
On Computing Functions with Uncertainty

Sanjeev Khanna
�

University of Pennsylvania

sanjeev@cis.upenn.edu

Wang-Chiew Tan
y

University of Pennsylvania

wctan@saul.cis.upenn.edu

ABSTRACT
We study the problem of computing a function f(x1; :::; xn)
giv en that the actual values of the variables xi's are kno wn
only with some uncertainty. For each variable xi, an inter-
val Ii is kno wn such that the value of xi is guaranteed to
fall within this interval. Any such interval can be probed to
obtain the actual value of the underlying variable; how ever,
there is a cost associated with each suc h probe. The goal
is to adaptively iden tify a minimum cost sequence of probes
such that regardless of the actual values tak en b y the un-
probed xi's, the v alue of the functionf can be computed to
within a speci�ed precision.

We design online algorithms for this problem when f is ei-
ther the selection function or an aggregation function such
as sum or average. We consider three natural models of
precision and give algorithms for each model. We analyze
our algorithms in the framework of competitive analysis and
show that our algorithms are asymptotically optimal. Fi-
nally, we also study online algorithms for functions that are
obtained by composing together selection and aggregation
functions.

1. INTRODUCTION
Cac hing of data tends to improve the performance of data
retrieval in a clien t-server environment. Besides speeding
up data retrieval, caching also allows the clien t to reduce
its total bandwidth requirements by avoiding to lookup the
server everytime the same data is needed. Ho w ever,since
the serv er may have updated its data in the meantime, data
obtained from the cache may be stale. The tradeo� issue be-
tw een performance and staleness of data has been the sub-
ject for much researc h (for instance,see [2]). We consider
the follo wing variation of this problem. Suppose the cache

�Supported in part by an Alfred P. Sloan Research Fellow-
ship.
ySupported in part by a Digital Libraries 2 grant, DL-2 IIS
98-17444.

stores for each value, an upper bound and a low erbound
that speci�es the range in which the current value must re-
side. If the computation being performed by the clien t can
tolerate some error, then the data in the cache can be used
to quic kly compute the result. If the computed result based
on the data in the cache is not within the error required by
the clien t, one can update a few values in the cache and re-
compute the result. As an example, suppose a client wishes
to �nd the minimum among a set of elements stored in the
cache. The precise values of these elements are unknown
but instead for each element, an upper and a low er bound
on its underlying value is giv en. The client states a preci-
sion parameter which speci�es that it only needs to �nd an
element that does not deviate too far from the actual min-
im um.In general, it may be impossible to identify such an
element from the given bounds in the cache, and it may be
necessary to obtain precise values for some of the elements
in the set. The precise value of an element can only be ob-
tained from the server and thus in volv es an additional cost.
Ho wdoes one iden tify aminimum cost set of elements so
that based on their precise values alone, one can �nd such
an element with certainty?

In general, how can one compute the value of a function
within some precision while minimizing the cost of obtaining
accurate v alues for v arious elements in the underlying data?
While computing the function value exactly may require col-
lecting accurate values for much of the underlying data, if
one is willing to tradeo� the precision, in many cases, it is
possible to identify only a small subset of data whose values
need to be pinned down accurately. Suc h tradeo�s betw een
cost and precision arise in a wide variety of settings. For
instance, with priced information sources in a netw ork ed
environment such as the Internet [7], one can often avoid
pa ying the cost of retrieving up-to-date information from
a pro vider b y getting a stale copy of the same information
from a cached location. As in [10, 6], we may either assume
that eac h cac hed item has some known divergence function
whic h tells us by ho w much the initial value may change over
time or assume that the server updates the cache whenever
the new server value falls out of the range of values stored
within the cache.

Problem Statement. We consider the following abstrac-
tion of the scenarios outlined above. We wish to compute
a function f(x1; :::; xn) giv en that the actual value associ-
ated with each variable xi is unknown but an interval Ii
guaranteed to contain the actual value of xi is kno wn. For

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee.
PODS '01 Santa Barbara, California USA
© 2001 ACM 1-58113-361-8/01/05 ... $5.00.

171

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

each variable xi, there is an associated cost ci such that we
can probe xi to determine its exact value at a cost of ci.
The goal is to adaptively identify a minimum cost sequence
of variables to probe so that regardless of the actual values
taken by the unprobed variables, the value of the function
f can be determined to within a speci�ed accuracy. The
resulting set of values or intervals associated with each xi
is a witness or a proof that the value of f lies within the
required accuracy. Our goal is to design online algorithms
that �nd such a witness at a minimum possible cost.

We study the performance of such algorithms in the frame-
work of competitive analysis for online algorithms [1]. Given
an instance I, let A(I) denote the cost of an algorithm A
on the instance I. Moreover, let OPT(I) denote the cost
of the optimal algorithm. Then the competitive ratio of an
online algorithm A is de�ned to be � if for any �nite input I,
A(I) � � �OPT(I): Notice that an optimal algorithm is one
that always �nds a witness of the minimum possible cost. To
see the di�culty of �nding a witness with small overall cost,
consider the following simple example. Suppose we wish to
�nd the minimum of n variables each of which is given to
be contained in the interval [0; 1]. Consider the following in-
stance constructed in an adversarial manner: the �rst n� 1
variables probed by the online algorithm are assigned a value
of 1 while the last variable probed is assigned a value of 0.
Clearly, any online algorithm must make all n probes since
otherwise it can not ascertain the minimum value. On the
other hand, an optimal algorithm simply probes the variable
with value 0 and immediately ascertains the minimum to be
0. Thus the competitive ratio of any online algorithm is at
least n for this problem.

Results. We study the problem for various choices of func-
tion f that arise in basic database queries. Speci�cally, we
allow f to be an aggregation operator such as sum or av-
erage, or a selection operator that outputs an element of a
speci�ed rank from a given ordered set. We design online
algorithms for all the problems stated above and establish
matching upper and lower bounds on the competitive ratio.
We also design competitive online algorithms for functions
which are obtained by composing these operators. An in-
teresting aspect of our results is that they highlight a struc-
tural parameter that determines the complexity of any given
instance for essentially all functions considered here. This
structural parameter is the maximum clique size of the in-
terval graph associated with the set of input intervals.

For the aggregation operators, we consider two basic mea-
sures of precision for the computed function value, namely
the relative precisionmodel and the absolute precisionmodel.
In the relative precision (absolute precision) model, we say
that an answer is �-precise if the actual value of the func-
tion is within a multiplicative (additive) factor of � of the
answer. We mainly focus on the relative precision model
which we believe is a more natural model for specifying pre-
cision since absolute precision model seems only e�ective
when we have some knowledge about the magnitude of the
actual answer. However, in general, it is harder to design
and analyze algorithms in the relative precision model. For
instance, for the sum problem where each variable has a unit
cost of probing, a simple greedy algorithm can be shown to
be optimal for the absolute precison model. In contrast, one

can show that in the relative precision model, any online al-
gorithm can be made to probe
(minf�; kg) times as many
variables as probed by an optimal algorithm where k is the
maximum clique size in the associated interval graph. For
selection problems, in addition to the above models, there is
another natural model of precision, namely the rank preci-
sionmodel. In this model, we say that an answer is �-precise
for the problem of identifying an element of rank p if the
rank of the element output is within the range [p��; p+�].
For the aggregation functions sum and average, we design
an online algorithm that is O(minf�; kg)-competitive. We
show that no online algorithm can achieve an asymptoti-
cally better competitive ratio. For the selection problem, in
all three precision models, we design an algorithm that is
O(k)-competitive for any speci�ed precision �. Moreover,
we show that no online algorithm can achieve a competitive
ratio better than
(k) in any of the precision models.

We also design and analyze online algorithms for functions
obtained by composing the operators studied above. In par-
ticular, we study computations of the form f(g(); g(); :::; g())
where f and g range over the operators minimum, maxi-
mum, sum and average. While for many composition op-
erations, the complexity of the problem is not too di�er-
ent from the complexity of each of the individual operators,
when f is the operation minimum (or maximum) and g is
sum (or average), the problem becomes signi�cantly harder
then either one of the underlying operators.

