Py j(x),j =1,...,6, denote the probability of z, z € D, occurring at position j in the -10 region.



Let P1o denote (Pio,1,--.,Pio6). Let P35 (x),j = 1,...,6, denote the probability of = occurring
at position j in the -35 region. Let P35 denote (Ps51,. .., Ps56). Let P,(z) denote the probability
of z occurring in the regions outside the two binding sites. Let Ps(Sp1g = m, Spss = n) denote
the probability of Sp1gp = m and Spss = n where Sp1g (Spss, respectively) is the random variable
denoting the distance between the transcriptional start site (the -35 region, respectively) and the
-10 region, m € {3,...,11} and n € {15,...,21}. Let 6 = (P19, P35, Py).

The EM algorithm proceeds iteratively to converge. Each iteration consists of two steps:
Expectation step (E step) and Maximization step (M step). The E step calculates the expected
complete-data log likelihood, where the expectation is over the distribution of the missing data
given the observed data and current estimates of §. Assume that the promoter sequences in the

training set 7" are independent. Then the E step calculates

Espi0,5ps5T,0109P (T, Sp1o, Spss|6)
= Egp,,5pssT,6009(P(T|Sp10, Sp3s, 0) Ps(Sp1o, Spss))
= Y Y3 Tatis P(Spio = m, Spss = n|Si, 0)log(
P(S;i|Spio = m, Sp3s = n,0)Ps(Spio = m, Spss = n)). (2)

Suppose that all promoter sequences in the training set T are 65 nucleotides long and are
aligned with respect to the transcriptional start site, which is at position 56. Let S; ; denote the
nucleotide at position j of promoter sequence S;. Define

1 Sy =a
Lija _{ 0 otherwise (3)

Let O;mn(z) denote the number of occurrences of the nucleotide = outside the two binding

sites of promoter sequence S; given Spip = m and Spss = n. Then

P(Si|Spio = m, Spss = n,0) = I1%_1 Pio (S 49 m-+) 1101 Ps5.;(Si 43— m—nt5) gy Po () O3 @),
(4)

From (4), according to Bayes’ rule, we have

P(Sp1o = m, Spss = nlS;, 0)
P(S;|Sp1o=m,Sp3s=n,0)Ps(Spio=m,Sp3s=n)
P(S;]0)
P(S;|Sp1o=m,Sp3s=n,0)Ps(Spio=m,Sp3s=n)
- 21
> +—15 P(Si|Sp10=m,Sp3s=n,0) Ps(Sp1o=m,Sp3s=n)

m=3

T O; x
H?zl P10,5 (Si,49—m+j )H?:1 P35, (Si,43—m—n+; )=y Po(z) im,n(#) pg (Sp1g=m,Spgs=n) (5)

11 o1 0; (=) :
6 (S 16 (S 11T i,m,n — —
§ :m:3 n=15 Hj=1P10,] (51,4Q—m+j )Hj=1P35,] (51,43—m—n+j )Hm:APO("”) Ps(Sp1o=m,Spzs=n)

Previous applications of the EM algorithm [1, 5, 15] assumed Ps(Sp10, Sp3s) to be uniformly
distributed. The term Ps(Spig = m,Spss = n) was deleted from (5). We do not assume



P (Sp19, Sp3s) to be uniformly distributed, as the most probable values of m are 6, 7, 8, and the
most probable values of n are 16, 17, 18. Substituting (4) and (5) into (2), we have

KZ Z fro,5(z)logProj(z) + K Z Z f35,(z)logPss j(z)+

j=lz=A j=lz=A
T 11 21
(65 — 12) Zfo )ogP,(z —}-KZ ZfsmnlogP(mn) (6)
m=3n=15
where
Jro,5(z Z Z Z Ii 49-m+1j, P(Sp1o = m, Sp3s = nlS;, 0),

zlm 3n=15

f35,5(z Z Z Z I; 43—m—n+jeP(Sp1o = m, Sp3s = n|S;, 0),

zlm 3n=15

fo(z) = Z Z Z Oim,n () P(Sp1o = m, Spss = n[S;,0),

zlm 3n=15

Z z Z P(Sp19 = m, Spss = nlS;, 0).

zlm 3n=15

Let #° denote the value of § at the beginning of the first iteration. §° was initialized randomly
so that the E step can proceed. In each iteration, we use the current estimate @' to calculate the
expected complete data log likelihood.