Related Work. Some of the problems considered here were
�rst studied by Olsten and Widom in [10]. Their TRAPP
(Tradeo� in Replication Precision and Performance) system
aims to increase performance by caching an interval con-
taining the actual value instead of the actual value. By
storing a large interval, one can reduce the likelihood that
any changes for a value at the source would require updating
this value at the cache. As an example, suppose a source
consists of 5 items, each with value 1. If the cached value
is [0; 10] for each item, then no update needs to be made
to the cache whenever a change in a source value still falls
within the range 0 to 10. However, it is more likely that the
precision constraint speci�ed by an incoming query cannot
be answered by the cached values with large intervals. Con-
tinuing with the example, the cached values cannot be used
to answer a sum query to within an absolute precision of,
say 5. This would have been possible if each cached value is
say, [0; 1]. The problem of what precision to give the cached
values dynamically so as to achieve the best possible perfor-
mance under varying workloads has been investigated in [9].
In the situation when the precision constraint speci�ed by
an incoming query cannot be satis�ed, some of the source
values needs to be queried for the actual values in order
to answer the query to within the required precision. This
problem has been studied in [10] when the incoming query
is a sum or average or minimum / maximum and only for
the absolute precision model. An important di�erence be-
tween [10] and our work is that the authors in [10] consider
only oblivious algorithms where the set of variables to be
probed is determined in a non-adaptive manner.

The general selection problem { �nding the pth smallest el-
ement among n elements { in the absolute precision model
was studied by Feder et al in [6]. They analyze the bene�t

172

of using an online (adaptive) strategy over an oblivious al-
gorithm. They show that the ratio between the worst case
performance of an oblivious algorithm and the worst case
online algorithm is bounded by at most 2 when each probe
costs a unit amount and at most p when the cost of each
probe can be arbitrary. However, we note here that the
ratio between the worst case performance of the oblivious
algorithm and the optimal algorithm is bounded by n for
the unit cost case and may be in�nite for the arbitrary cost
case. In particular, suppose we wish to �nd the minimum
element among n identical intervals, say [0; 10] to within an
absolute precision of 1. It is easy to see that an oblivious
algorithm will need to probe all n elements. On the other
hand, an optimal algorithm requires only one probe if there
were some interval with precise value 0. For the unit cost
model, the ratio between the number of probes required by
the oblivious algorithm to optimal algorithm is clearly n.
However, if the cost of every interval that contains 10 is in-
�nite and the cost of the interval that contains 0 is a unit
amount, the ratio is clearly in�nite for the arbitrary cost
case. Our focus in this paper is to measure the worst-case
performance of our online algorithm against the optimal al-
gorithm over all inputs. We note that neither the relative
precision model for selection and aggregation nor the rank
precision model for selection have been considered by earlier
works.

There has been signi�cant works on top-k selection queries,
for instance, by Fagin in [4, 5] and by Chaudhuri and Gra-
vano in [3]. In these works, the goal is to �nd the top-k re-
sults of a query involving several multimedia attributes (e.g.
image or audio attributes). Since a predicate on such type
of attribute often does not involve an exact match, the goal
is thus to �nd tuples that best match the given predicates.
It is worthwhile to point out the di�erences between our se-
lection problem with rank precision model and the problem
of top-k selection queries. The input to our problem is a
set of intervals (imprecise data) while the input to the top-
k selection problem is the underlying data source (precise
data). In the rank precision model, our goal for the \top-k"
selection problem is to �nd an interval that is guaranteed to
have rank between 1 and k inclusive. In other words, if we
somehow know the actual values of all intervals, the interval
that we return as the result is guaranteed to hold a value
that is among the top k values. For the top-k selection prob-
lem, their output is a graded sequence of k elements (in the
order of non-increasing grades). The element with the high-
est grade signi�es the answer that best matches the given
predicates.

Organization. Section 2 describes our notation and termi-
nology. In Section 3 and Section 4, we design and analyze
algorithms for the selection and aggregation operators re-
spectively. Finally, in Section 5, we consider algorithms for
functions considered by composing these operators.

2. PRELIMINARIES
We use [l; r] to denote a range of values from l to r inclusive.
For any interval I, l(I) and r(I) represent the left and right
end-points of the interval respectively. Given a variable x
with an associated interval I, we will say that we probe I
to simply mean that we probe the variable x to determine
its precise value. Every interval (variable) I has an asso-

ciated cost of probing (or querying) and is denoted by c(I).
Costs and intervals are assumed to be non-negative. We use
a(I) to denote the actual (or precise) value underlying an
interval. That is, after probing I, we get the precise interval
[a(I); a(I)]. As a convention, we will always return the left
end-point of an interval as an answer. An interval I over-
laps with an interval J i� r(I) � l(J) and l(I) � l(J) or vice
versa.

The interval graph G(V;E) of a set of intervals S = fI1; :::; Ing
is de�ned as follows. The vertex set V contains a vertex vi
for each interval Ii, and the edge set E contains an edge
(vi; vj) 2 E if Ii overlaps with Ij . The width of S is de�ned
to be the the size of the largest clique in G and is equal to
the largest number of intervals that pairwise overlap with
one another. A well-known fact is that any collection S of
intervals of width k can be partitioned in polynomial-time
into k sets S1; S2; :::; Sk such that no two intervals in any Sj
overlap (see, for instance, [8]). We will frequently use such
a partition to design our algorithms. Throughout, we will
denote by � the speci�ed precision and by k the width of
the given instance.

3. SELECTION
The selection problem is to �nd the pth largest element
among a set of elements. We will study the selection problem
under all three models of precision. Throughout our discus-
sion we will assume that we have a partition of the intervals
associated with the variables into k sets of non-overlapping
intervals denoted by S1; S2; :::; Sk.

3.1 Selection with Rank Precision
In rank precision model, the objective is to return an element
whose rank lies within the range [p��; p+�] by adaptively
probing a minimum cost set of intervals. In what follows,
we consider the more general problem of �nding an element
within any given rank range [s; t]. Given a set of intervals
I1; :::; In, we say that a(Ij), for some j, is an element whose
rank lies in the range [s; t] i� the rank of a(Ij) amongst
a(I1); :::; a(In) is in the range [s; t].

3.1.1 The Unit Cost Model
We �rst show that the rank of an element is within the
rank range [s; t] if there exist s � 1 intervals to its left and
n� t intervals to its right. Notice however that the converse
may not be true. Having such partition of intervals is a
witness which establises that the element is within the rank
range regardless of the outcome of the actual values taken
by each interval. The proof of the following proposition is
straightforward and can be found in the appendix.

Proposition 3.1. Let LJ = fI j I 6= J and r(I) � l(J)g
and RJ = fI j I 6= J and l(I) � r(J)g for some interval J.
Then a(J) is an element whose rank lies in the range [s; t]
if jLJ j � s� 1 and jRJ j � n � t.

As an example, consider the set of intervals shown in Fig-
ure 1(a). 5 is an element that lies within the rank range [3; 4]
since there are two intervals to the left of [5; 11] and one in-
terval to its right. Similarly, 7 is also an element within the
same rank range.

173

GS1
S2
S3

F

ML

14120 2

3 5 11

107

(a) (b)

1

Figure 1: (a) A set of intervals with width 2. (b) A set of intervals with width 3. L;M;F and G are selected
with respect to a rank of p = 5.

Our main algorithm Select-Rank-Unit, which will be de-
scribed shortly, adaptively �nds such an interval J which
lies between s� 1 intervals on its left and n� t intervals on
its right. Once we identify J , it su�ces to return l(J) as the
answer. We �rst present an algorithm Weak-rank which will
be used as a subroutine by our main algorithm Select-Rank-
Unit. The subroutine Weak-rank takes as input a rank value
p and returns a subset of O(k) intervals so that the pth ele-
ment is guaranteed to be among these intervals. It ensures
this by �rst selecting a set of intervals (which we will denote
by L [M) so that any interval that is not in this set has
rank strictly greater than p. A second selection (which we
will denote by F [G) is made out of intervals in L[M . This
is done in such a way that any interval in (L[M)� (F [G)
has rank strictly less than p. A nice property of F [G is
that it has a cardinality of at most 2k which we will exploit
in achieving a k-competitive algorithm for this problem.

Algorithm Weak-rank. We �rst select the leftmost in-
terval in each partition. Let L = fs1; :::; skg where si is
the interval in Si with the smallest left value. Index the
remaining intervals according to their left values in non-
decreasing order and let J1; :::; Jn�k denote this sequence.
Let M = fJ1; :::; Jp�1g be the �rst p � 1 intervals. Note
that we have selected k + p � 1 intervals in L [M so far.
Next, we would like to �nd the rightmost interval in each
partition of L [M . Let F = fs01; :::; s

0

kg where s0i is the in-
terval in Si\ (L[M) with the largest right value. Index the
remaining intervals according to their right values in non-
decreasing order and let Jp�1; :::; J1 denote this sequence.
We select the last k � 1 intervals and denote this set by G.
Observe that G = fJk�1; :::; J1g and G includes all intervals
if p � k.

An example of L,M ,F and G selected by Algorithm Weak-
rank with p = 5 is shown in Figure 1(b).

Lemma 3.1. If p � k then the pth largest element in the
original instance is the pth largest element in F [G. Other-
wise, the pth largest element in the original instance is the
kth largest element in F [G.

Proof Sketch. We consider two cases depending on
whether p � k or p > k. We �rst show that any interval not
in L [M must have rank greater than p. Observe that if
p � k, F [G = L [M . Therefore the pth largest element
must be the pth largest element in L[M . If p > k, we show
also that any element in (L [M) � (F [G) has rank less
than p. Since there are p�k elements in (L[M)� (F [G),
the pth largest element must be the kth largest element in
F [G. The full proof is shown in the appendix. 2

We show next a k-competitive algorithm for �nding an ele-
ment within the rank range [s; t].

Algorithm Select-Rank-Unit. The algorithm looks for
two sets of intervals X and Y X is a set of s�1 intervals with
the leftmost right values. Y is a set of n � t intervals from
the remaining intervals with the rightmost left values. Then
depending on whether the boundaries of X and Y overlap,
we select either k or at most 2k intervals to probe.

1. We �rst index the input intervals according to their
right endpoints in non-decreasing order. If two in-
tervals I and I 0 have the same right endpoint but
l(I) < l(I 0) then I comes before I 0 in the indexed
sequence. Let X be the �rst s � 1 intervals in this
order and let rX denote the largest right value among
intervals in X. If s� 1 = 0 then rX = �1.

2. Now we index the remaining intervals according to
their left endpoints in non-decreasing order. If two
intervals I and I 0 have the same left endpoint but
r(I 0) > r(I) then I comes before I 0 in the sequence.
Let Y denote the last n� t intervals in this order and
let lY denote the smallest left value among intervals in
Y . If n� t = 0 then lY =1.

3. If there exists an interval J 62 X [Y such that l(J) �
rX and r(J) � lY then return l(J). l(J) is the element
whose rank is guaranteed to lie within [s; t]. Otherwise,
consider two cases:

(a) rX � lY . Probe any interval J 62 (X [Y) and
consider three cases:

i. If rX � a(J) � lY then return a(J).

ii. a(J) < rX . Consider the subset of intervals
X 0 = X [fJg. Observe that J is the right-
most interval in (X 0 \ Si) for some i. For
each Sj where j 6= i, we probe the rightmost
interval in (X 0 \ Sj). Let J1; :::; Jm denote
the intervals probed in this manner where
m � k � 1. Return the largest value among
fa(J1); :::; a(Jm); a(J)g.

iii. a(J) > lY . Similarly, consider the subset
of intervals Y 0 = Y [fJg. J is the left-
most interval in (Y 0 \ Si) for some i. For
each Sj where j 6= i, we probe the leftmost
interval in (Y 0 \ Sj). Let J1; :::; Jm denote
the intervals probed in this manner where
m � k� 1. Return the smallest value among
fa(J1); :::; a(Jm); a(J)g.

(b) rX > lY . Let p = s. We invoke the algorithm
Weak-rank to �nd the subset of k+p�1 or 2k�1
intervals depending on whether p � k or p > k. In
the former case, we probe all intervals and return

174

yrx rx

ly

l

X Y

(a)

X

Y
(b)

Figure 2: The two possible situations corresponding to Step 3(a) and 3(b). jXj = s� 1, jY j = n� t.

the pth value. In the latter case, we probe all
intervals and return the kth value.

Correctness of Select-Rank-Unit Algorithm. Observe
that in Step 3, if the algorithm �nds two such collections X
and Y and an interval J between X and Y then one can
construct a witness according to Proposition 3.1. Accord-
ingly, l(J) is an element whose rank must lie within the
required range. Conversely, it is easy to see that if there ex-
ists some interval J lying between two witnessing collection
of intervals, the algorithm is guaranteed to �nd it without
any further probes. In step 3(a)(ii), we have a total of s
intervals in X 0. Let I 2 fJ1; :::; Jm; Jg such that a(I) is
the largest among a(J1); :::; a(Jm); a(J). We claim that the
rank of a(I) must be at least s and at most t. Suppose that
on the contrary, the rank of a(I) is less than s. This can
only happen if a(I) < a(I 0) for some I 0 2 X 0. If I and
I 0 belong to the same partition Si for some i 2 [1; k] then
I 0 must lie to the right of I. Therefore I 62 fJ1; :::; Jm; Jg
since it is not the rightmost interval. If I and I 0 belong
to di�erent partitions then either I 0 is to the right of I or
I 0 overlaps with I. Note that I 0 cannot be to the left of I
since a(I 0) > a(I). Nevertheless, whether I 0 is to the right
of I or I 0 overlaps with I, either I 0 is among fJ1; :::; Jm; Jg
or there is some interval to the right of I 0 which is among
fJ1; :::; Jm; Jg. In either case, this implies that a(I) can-
not be the largest among a(J1); :::; a(Jm); a(J). Also, since
there are n� t intervals in Y and rX0 � lY , a(I) has rank at
most t. A similar argument can be given for the situation
in Step 3(a)(iii). For Step 3(b), the correctness follows from
Lemma 3.1.

We show next that Select-Rank-Unit is k-competitive and
in fact, no online algorithm can achieve a competitive ratio
better than k.

Theorem 3.1. Select-Rank-Unit is a k-competitive algo-
rithm.

Proof. It is easy to see that if the optimal algorithm can
present a witness without any probes then algorithm Select-
Rank-Unit will also �nd the witnessing collections X and Y
by Step 3 without any probes. In step 3(a)(ii) or 3(a)(iii),
algorithm Select-Rank-Unit makes at most k probes in total
to return an answer. For Step 3(b), we �rst claim that in this
situation, the optimal algorithm requires at least 2 probes to
return an answer. Since algorithm Select-Rank-Unit makes
at most 2k � 1 probes in this case, the ratio is at most k.
The proof of claim is shown in the appendix.

Theorem 3.2. No online algorithm can achieve a com-
petitive ratio better than k.

Proof. Consider the following instance of k input inter-
vals where each interval has the range [0; 2]. k � 1 of the

intervals have 1 as their precise value and one interval has 0
as its precise value. To �nd the element with the minimum
rank, the optimal algorithm requires only one probe. On
the other hand, any online algorithm can be made to probe
k intervals | by returning 1 for the �rst k� 1 probes and 0
for the last probe. Observe that if each of the input intervals
has range [0; 1], the online algorithm will only require k � 1
probes at most.

3.1.2 The Arbitrary Cost Model
We now briey describe an O(k)-competitive algorithm when
each interval has an arbitrary cost.