The M step maximizes (6) with respect to #. The maximum likelihood estimates of # when
the complete data were known are just sample frequencies f10,j, f35,j, fo, and fs, 5 = 1,...,6.
That is,

P () = fuo,j(z), = € D,
Pyt i(z) = fs5,4(z),z € D,
Py (2) = fo(z),x € D,
Py (m,n) = fs(m,n). (7)

The new value of 8 can be used in the next iteration. The process iterates to convergence.
Given the model parameters calculated from the positive training sequences (i.e., the promoter
sequences in the training data set T'), we can determine the locations of the two binding sites
of any DNA sequence S,, which could be a training sequence or a test sequence, a positive
sequence or a negative sequence, by choosing the two spacer lengths spig and spss that maximize
P(Sy, Spio, Sp3s|0) = P(Sn|Sp10, Sp3s,0)Ps(Sp1o, Spss). We then align the two binding sites of
the training promoter sequences and extract features from the different regions using the MDD

technique and the motif based method, described below.
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2.4 The MDD Technique

The MDD technique was first proposed to detect the splice site in human genomic DNA in the
gene prediction software GENSCAN [4]. It was later adopted in the latest version of the gene
prediction software MORGAN [25]. MDD was derived from the PWM model to overcome the
limitation of the consensus sequence by modeling the nucleotide distribution at each position.
One disadvantage of PWM is that it assumes the positions are independent. This disadvantage
was removed in the Weight Array Model (WAM) [35], which generalizes PWM by allowing for
the dependencies between the adjacent positions.

WAM is essentially a first order Markov chain (conditional probability on the upstream adja-
cent nucleotide) which can be further generalized by the second-order Markov chain, third-order
Markov chain, etc. However, the more dependencies one tries to model, the more free parameters
the model has, thus requiring more training data to appropriately estimate the parameters in the
model. In general, there is a danger when one tries to use more complex models, which have more
free parameters, and does not have enough training data to estimate the free parameters. For
instance, suppose we have 438 promoter sequences available to estimate the parameters P;(z),
z € D, in PWM where P;(z) represents the probability of nucleotide = occurring at position
i in the sequences. Equivalently we have roughly 438/4 = 109 promoter sequences available
to estimate the parameters Pj(z;|z;—1) in WAM, where P;(z;|z;—1) represents the conditional
probability of z; at position ¢ given z; 1 at position ¢ — 1, which is the upstream neighbor of
x; at position i, z; 1, z; € D. 109 promoter sequences are too few to reliably estimate the free
parameters.

MDD provides a flexible solution to the above problem by iteratively clustering the dataset
based on the most significant adjacent or non-adjacent dependencies. It essentially models
the first-order, second-order, third-order and even higher order dependencies depending on the
amount of training data available. More specifically, MDD works as follows. Given a set U of
aligned sequences, it first chooses the consensus nucleotide C; at each position 7. In our case,
the set U includes subsequences in the same region of all the positive training sequences (i.e.,
promoter sequences). Then the x? statistic Xij is calculated to measure the dependencies between
C; and the nucleotides at position j (7 # j). If no significant dependencies are detected, then the
simple PWM is used. If there are significant dependencies detected, but the dependencies exist
only between adjacent positions, then WAM is used. Otherwise the MDD procedure is carried
out.

The MDD procedure is an iterative process: calculate the sum S; = 3_,..; x;; for each ; select

11



the position m such that S, is maximal, and decompose the dataset U into two disjoint subsets,
U, (containing all sequences that have the consensus nucleotide Cy, at position m) and U — U,,
(containing all sequences that do not have the consensus nucleotide Cy, at position m).