Algorithm Select-Rank-Arb. We �rst identify two sets
of intervals X 0 and Y 0 of size �(k) each such that every
interval that is not in X 0 but is to the left of an interval in
X 0 has rank less than s and every interval that is not in Y 0

but to the right of an interval in Y 0 has rank greater than
t. X 0 and Y 0 can be found by invoking algorithm Weak-
Rank with p = s and p = t respectively. Let X = X 0 [X 00

where X 00 contains the rightmost interval to the left of X 0

in each Si. Similarly, let Y = Y 0 [Y 00 where Y 00 contains
the leftmost interval to the right of Y 0 in each Si. Observe
that we have �(k) intervals in X and Y . Let Z be the set
of all intervals that are not in X or Y but to the right of
some interval in X and to the left of some interval in Y . In
other words, Z is the set of intervals that is \sandwiched"
between X and Y . We consider two cases depending on
whether or not Z is empty. If Z is not empty we return the
left endpoint of any interval in Z. Otherwise, we probe the
intervals in X [Y in the order of non-decreasing costs until
we �nd a witness.

Theorem 3.3. Select-Rank-Arb is an O(k)-competitive al-
gorithm. Furthermore, no online algorithm can achieve a
competitive ratio better than
(k).

Proof. Observe that if Z is non-empty, any interval in
Z has rank greater than s but less than t as shown by
Lemma 3.1. In this case, the online algorithm does not
require any probes and therefore performs as well as the
optimal algorithm. If Z is empty, we �rst show that the op-
timal algorithm will only probe intervals in X [Y . Suppose
the optimal algorithm probed some interval I to the left of
X in order to reveal an interval within the required rank
range. Then the leftmost interval to the right of I and in X
(call it I 0) must have a rank greater than s. This is a contra-
diction since I 0 2 X 00 and intervals in X 00 have rank strictly
less than s. A similar argument can be given to show that
the optimal algorithm never probes any interval beyond Y .
Hence, the optimal algorithm only probes intervals in X[Y .
The online algorithm probes intervals in X[Y with smallest
costs �rst, hence we obtain an O(k)-competitive algorithm.
The lower bound is immediate from Theorem 3.2.

175

3.2 Selection with Relative or Absolute Preci-
sion

Recall that to �nd an element of rank p within a relative
precision of � is to return a value v so that the actual value
deviates from v by at most a multiplicative factor of � where
� � 1. For absolute precision, the goal is to return a value
v so that the actual value di�ers from v by at most � where
� � 0. It was observed by Feder et al in [6] that the pth
smallest value is in the range [l; r] where l is the pth smallest
value among l(I1); :::; l(In) and r is the (n� p+1)th largest
value among r(I1); :::; r(In).

As an example of selection with relative (absolute) preci-
sion, consider the intervals shown in Figure 1(a). Since the
third largest element lies in the interval [5; 10], 5 is the third
largest element within a relative precision of 2. 5 is also the
third largest element within an absolute precision of 5.

Our main results are O(k)-competitive algorithms for this
problem in relative (absolute) precision in both cost models.
We also show that this is asymptotically optimal in all cases.

3.2.1 The Unit Cost Model
We describe the online algorithm introduced in [6] for ab-
solute precision model next and show that it can be easily
adapted for relative precision.

Algorithm Select-Absolute-Unit. We let l be the pth
largest left value among all left endpoints and let r be the
(n � p+ 1)th largest right value among all right endpoints.
If r � l � � where � is the required absolute precision then
return l as the answer. Otherwise, probe an interval contain-
ing [l; r] and repeat the algorithm. An interval I contains
an interval J if l(I) � l(J) and r(I) � r(J). Algorithm
Select-Relative-Unit is essentially the same as algorithm
Select-Absolute-Unit with the condition r � l � � replaced
with r=l � � where � is the required relative precision.

Theorem 3.4. Algorithm Select-Relative-Unit (or Select-
Absolute-Unit) is k-competitive.

Proof. Consider the sequence [l1; r1],...,[ls; rs] of l and r
values obtained by the online algorithm over the iterations.
Let the sequence of intervals that are chosen to be probed
be J1; J2; :::; Js. In other words, for all i 2 [1; s], Ji contains
[li; ri]. Observe that for every Ji that is probed, a(Ji) � ri
or a(Ji) � li or li < a(Ji) < ri. If a(Ji) � ri then the
new pth smallest left value will be at least as large as before
and the (n � p + 1)th largest right value will remain the
same (li � li+1 and ri = ri+1). If a(Ji) � li, the opposite
happens (li = li+1 and ri � ri+1). If li < a(Ji) < ri then
the pth smallest left value will be as least as large as before
and the (n � p + 1)th largest right value will be at least
as small as before (li � li+1 and ri � ri+1). In all cases,
l1 � l2 � ::: � ls and r1 � r2 � ::: � rs and clearly
Ji overlaps Jj for all i; j 2 [1; s]. Since we have a set of
intervals with width k, s is at most k.

Theorem 3.5. In either preicision model, no online al-
gorithm can achieve a competitive ratio better than k.

Proof. In the relative precision model, consider the fol-
lowing instance of input intervals where k intervals have the
range [0; 1]. Only one of the intervals has a precise value
0 and the rest of the intervals has precise value 1. To �nd
the minimum element to within � relative precision (for any
� � 1), the optimal algorithm simply probes the interval
with precise value 0 and returns 0 as the answer. On the
other hand, any online algorithm can be made to probe k
intervals, by returning 1 for the �rst k� 1 probes and 0 for
the last probe. For the absolute precision model, we can
consider the same input instance with an absolute precision
requirement of say, 0:5. As before, only one interval has pre-
cise value 0 and the rest of the intervals have precise value
1. To �nd the minimum element, the optimal algorithm re-
quires only one probe { by probing the interval with precise
value 0 and returns 0 as the answer. However, any online
algorithm can be made to probe k intervals { by returning
1 for the �rst k � 1 probes and �nally 0.

3.2.2 The Arbitrary Cost Model
We describe an O(k)-competitive algorithm for the selection
problem in either precision model with arbitrary costs.

Algorithm Select-Absolute/Relative-Arb. We iden-
tify a set of intervals X 0 of size �(k) each such that every
interval not in X 0 and to the left of an interval in X 0 has
rank less than p and every interval not in X 0 and to the
right of X 0 has rank greater than p. X 0 can be found be
invoking algorithm Weak-Rank. Let X = X 0 [Xl [Xr

where Xl contains the rightmost interval to the left of X 0 in
each Si and Xr contains the leftmost interval to the right
of X 0 in each Si. We probe the intervals in X in the order
of non-decreasing costs until the pth smallest left value and
the (n � p + 1)th largest right value is within the required
accuracy.

Theorem 3.6. Algorithm Select-Relative-Arb (or Select-
Absolute-Arb) is O(k)-competitive. Moreover, in either pre-
cision model, no online algorithm can achieve a competitive
ratio better than
(k).

Proof. We �rst claim that the optimal algorithm does
not probe any interval that is not in X. Suppose the optimal
algorithm probes some interval I to the left of X so as to
reveal the (n�p+1)th largest right value, then the leftmost
interval to the right of I and in X (call it I 0) has a rank
greater than p. This is a contradiction since I 0 2 Xl and
intervals in Xl have rank less than p. Suppose the optimal
algorithm probes I to reveal the pth smallest left value, call
it lp. We show that lp cannot be the pth smallest thus
arriving at a contradiction. Let the interval to the right of
I and in Xl be Ir. Since there is an interval Ir in Xl to
the right of I, there can be at most k � 1 intervals in Xl

lying to the left of this value lp. In addition, there can be
at most another k�1 intervals from X 0 with their left value
less than or equal to lp. For each of these intervals from X 0,
either it is a rightmost interval in X 0 or their right values
must be greater than or equal to r(I). If there were some
interval I 0 2 X 0 with r(I 0) < r(I) and I 0 is not a rightmost
interval in X 0 then I would have been selected to be in X 0

before I 0. (Recall that Weak-Rank selects intervals with
larger right values �rst to be in the set G.) Notice that
there cannot be any intervals to the right of X 0 whose left

176

value is less than lp. Suppose there were such an interval
I 00, then l(I 00) � lp < l(Ir). This implies that Weak-Rank
would have selected I 00 to be in the set M before Ir which is
a contradiction since I 00 is not in M . Hence we may assume
that no intervals to the right of X 0 have left value less than
or equal to lp. Since are p � 2k intervals to the left of X
and one of them is used to reveal lp, there can be at most
p�2k�1 intervals with whose left value is less than lp. Also,
at worst 2k � 2 intervals from X 0 have left values smaller
than lp. Therefore, lp can have rank at most p � 2. A
similar argument can be made to show that the algorithm
does not probe any interval to the right of X. The lower
bound is immediate from Theorem 3.5.