The MDD procedure is then applied recursively to Uy, and U —U,, respectively until any one of
the following conditions holds: no further decomposition is possible, no significant dependencies
between positions exist in the resulting subsets, or the number of sequences in the resulting
subsets is below a threshold, so that, reliable estimation of parameters is not possible after
further decomposition.

We apply the MDD method to the -54 region, the -44 region, the -35 region, the -29 region,
the -22 region, the -10 region, and the +1 region respectively, of the training promoter sequences.
As a result, the -44 region and the +1 region are modeled by PWM, and one level decomposition
is carried out in the other regions.

Given a set of sequences, the MDD feature values of each sequence are calculated as follows.
First, the MDD technique is applied to all the positive training data (i.e., the E. Coli promoter
sequences). The results are probability matrices for the -44 region and the +1 region as well as
conditional probability matrices for the -54 region, the -35 region, the -29 region, the -22 region,
and the -10 region. Secondly, for all the positive and negative sequences, these matrices are
used to calculate the MDD feature values of each sequence. In particular, the feature value of a
subsequence X = z1x2z3...%y, Where z; € D, ¢ =1,2,...,n, in the -44 region or the 41 region

in a sequence S is calculated by

P(X) = p1(z1)p2(z2)p3(x3) - . . pu(zn), (8)

where p;(z;) is the probability of z; at position i. For example, suppose the probability matrix

in the +1 region of the positive training sequences is

Position —1 Position + 1

A 0.168 0.481
¢ 0.392 0.100
G 0.110 0.271
T 0.330 0.148

Then, for example, for the subsequence TG, P(TG)=0.330 x 0.271=0.089.
The feature value of a subsequence X = z1z973 ...z, in the other regions of the sequence S
is calculated by

P(X) = Pm(Crm)epl (z1) - - - eppy_1 (Tm—1)ePmy 41 (Tmt1) - - - PR (zn) i Cpy = Ty )
P (Zm)epl (@1) - - . P 1 (Tm—1)cPm 1 (Tms1) - - - cpy (2r)  otherwise

12



where p,,(Cr) (pm(zm), respectively) represents the probability of C,, (z.,, respectively) at
position m, cp™(z;) (cp™(z;), respectively), i = 1,2,...,m —1,m + 1,m + 2,...,n, represents

the conditional probability of z; at position ¢ given z,,, = Cy, (p, # Cp, respectively).

2.5 The Motif Based Method

To calculate the motif feature values of each sequence, we first apply our pattern matching
tool, Sdiscover [29], to the positive training data (i.e., the E. Coli promoter sequences) to find
weak motifs in the -54 region, the -44 region, the -35 region, the -22 region and the -10 region
respectively, in these sequences.

Let V be a set of sequences. We define the occurrence number of a motif (subsequence) to be
the number of sequences in V' that contain the motif. The Sdiscover tool can find all the motifs
M where M is within the allowed Mwut mutations of at least Occur sequences in the given set V
and |M| > Length where |M| represents the number of nucleotides in M. Mut, Occur, Length
are user-specified parameters.

In our case, the set V' includes all the subsequences in the same region (e.g., the -54 region) of
the positive training sequences. The required length of the motifs is fixed for each region. In the
study presented here, the length is 6 for the -54, -35 and -10 regions, the length is 5 for the -44 and
-22 regions. The minimum occurrence number required is 2 and the allowed mutation number is
0. The occurrence number of a motif is assigned as the weight of the motif. Intuitively, the more
frequently a motif occurs in a region of the positive training sequences, the higher weight it has.

Given a set of sequences, which could be training sequences or test sequences, positive se-
quences or negative sequences, the motif feature values in the -54, -44, -35, -22, -10 regions of
each training sequence are calculated as follows. First, the motif based method described above
is applied to the -54, -44, -35, -22, -10 regions of all the positive training data. The result is five
sets of motifs in the -54, -44, -35, -22, -10 regions. Secondly, for each region of a sequence S,
the subsequence in that region of S is matched against the motifs in that region. If there are
matched motifs, the feature value of that region for S is the maximum weight of the matched
motifs; otherwise the feature value is assigned to 0.