4. SUM AND AVERAGE
The sum (average) problem is to �nd the sum (average) of
n variables to within a speci�ed precision. Since the average
of n variables di�ers from their sum by a �xed factor of n,
any results for one problem can be directly adapted for the
other. So without any loss of generality we will restrict our
discussion only to the sum problem.

4.1 The Unit Cost Model
Let fI1; :::; Ing be the set of intervals associated with the
underlying variables x1; :::; xn. De�ne L =

Pn

i=1 l(Ii) and
R =

Pn

i=1 r(Ii). If the ratio R=L � �, then clearly we can
simply return L as the answer. On the other hand, if it
is not so, we must continue probing intervals till this con-
dition becomes true. Consider the following greedy online
algorithm. At each step, �nd an interval I that maximizes
r(I) � l(I) and probe it. We now analyze the performance
of this algorithm and show that it is essentially the best
possible algorithm.

Fix an optimal strategy and consider the state of the online
algorithm just before it makes its last probe. We partition all
the intervals into four sets: X1; X2; X3 and X4 where X1 [
X2 are the intervals probed by the online algorithm so far,
X2 [X3 are the intervals probed by the optimal algorithm,
and X4 is the set of intervals that are not probed by either
algorithm. Thus X2 contains the intervals probed by both
the online the optimal algorithms. We shall assume X3 to be
non-empty since if X3 is empty, the online algorithm must
have already reached its stopping condition.

Let L(X), P (X) and R(X) denote
P

I2X l(I),
P

I2X a(I)
and

P
I2X r(I) respectively. Observe that L(X) � P (X) �

R(X). We know that the optimal algorithm ensures the
following:

P (X2) + P (X3) +R(X1) +R(X4) �

�(P (X2) + P (X3) + L(X1) + L(X4))
(1)

On the other hand, since the online algorithm is not yet
done, it must be the case that

P (X1) + P (X2) +R(X3) +R(X4) >

�(P (X1) + P (X2) + L(X3) + L(X4))
(2)

From (1), we get

R(X1)� L(X1) �(�� 1)(P (X2) + P (X3) + L(X1)) +

�L(X4)�R(X4)

(3)

Let q = jX1j=jX3 j. By the greedy property of the online
algorithm, it follows that the largest size interval in X3 is at
most the size of the smallest interval in X1. Therefore, we
have R(X1)�L(X1) � q(R(X3)�L(X3)). Substituting (3)
into this and rearranging, we get

(�� 1)P (X2) � qR(X3)� (�� 1)P (X3)� qL(X3)�

(�� 1)L(X1) +R(X4)� �L(X4)

And since P (X3) � R(X3) and L(X1) � P (X1), we get

P (X2) �
q � �+ 1

�� 1
R(X3)�

q

�� 1
L(X3)�

P (X1) +
1

�� 1
R(X4)�

�

�� 1
L(X4)

(4)

Rearranging (2), we have

(�� 1)P (X2) <R(X3)� �L(X3) + P (X1)�

�P (X1) +R(X4)� �L(X4)

which becomes

P (X2) <
1

�� 1
R(X3)�

�

�� 1
L(X3)�

P (X1) +
1

�� 1
R(X4)�

�

�� 1
L(X4)

(5)

By comparing the coe�cients of (4) and (5), we can conclude
that q < �. Thus the total cost of the online algorithm
can be bounded by �jX3j + jX2j + 1. Comparing with the
cost incurred by the optimal strategy, we can conclude that
the online algorithm incurs a cost of at most (� + 1) times
optimal. Thus we can conclude the following lemma.

Lemma 4.1. There is an (�+1)-competitive algorithm for
the sum problem with relative precision and unit costs.

We can obtain better performance guarantees when the pa-
rameter � is large compared to the width k of the given
instance.

Lemma 4.2. For any � � 2, there is a k-competitive al-
gorithm for the sum problem with relative precision and unit
costs.

Proof. We �x a partition of the input instance into k sets
S1; S2; :::; Sk of non-overlapping intervals. Consider any set
Si, and let [l1; r1],[l2; r2],...,[lm ; rm] be the set of intervals in
Si where rj < lj+1 for 1 � j < m. We claim that we can
determine the sum of the variables underlying Si to within
a relative precision of 2 by simply probing the last interval
[lm; rm]. To see this, observe that (r1+:::+rm�1+pm)=(l1+
:::+lm�1+pm) � 2 where pm denotes the precise value of the
interval [lm; rm]. Hence with a single probe in each Si, we
can determine the overall sum to within a relative precision
of 2.

177

We can combine both algorithms above to obtain the fol-
lowing result and we show that the bound given is tight.

Theorem 4.1. There is an O(minf�; kg)-competitive al-
gorithm for the sum problem with relative precision and unit
costs.

Proof. If � � k or � < 2, one can use the greedy
algorithm which achieves (� + 1)-competitiveness. Other-
wise, one can use the k-competitive strategy outlined in
Lemma 4.2 to achieve a relative precision of 2. The the-
orem follows.

Theorem 4.2. No online algorithm can achieve a com-
petitive ratio better than
(minf�; kg) for the sum problem
with relative precision and unit costs.

Proof. Consider the following input instance which con-
sists of minf�; kg intervals, each with the range [0; 1]. Only
one interval has precise value 1 and the rest have precise
value 0.

When � � k, the optimal algorithm probes the interval
with precise value 1 and can immediately achieve the re-
quired precision of �. However, any online algorithm can be
made to probe all � intervals | by returning 0 for the �rst
� � 1 probes and �nally 1. When � > k, the optimal algo-
rithm makes one probe to the interval with precise value 1 to
achieve a relative precision of k while any online algorithm
can be made to probe all k intervals.

4.2 The Arbitrary Cost Model
When each interval has an arbitrary associated cost, a natu-
ral extension of the greedy algorithm considered in the pre-
vious section is to probe intervals in non-increasing order
of density. The density of an interval I is de�ned to be
(r(I) � l(I))=c(I). The algorithm greedily probes intervals
in this order until the condition

P
I r(I)=

P
I l(I) � � is sat-

is�ed. However, it is easy to construct examples where this
greedy approach leads to solutions that have an arbitrarily
large cost compared to the optimal. The problem is only
in the last interval choosen by the greedy algorithm. The
following lemma formalizes this.

Lemma 4.3. Let I1; I2; :::; Ip be the sequence of intervals
probed by the online algorithm. Then

Pp�1
i=1 c(Ii) � �OPT

where OPT is the cost incurred by an optimal algorithm.

Proof. The proof is similar to that of Lemma 4.1. In
this case every interval in X1 has a higher density than any
interval in X3. Since the smallest density interval in X1 is
at least as large as the largest density interval in X3, we
have (R(X1) � L(X1))=C1 � (R(X3) � L(X3))=C3 where
C1 and C3 are the total costs of all intervals in X1 and X3

respectively. Let C1 = qC3 and from an analysis similar to
one shown in Section 4.1, we have q < �. Let C denote
the total cost incurred by the online algorithm in probing
X1[X2 (all the intervals except the last interval Ip). Surely
C = C1 + C2 � �C3 + C2 where C2 is the cost of intervals
in X2. Since OPT = C2+C3, and C � �(C3+C2), we have
C � �OPT.

The lemma above suggests that the greedy strategy would
work well if we could somehow bound the cost of the last
interval probed by the algorithm. Suppose the online algo-
rithm knew the optimal cost OPT. Then the greedy algo-
rithm could simply discard all intervals of cost greater than
OPT from consideration and using the lemma above, one
can immediately conclude an (�+1)-competitive algorithm.
However, since the online algorithm does not know the op-
timal value, it needs to guess it in a careful manner. The
following modi�ed greedy algorithm is based on these ideas
| it guesses the value of OPT iteratively. We let L and
R denote the current sum of left and right endpoints re-
spectively. L and R will reect the new sum values at each
iteration (since an interval may be probed at each iteration).

1. Initialize a counter i with value 0.
2. Set OPT = 2i.
3. If R=L � �, return L as the answer. Otherwise, �nd

an unprobed interval I of largest density such that
c(I) � OPT. If there is no such interval, increment
the counter i and goto step 2.

(a) If the total cost (including the cost of I) exceeds
(� + 1)OPT then increment counter i and goto
step 2.

(b) Otherwise, probe I and goto step 3.

Suppose the � precision is satis�ed when the counter value
is j for some j � 0. Since the iteration terminates at j and
not earlier, we know that OPT > 2j�1. At each iteration
i, the greedy algorithm incurs a cost of at most (� + 1)2i.
Therefore the total cost incurred by the greedy algorithm
is � (� + 1)(

Pj

i=0 2
i) � (� + 1)2j+1. Hence the ratio of

total cost incurred by greedy algorithm to the optimal cost
is at most ((�+ 1)(2j+1))=2j�1 = 4(�+ 1), which gives the
following lemma.

Lemma 4.4. There is a 4(�+1)-competitive algorithm for
the sum problem with relative precision and arbitrary costs.

We next explore if better performances can be achieved on
restricted width instances. Unfortunately, in constrast to
the unit cost model, even when k = 1, we can show a lower
bound of
(minf�; ng).

Consider the following set of n intervals of width 1: [1; 2),[2;
3),...,[n � 1; n),[n;H). Let L = n(n� 1)=2 R = (n� 1)(n+
2)=2 be the sum of the left and right values of the �rst n�1
intervals. We de�ne H to be (� � 1)L + (�� 1)n + � + 1.
Let the cost of the last interval be in�nite while the cost
of the each of the �rst n � 1 intervals is one. Furthermore,
only one of the intervals, say I in the �rst n�1 intervals has
precise value a(I) = r(I) while the rest have precise value
a(I) = l(I). It is easy to see that the optimal algorithm
requires only one probe (by probing the interval with a(I) =
r(I)) to obtain a precision of � since (R + H)=(L + n +
1) � �. We now show that the online algorithm will be
required to make minf�; n � 1g probes. Let q denote the
number of probes made by the online algorithm prior to
the last probe. Hence (R + H � q)=(L + n) > � which
implies that q < �. Therefore, any online algorithm can be
made to probe minf�; n� 1g intervals in order to achieve �
precision. It follows that no online algorithm can be better
than
(minf�; ng)-competitive.

178

Theorem 4.3. No online algorithm can achieve a com-
petitive ratio better than
(minf�; ng) for the sum problem
with relative precision and arbitrary costs.

Theorem 4.4. There is an O(minf�; ng)-competitive al-
gorithm for the sum problem with relative precision and ar-
bitrary costs.

Proof. When n � �, we use the 4(�+1)-competitive de-
scribed in Lemma 4.4. When n < �, we probe the intervals
in the order of non-decreasing costs until the � precision is
achieved.

We next show that one can in fact obtain a bicriteria online
algorithm which is O(k)-competitive when k � �, to achieve
a precision of 2� + 2.

Lemma 4.5. There is an O(k)-competitive algorithm for
the sum problem with relative precision and arbitrary costs
that achieves a precision of 2�+ 2.

Proof. As before, we assume that there is a partition of
intervals into k sets of non-overlapping intervals, S1; :::; Sk.
Let OPT denote the cost incurred by the optimal algorithm.
Let X be the set of intervals each with cost less than or equal
to OPT and Y be the rest of the intervals. Observe that the
set of intervals probed by the optimal algorithm comes from
X. Let X1 denote the set of rightmost intervals in Si \ X
and let X2 = X �X1. Note that jX1j = k and as observed
in Lemma 4.2, (P (X1)+R(X2))=(P (X1)+L(X2)) � 2. We
show next that this simple approach allows us to obtain a
precision that is less than or equal to 2�+ 2.

Observe that the precision obtained by our algorithm is

P (X1) +R(X2) +R(Y)

P (X1) + L(X2) + L(Y)
� 2 +

R(Y)

P (X1) + L(X2) + L(Y)

A lower bound on the precision that can be obtained by
probing all intervals in X2 is

P (X1) + L(X2) +R(Y)

P (X1) +R(X2) + L(Y)
�

R(Y)

2(P (X1) + L(X2) + L(Y))

Let �� denote the precision obtained by the optimal algo-
rithm. �� is no less than the above precision. Hence, it is
easy to see that the precision obtained by online algorithm
is � 2�� + 2 � 2� + 2.

The above procedure suggests that one can obtain an O(k)-
competitive algorithm to achieve a precision to within 2�+2
if one knows the value OPT. As before, we can guess OPT it-
eratively, setting OPT to be increasing powers of 2. We �rst
check if the intervals are already �-precise. If not, at each
iteration, we check if (P (X1) + R(X2) + R(Y))=(P (X1) +
L(X2) + L(Y)) � 2� + 2. If the condition is true, we re-
turn P (X1) + L(X2) + L(Y) as the answer. Otherwise, we
increase OPT by a factor of 2 and repeat the process. The
total cost incurred by our online algorithm over all itera-
tions is to within O(k) of the optimal. Assume that the
algorithm stops at the iteration where OPT is guessed to

be 2j for some j. This means that OPT > 2j�1. The cost
incurred in iteration i is bounded by k2i since we probe only
intervals in X1. And since there are j iterations, the total
cost incurred is at most k2j+1. The ratio when compared
with the optimal is thus � 4k.

Theorem 4.5. There is an O(minf�; kg)-competitive al-
gorithm for the sum problem with relative precision and ar-
bitrary costs that achieves a relative precision of 2�+ 2.

Proof. The theorem is immediate from the previous two
lemmas. When k > �, we use the 4(�+1)-competitive algo-
rithm that achieves a precision of � as observed in Lemma 4.4.
If k � �, we use the O(k)-competitive algorithm described
in Lemma 4.5.

5. COMPOSED FUNCTIONS
We now briey describe some results for functions that are
obtained by composing together two functions f and g where
f and g can be one of the following functions: min, max,
sum and average. We consider compositions f �g of the form
f(g(x11; :::; x1n1); :::; g(xm1; :::; xmnm)) where f is said to be
the outer operator and g is said to be the inner operator.
We study here only the unit cost case. In what follows,
we let Gi denote the set of intervals fxi1; :::; xinig and n =
n1 + ::: + nm, the total number of intervals. As before, we
assume a partition of all intervals into sets S1; :::; Sk.

Min�Min/Max�Max/Sum�Sum/Avg�Sum. When f
as well as g are both the operator min (max), it is equivalent
to a single application of min (max) and hence identical
results apply. When f is either the average or sum operator
and g is the sum operator, it is easy to see that this is the
same as a direct application of the sum operator and hence
earlier results apply as well.

Avg�Avg/Sum�Avg. When both f and g are the average
operator, we describe an O(minf�; k log ng)-competitive al-
gorithm for this problem. The lower bound is
(minf�; kg)
and it remains open whether there is an algorithm which
is O(minf�; kg)-competitive. We will use the observation
that avg(avg(x11; :::; x1n1),...,avg(xm1; :::; xmnm)) is equiv-
alent to sum(x11=(n1 � m),...,x1n1=(n1 � m),..., xm1=(nm �
m),...xmnm=(nm �m)). If � < k log n or � < 4, we use the
(�+1)-competitive algorithm as described in Lemma 4.1 for
the sum problem on the scaled inputs. Otherwise, we use the
following approach. We partition the n intervals into clus-
ters C1,...,Clog n. such that Ci = f

S
Gj j 2

i � jGj j < 2i+1g.
For the set of intervals in Ci, we probe the rightmost inter-
val in each Ci \Sj for 1 � j � k. This allows us to estimate
sum(Ci) within a precision of 2. We next scale down our
estimate of sum(Ci) by 2i+1 �m. It is easy to see that this
gives us an estimate of the average with precision 4. Com-
bining together these scaled estimates for all clusters, we
obtain an estimate of the overall average with precision 4.
When f is the sum operator and g is the average operator,
the same procedure can be used except that our estimate of
of sum(Ci) is scaled by only 2i+1.