The motif feature value in the +1 region of any sequence is assigned to 1 if the nucleotide at
position -1 is the pyrimidine (C or T) and the nucleotide at the transcriptional start site is the

purine (A or G); otherwise it is assigned to 0.
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3 Basic Classifiers

We have developed three basic classifiers: Classifier 0, Classifier_1 and Classifier 2. Each of
the classifiers is a Bayesian neural network. Each training sequence or test sequence is encoded
by the high level features as described in the previous section and the feature values are used as
the input of the neural networks.

The first classifier, Classi fier_0, is a Bayesian neural network with 5 hidden units and 9 input
units including 7 MDD features and 2 distance features, which are the distance (i.e., the number
of nucleotides) between the -35 box and the -10 box and the distance between the -10 box and the
transcriptional start site. The second classifier, Classifier_l, is a Bayesian neural network with
5 hidden units and 8 input units including 6 motif features and the above 2 distance features.
The third classifier, Classifier_2, is a Bayesian neural network with 6 hidden units and 15 input
units including the above 7 MDD features, the above 6 motif features and the above 2 distance
features. The number of hidden units is determined experimentally according to the evidence of
the model.

The Bayesian neural network we use has one hidden layer with sigmoid activation functions.
The output layer of the neural network has one output unit. The output value is bounded

between 0 and 1 by the logistic activation function f(a) = The neural network is fully

1
14+e—@"
connected between the adjacent layers. Figure 4 shows the Bayesian neural network architecture

of Classifier_2.

3.1 Bayesian Neural Networks

The Bayesian neural network is the integration of Bayesian inference and the neural network.
In Bayesian inference, a model (e.g. a neural network) M; consists of a set of free parameters
which are viewed as random variables. The prior of a model M; is represented by P(M;). The
likelihood, i.e., the probability of the data D given the model M;, is specified by P(D|M;). The
posterior probability of the model M; is quantified by P(M;|D). From Bayes’ rule, we have:

P(D|M;)P(M;)
pP(D)
where P(D) = [ P(D|M;)P(M;)dM; is a normalizing constant.

P(M;|D) =

(10)

In our case, D = {x(m),tm},m = 1,2,..., N, denotes the training dataset (including both
positive and negative training data), where N is the total number of the training sequences in D,
x(™) i an input feature vector which contains 9 (8, 15, respectively) input values for Classifier_0
(Classifier_1, Classifier_2 , respectively), and t,, is the binary (0/1) target value for the output

unit. That is, if x(™) represents a promoter sequence, t, is 1; otherwise, t,, is 0. Let x denote an
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‘ Motif featurein +1 region ‘

Figure 4: The Bayesian neural network architecture of Classifier_ 2. Spacer_1 is the distance
between the -35 box and the -10 box. Spacer_2 is the distance between the -10 region and the
transcriptional start site.

input feature vector for a DNA sequence, which could be a training sequence or a test sequence.
Given the architecture A and the weights w of the neural network, the output value y can be
uniquely determined from the input vector x. The output value y(x;w, A) can be interpreted as
P(t = 1|x,w, A), i.e., the probability that x represents a promoter sequence given x, w, A.

The likelihood, i.e., the probability of the data given the model, is calculated by:
P(Dlw,A) =TIy _1y'™ (1 —y)' ' = exp(~G(D|w, A)), (11)

where G(D|w, A) is the cross-entropy error function

N
G(Dw,A) = —(Y_ tmlogy + (1 — tm)log(1 —y)). (12)

m=1
G(D|w, A) is the objective function and is minimized in the non-Bayesian neural network
training process, which is a maximum likelihood estimation based method, and assumes all pos-
sible weights are equally likely.
In the non-Bayesian neural network, the weight decay is often used to avoid overfitting on

the training data and poor generalization on the test data by adding a term %Zle w? to the
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objective function, where « is the weight decay parameter (hyperparameter), Zle w? is the sum
of the square of all the weights of the neural network, and k is the number of weights. This
objective function is minimized, to penalize the neural network with weights of large magnitudes,
penalizing the over-complex model and favoring the simple model. However, there is no precise
way to specify the appropriate value of «, which is often tuned offline.