Max�Min/Min�Max. If f is the max operator and g
is the min operator (or vice versa), the problem becomes

179

[1,2]
[3,4]

[2m-3,2m-2]
[1,2]

[2m-1,2m]
[2m-1,2m]

min

sumsumsum . . .

. . .

Figure 3: A width-2 input instance to min�sum func-
tion.

somewhat di�cult and we give an O(k2)-competitive algo-
rithm for this case. It is easy to see that the lower bound
is
(k) and it remains open whether there exists an O(k)-
competitive algorithm for this problem.

For each Gi, we let ri denote the smallest right value among
intervals in Gi. Let G0

i = f[l(I); ri] j I 2 Gi; l(I) � rig.
Observe that jG0

ij � k and the minimum value in G0

i is
the same as the minimum value in Gi. Intervals in G0

i are
such that the left value is less than or equal to ri and the
right value of each interval never exceeds ri. Without loss of
generality, we may assumeG0

is are indexed in non-decreasing
order of ri. Let G = fG0

1; :::; G
0

mg. Consider any pair of
elements in G, say G0

i and G0

j where i < j. If the smallest
left value in G0

j is strictly greater than ri, we discard G
0

i from
G. We repeat the process until no more elements from G can
be discarded. After this process, jGj � k. For if this is not
the case, the width of the input intervals must be more than
k which is a contradiction. Since for each G0

i 2 G, jG0

ij � k
and jGj � k, we have a total of O(k2) remaining intervals.
For each G0

i 2 G, probe every interval I 2 G0

i and return
the smallest element. Among all the smallest elements, we
return the largest one.

Sum�Min/Sum�Max/Avg�Min/Avg�Max. When f is
an aggregate operator and g is either min or max, we can
also give an O(k2)-competitive algorithm using similar ideas
described earlier. Assume that f is the sum operator, g is
the min operator and we haveG0

1; :::; G
0

m as described before.
Let li and ri denote the leftmost and rightmost values for
intervals in G0

i. Observe that we can view the input to sum
function as simply the set of m intervals [l1; r1],...,[lm ; rm].
If � � 2, we do the following: Consider a partition of in-
tervals [l1; r1],...,[lm ; rm] into at most k non-overlapping sets
S1; :::; Sk (since the width of the original instance is k). For
the rightmost interval in each Si, say [lj ; rj], we probe all
intervals in G0

j and return the minimum element. Since the

size of G0

j is at most k, we probe at most k2 intervals in
this way. This gives an estimate of the sum with precision
2 as described in Lemma 4.2. If � < 2, we view this as
a sum problem with unit costs and apply the greedy strat-
egy as described Lemma 4.1. However, whenever we pick
an interval to probe, say [lj ; rj], we now need to probe all
intervals in G0

j and return the minimum element. We get an
O(�k)-competitive algorithm and since � < 2, this is clearly
O(k2)-competitive.

Min�Sum/Min�Avg/Max�Sum/Max�Avg. Finally,
when f is either the operator min or max and g is an aggre-
gate operator, then we can show that no online algorithm
can be o(n)-competitive even when the input instance is of
width 2. To see this, consider the example shown in Figure 3
where f is min and g is sum and the set of input intervals

has width 2. The result of each sum node is an interval
[2m; 2m+ 2]. Since all resulting intervals are the same and
there are m sum nodes, the input to the min operator is
an instance of width m =
(n). It is easy to see that an
adversarial strategy can now be used to make the online al-
gorithm make
(n) probes whereas the optimal can obtain
the minimum in O(1) probes.

6. REFERENCES
[1] A. Borodin and R. El-Yaniv. Online Computation and

Competitive Analysis. Cambridge University Press,
1998.

[2] M. J. Carey, M. J. Franklin, M. Livny, and E. J.
Shekita. Data caching tradeo�s in client-server dbms
architectures. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, pages 357{366, 1991.

[3] S. Chaudhuri and L. Gravano. Evaluating top-k
selection queries. In Proc. of 25th Intl. Conf. on Very
Large Data Bases (VLDB), pages 397{410, 1999.

[4] R. Fagin. Combining fuzzy information from multiple
systems. In Proc. of the 15th Symposium on Principles
of Database Systems (PODS), pages 216{226, 1996.

[5] R. Fagin. Fuzzy queries in multimedia database
systems. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pages 1{10, 1998.

[6] T. Feder, R. Motwani, R. Panigrahy, C. Olsten, and
J. Widom. Computing the median with uncertainty.
In Proc. of the 32nd Symposium on Theory of
Computing, pages 602{607, 2000.

[7] H. Garcia-Molina, S. Ketchpel, and N. Shivakumar.
Safeguarding and charging for information on the
internet. In Proc. of the 14th Intl. Conf. on Data
Engineering, 1998.

[8] M. C. Golumbic. Algorithmic Graph Theory.
Academic Press, 1980.

[9] C. Olsten, B. T. Loo, and J. Widom. Adaptive
precision setting for cached approximate values. In
Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, 2001.

[10] C. Olsten and J. Widom. O�ering a
precision-performance tradeo� for aggregation queries
over replicated data. In Proc. of 26th Intl. Conf. on
Very Large Data Bases, pages 144{155, 2000.

Appendix to Section 3.
Proposition 3.1. Let LJ = fI j I 6= J and r(I) � l(J)g

and RJ = fI j I 6= J and l(I) � r(J)g for some interval J.
Then a(J) is an element whose rank lies in the range [s; t]
if jLJ j � s� 1 and jRJ j � n � t.

Proof. Suppose J is an interval such that jLJ j � s � 1
and jRJ j � n � t. We show that the rank of a(J) must be
within [s; t]. Let Z be the set of intervals not in LJ[RJ[fJg.
For every I 2 Z, r(I) > l(J) and l(I) < r(J). In one
extreme setting, the precise values of all intervals in Z are

180

greater than a(J). However, the rank of a(J) in this case is
jLJ j+ 1 which is within the required range. Conversely, all
intervals in Z could have precise values less than a(J). The
rank of a(J) in this case is jLJ j+ jZj+1 = jLJ j+n�jLJ j�
jRJ j � 1 + 1 = n� jRJ j � t.

Lemma 3.1. If p � k then the pth largest element in the
original instance is the pth largest element in F [G. Other-
wise, the pth largest element in the original instance is the
kth largest element in F [G.

Proof. Let U denote the set of n intervals. Let I be
an interval in U � (L [M) and let M1;M2; :::; Mp�1 be the
order in which the intervals in M are selected. This means
that l(M1) � l(M2) � :::: � l(Mp�1). Since I is not selected
to be in M , l(Mp�1) � l(I). Consider the interval graph
of M [fIg and let m be the size of the maximum clique
that includes I in this interval graph. If m = 1 (I does
not overlap with any interval in M) then l(I) > rM where
rM is the largest right value of the intervals in M . Hence
all intervals in M are to the left of I. Since I belongs to
Si for some i 2 [1; k], there is at least one more interval to
the left of I in L \ Si. Hence the rank of I is more than
jM j+1 = p. If m > 1 then let fI; J1; :::; Jm�1g be the set of
intervals in M [fIg that overlaps with one another. Surely
l(Jj) � l(I). And since there is an interval in L \ Si that
lies to the left of I and an interval in L \ Sj to the left of
Jj for every j 2 [1; m� 1], there must be m intervals to the
left of I. Also since I does not overlap with the rest of the
intervals inM (jM j�(m�1) of them), there is an additional
p�m intervals to the left of I. Therefore there is a total of
m+ p�m intervals to the left of I giving I a rank of more
than p.