In the Bayesian neural network, the hyperparameter « is interpreted as the parameter of the
model, and is optimized online during the Bayesian learning process. The weight decay term
%Zle w? can be scaled to (%)gea:p(—% Zle w?) and interpreted as a prior probability of the
weight vector w in the Gaussian distribution with zero mean and variance é Thus, larger neural
network weights are less probable. The Bayesian neural network further generalizes the previous
weight decay term by associating the weights in different layers with different variances. Thus,

the hyperparameter becomes a vector . Let (a1, aq,...,a,) represent the vector o, where «; is

associated with a group of weights w;'-, i=12,...,q,t=1,2,...,n, ¢; is the number of weights

qe
=1

(w$)?, c=1,2,...,n. Then the prior is:

associated with o;. Let E};, denote % )

exp(= Ye1 e Biy)
Zw ’

P(w|a, A) = (13)

where Zy = [exp(— > i a.Efy)dw is a Gaussian integral. From (12) and (13), we can get a
posterior probability:

exp(— Y1 acBiy — G(D|w, A))

P(w|D,a,A) = 7 ;
M

(14)
where Zy = [ exp(— Y r_, acEfy — G(D|w, A))dw is also a normalizing constant.

3.2 The Training Phase

The Bayesian training of neural networks is an iterative procedure. In the implementation of the
Bayesian neural network that we adopt,® each iteration involves two level inferences. Figure 5
illustrates the training process.

At the first level, given the value of hyperparameter «, which is initialized to the random
value during the first iteration, we can infer the most probable value of the weight vector w™?
corresponding to the maximum of P(w|D, a, A) by the neural network training, which minimizes

Yo oo Ef, + G(D|w, A). For the first level inference, Bayes’ rule is

P(w|D,a, A) = 20 |V;’(g|)01: (X’)"l’ A),

(15)

3Software is available at http://wol.ra.phy.cam.ac.uk/pub/mackay/README.html.
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Input training data.
L
©
Choose the number of hidden units of the model.
Initialize the hyperparameter and weight parameters. )

J
=

Given the hyperparameter, find the most probable we- )
ights by the training process (the first level inference).
&

|

Reestimate the hyperparameter
(the second level inference).

Yes

Calculate the evidence of the model
(the third level inference).

Y
Try another model ?

No

L Output the chosen model parameters. ]

Figure 5: The training process of the Bayesian neural network.
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where P(D|w,A), P(w|a, A), and P(w|D,a, A) are given by (11), (13) and (14) respectively.

The P(w|D,a, A) can be approximated by a Gaussian centered around w™? [17]:
P(w|D,a,A) ~ P(Ww™|D, a, A)emp(—%(w —w™)TH(w — w™)), (16)

where H = — 7 ylogP(w|D, o, A)|wmp is the Hessian matrix evaluated at w™?.
At the second level, the hyperparameter « is optimized. For the second level inference, Bayes’

rule is
Dja,A)P(a|A)
P(D|A)

Because of the lack of the prior knowledge of P(a|A), we assume P(a|A) to be a constant and

P(a|D, A) = I (17)

ignore it. Since the normalizing factor P(D|A) is also a constant, the value of @ maximizing the
posterior P(a|D, A) can be inferred by maximizing the evidence of a, P(D|a, A), which is the
normalizing factor in (15). So P(D|a, A) = [ P(D|w, A)P(w|a, A)dw. The evidence P(D|a, A)
is maximized by differentiation with respect to @. We can find the new hyperparameter value

a™®™ by setting the differentiation to zero,

i
o = W, (18)

where +y; is the number of “well-determined parameters” in the group 7 [17]. The new hyperpa-

rameter value a™%

is then used in the next iteration. The process iterates until the convergence
is reached.
The third level inference is the model comparison. This level is carried out manually. For the
third level inference, Bayes’ rule is
P(D|A;)P(A;)
P(D)

P(A;|D) = (19)

where P(A;) is the prior probability and is assumed to be a constant; P(D) is also a constant.
The posterior probability P(A;|D) can be determined by the evidence P(D|A;), which is the
normalizing factor at the second level inference. So P(D|A;) = [ P(D|a, A;)P(a|A;)da. Dif-
ferent models with a different number of hidden units were tested. The model with the largest

evidence value was chosen.

3.3 The Testing Phase

In the testing phase, for the three basic classifiers we have developed, the output of a Bayesian

neural network, y, is given by the marginalization of the network weight distribution. That is,

P(t=1x,D,A) = /P(t: 1jx, w, A)P(w|D, A)dw = /y(x;w, A)P(w|D,A)dw.  (20)
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Combiners

Combiner_0 Combiner_1
Basic classifiers
Classifier_0 Classifier_1 Classifier_2
Spacer 1 MDD Feature Set Motif Feature Set Spacer 2
‘ -54 Region ‘ ‘ -44 Region ‘ ‘ -35 Box ‘ ‘ -29 Region ‘ ‘ -22 Region ‘ ‘ -10Box ‘ ‘ +1 Region ‘

Figure 6: Our classification scheme.

The output of a Bayesian neural network, P(t = 1|x,D,A), is the probability that the
unlabeled test sequence is a promoter. If it is greater than the decision boundary 0.5, the test
sequence is classified as a promoter; if it is less than the decision boundary 0.5, the test sequence

is classified as a non-promoter; otherwise the test sequence gets the “no-opinion” verdict.

4 Combination of Basic Classifiers

The three basic classifiers described in the previous section can be combined into one classifier in
the second level (see Figure 6). We explore two methods for combining the three basic classifiers:
Combiner 0 and Combiner_1.

Combiner_0 employs an unweighted voter. Let output;, 0 < 7 < 2, be the output value of
Classifier_i. If the three basic classifiers agree on the classification results (Promoter, Non-
promoter, No-opinion), the final result will be the same as the results of the three classifiers; if
two classifiers agree on the classification results, the final result will be the same as the results of
these two classifiers; if none of the classifiers agrees on the classification results, the final result
will be the same as the result of a classifier whose min(1 — output;, output;) is minimal; otherwise

the final result is “no-opinion”.
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Combiner_1 employs a weighted voter. Its output is the weighted sum of the outputs of the
three basic classifiers. That is, let w; represent the weight of Classifier_i, where the weight is
the precision rate of Classifier_ in the training phase. The output of Combiner_1 is given by

1 2
P ; w; X output;. (21)
Note that if we assign equal weights to the three basic classifiers, then Combiner_1 is reduced

to Combiner_0.

5 Experiments and Results

5.1 Data

In this study, we adopted E. Coli promoter sequences taken from the latest E. Coli promoter
compilation [22]. There were 441 E. Coli promoters aligned by the transcriptional start site. We
trimmed each promoter sequence to a sequence of 65 nucleotides including nucleotides from -55
(55 nucleotides upstream of the transcriptional start site) to +10 (10 nucleotides downstream of
the transcriptional start site). This gave us 438 promoter sequences.

The negative data (i.e., non-promoter sequences) was retrieved from Genbank.* The negative
data are E. Coli genes with the preceding promoter region deleted. Each negative sequence is

also 65 nucleotides long. There were 1,314 negative sequences.

5.2 Results

Table 2 gives the ten-fold cross validation results for the three basic classifiers and Table 3 gives
the results for the combined classifiers. In ten-fold cross validation, the dataset containing both
the positive data (promoters) and the negative data (non-promoters) was randomly split into
ten mutually exclusive folds D1, Do, ..., D1y of approximately equal size. Each Bayesian neural
network was trained and tested ten times. During the ¢th run, the neural network was trained on
D — D;, and tested on D;. We allocated the data in such a way that the training dataset D — D;
(the test dataset D;, respectively) has approximately 19—0 (%, respectively) positive data and %
(%, respectively) negative data. The average over the ten tests was taken.

The machine used to conduct the experiments was a 350 MHz Pentium IT PC running a Linux
operating system. The time spent in extracting features by a basic classifier in a run was 0.69
seconds on average. The time spent in training the basic classifier in a run was 328.4 seconds on

average. The time spent in the testing phase in a run was 0.35 seconds on average.

4 Available from ftp://ncbi.nlm.nih.gov/repository /Eco/ COLIBANK.
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H ‘ Classifier 0 ‘ Classifier_1 ‘ Classifier_2 H

Precision rate 92.8% 92.9% 93.0%
Specificity 96.5% 95.5% 94.9%
Sensitivity 81.5% 85.2% 87.4%

Table 2: Performance of the three basic classifiers.

We use the precision rate to measure the performance of the studied classifiers. The precision

rate is defined as
C
~ X 100%, (22)

where C' is the number of test sequences classified correctly and N is the total number of test
sequences. A false positive is a non-promoter test sequence that was misclassified as a promoter
sequence. A true positive is a promoter test sequence that was also classified as a promoter

sequence. The specificity is defined as

(1— %) x 100%, (23)

ng

where Ny, is the number of false positives and Ny, is the total number of negative test sequences.

The sensitivity is defined as

Ny,

—= x 100% 24
Npo 7 ( )
where Ny, is the number of true positives and Ny, is the total number of positive test sequences.

H ‘ Combiner_0 ‘ Combiner_1 H

Precision rate 93.9% 95.0%
Specificity 96.4% 97.6%
Sensitivity 86.3% 87.4%

Table 3: Performance of the two combined classifiers.

From Table 3, we can see that Combiner_0 and Combiner_1 outperform the three basic
classifiers. The Combiner_1 gives the best precision rate 95%. The reason that Combiner_0 has
a higher precision rate than that of any one of the three basic classifiers can be explained by the
Bernoulli model. For instance, assume that the three basic classifiers have the same precision rate
of 93% and make classification errors completely independently. Then the Combiner_0 makes

a classification error when more than one classifier make errors at the same time. Thus, the
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precision rate of the unweighted voter of the three basic classifiers would be given by:
3 3
100% — ((3) (1—93%)3 + <2> 93%(1 — 93%)?) = 98.5%. (25)

The practical precision rate is a bit lower. The reason is that the Classifier_0, Classifier_1

and Classifier_2 can not make errors completely independently.

H Classification results ‘ Percentage of the test sequences H
Combiner 0 and Combiner_1 agreed & 92.9%
both were correct
Combiner_0 and Combiner_1l agreed & 3.9%
both were wrong
Combiner_0 and Combiner_1 disagreed & 1.0%
Combiner_0 was correct
Combiner_0 and Combiner_1l disagreed & 2.2%
Combiner_1 was correct
Combiner 0 and Combiner_1 disagreed & 0.0%
both were wrong

Table 4: The complementarity of Combiner 0 and Combiner_1.

Table 4 illustrates the complementarity between Combiner_0 and Combiner_1. When Combiner_0
and Combiner_1 agree, the classification has a higher likelihood of being correct. When both
agree, the probability that the classification is correct is given by 92.9%/(92.9%+3.9%) =95.9%.
From Table 4, we can see that when Combiner_0 and Combiner_1 disagree, the probability that

one is correct is 100%.

6 Conclusion

In this chapter we have proposed a two-level ensemble of classifiers to recognize E. Coli promoter
sequences. The first-level classifiers include three Bayesian neural networks trained on three
different feature sets. The outputs of the first-level classifiers are combined in the second-level
to give the final result. A recognition rate of 95% was achieved. Currently we are extending the

approach to classify protein sequences and to recognize the full gene structure.
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