Suppose p > k. Let R denote the set of intervals in L [
M � (F [G). Observe that that jRj = p � k. We know
that pth element must be among L[M from the argument
above. Next, we show that any element in R has rank less
than p. Therefore the pth element must be among F [G.
Let I be the interval in R that contains the largest precise
value. We show that the rank of a(I) can be p� 1 at most.
Let the partition which I belongs to be Si for some i 2[1; k].
We claim that for every Sj such that j 6= i, there can be at
most one interval J 2 Sj \ (U � R) such that a(J) � a(I).
Suppose on the contrary that there are two intervals J1 and
J2 in Sj \ (U �R) such that a(J1) � a(I) and a(J2) � a(I).
Without loss of generality, we may assume J1 is to the left
of J2. Observe that since a(J2) � a(I) and J1 precedes J2,
r(J1) < r(I) and l(J2) � r(I). Observe also since J1 2
U �R, J1 2 G or J1 2 F or J1 2 (U � (L [M)). If J1 2 G
then I 2 G (recall that we select intervals with the largest
right value �rst in G) contradicting the assumption that I 62
F [G. If J1 2 F then J2 2 (U� (L[M)). And since I 2 R,
there must be an interval I 0 to the right of I in Si \F . This
implies l(J2) � l(I 0) and therefore if I 0 2 M then J2 2 M
contradicting the assumption that J2 2 (U � (L [M)). If
J1 2 (U � (L [M)) then J2 2 (U � (L [M)). From the
same argument as before, we conclude that J1; J2 2 (L[M)
contradicting the assumption that J1; J2 62 (L [M). Hence
there are at most k � 1 elements from U � R to the left of
a(I). Since there are p� k elements in R. The rank of a(I)
is at most k � 1 + p � k = p� 1. Observe that since every

element in R has rank at most p� 1 and there are p� k of
them, the kth largest in F [G must be the pth largest in
L [M .

Claim. In the situation where rX > lY , the optimal algo-
rithm needs more than one probe.

J in X
J in Y

J not in X or Y

J
J 1
2

4

5

yl xr

3

xr
yl

Y
X

Proof. We show that the optimal algorithm uses more
than one probe by showing that the optimal algorithm can-
not produce a witness in just one probe. This is shown
by case analysis on all types of interval that the optimal
algorithm may probe. Throughout the rest of the discus-
sion, we use J to denote the �rst interval probed by the
optimal algorithm. In addition, we use X 0, Y 0 to denote
the new collection of intervals obtained by Select-Rank-Unit
in steps (1) and (2) respectively, after J has been probed.
Also, let rX0 , lY 0 denote the new rightmost and leftmost
boundaries of X 0 and Y 0 respectively. For convenience, we
will also let J 0 to denote the probed interval J . In other
words, J 0=[a(J); a(J)]. We say the boundaries of X 0 and
Y 0 crosses if rX0 > lY 0 and there is a gap between X 0 and
Y 0 if rX0 � lY 0 .

� Suppose the optimal algorithm probes an interval J of
type J1 as shown in the �gure above. Intervals of type
J1 have right values strictly less than rX . From the way
intervals are selected to be inX, we are certain that J 2
X since r(J) < rX . Then X 0 = X � fJg [fJ 0g. Since
the newly selected set of intervals X 0 remain the same,
Y 0 = Y . Therefore the boundaries remain crossed since
rX0 > lY 0 .

� Suppose the optimal algorithm probes an interval J of
type J2. Intervals of type J2 have left values strictly
greater than lY and right values greater than or equal
to rX , i.e., l(J) > lY and r(J) � rX . If r(J) < rX ,
we may think of J as a type J1 interval. If r(J) is
strictly greater than rX , i.e., r(J) > rX then J 2 Y .
In addition,

{ if a(J) � rX thenX 0 = X and Y 0 = Y �fJg[fJ 0g.
The new collect of intervals X 0 is the same as the
old collection and Y 0 is essentially the same as
Y except that J probed to become J 0. There-
fore rX0 > lY 0 and hence the boundaries remain
crossed.

{ if a(J) < rX , X
0 and Y 0 change in the following

way. For X, it discards a rightmost interval, sayK,
and includes some the probed interval J 0, i.e., X 0 =
X�fKg[fJ 0g. For Y , it loses J and therefore has
to acquire some new intervalK0, ie, Y 0 = Y �fJg[
fK0g. As a result, the new boundary of X 0 may
shrink, i.e., rX0 � rX . However, since lY < a(J) <

181

rX , rX0 > lY and lY 0 � lY whether K0 is K or
some interval not previously acquired. Therefore
the boundaries remain crossed since rX0 > lY .

The case when l(J) > lY and r(J) = rX is subsumed
in the following discussion.

� Suppose the optimal algorithm probes an interval J of
type J3 where where r(J) = rX and l(J) � rX and
J 2 X. If a gap is produced in X 0 and Y 0 after probing
J , we show that there cannot be a dividing interval
I 62 X 0 [Y 0 lying within this gap.

{ If a(J) < rX thenX 0 = X�fJg[fJ 0g and Y 0 = Y .
The probed interval \remains" in the collection X 0

and Y 0 is the same as Y . Hence lY 0 = lY and a
gap can be produce when rX0 � lY . If there is a
dividing interval I 62 X 0 [Y 0 lying within this gap
then I must be in X and therefore I is also in X 0

contradicting the assumption that I 62 X 0 [Y 0.

{ If a(J) = rX then rX0 = rX . If X 0 = X � fJg [
fJ 0g, we have Y 0 = Y and the boundaries will re-
main crossed. However, if X 0 = X � fJg [fKg
(since K is selected to be in X 0 in preference over
J 0, K must be such that r(K) = rX and l(K) < rX
and K 62 X), lY may shift right because Y 0 may
include J 0 since it is now not included in X 0, i.e.,
Y 0 = Y �fK0g[fJ 0g where K0 is a leftmost inter-
val in Y . In this situation, we may have rX = lY 0

producing a gap. If there is a dividing interval
I 62 X 0 [Y 0, with l(I) = r(I) = rX0 . It must be
that I 2 Y � fK0g Therefore I 2 X 0 [Y 0 arriving
at a contradiction.

� We show a similar argument when the optimal algo-
rithm probes an interval of type J4 where l(J) = lY
and r(J) � lY and J 2 Y . If a gap is produced after
probing J , we show that there cannot be a dividing
interval I 62 X 0 [Y 0 lying within the gap.

{ Suppose a(J) � rX then X 0 = X and therefore
rX0 = rX . Also, Y 0 = Y � fJg [fJ 0g. Suppose
lY 0 � rX and there is an interval I 62 X 0 [Y 0

which lies within the gap. Then I 2 Y implying
I 2 X 0 [Y 0 which is a contradiction.

{ If lY � a(J) < rX and a gap is produced then
X 0 = X � fKg [fJ 0g and Y 0 = Y � fJg [fK0g
where K is a rightmost interval in X and K0 is a
new included interval. Notice that J is dropped by
Y and included in X 0. If lY 0 < rX then any interval
I which lies within the gap must be in X�fKg and
therefore in X 0 [Y 0 (contradiction). If lY 0 = rX
it must be that l(K0) = r(K0) = rX and K0 = K.
The newly included interval in Y 0 is the discarded
interval of X. Observe that since K is a point
interval originally in X then any interval I with
r(I) = rX and l(I) < rX must be in X � fKg and
therefore in X 0 [Y 0. If r(I) = l(I) = rX then
I 2 Y � fJg and therefore in X 0 [Y 0.

� Suppose the optimal algorithm probes an interval J
not in X [Y where r(J) � rX and l(J) � lY (type J5
intervals).

{ If a(J) < rX , we have X
0 = X�fKg[fJ 0g where

K is a rightmost interval in X. If Y 0 = Y then a
gap can only be produced if rX0 � lY 0 = lY . In
this situation any interval in this gap must belong

to X � fKg and therefore belong to X 0 [Y 0. Now
suppose Y 0 = Y �fK0g [fK00g where K0 is a left-
most interval in Y and K00 is some newly included
interval previously not in Y . If lY 0 < rX and a
gap is present then any interval I which lies within
the gap must be in X � fKg. If lY 0 = rX then
it must be that l(K) = r(K) = rX and K = K00.
The interval discarded by X is the newly included
interval in Y 0. Observe that since K is a point
interval originally in X then any interval I with
r(I) = rX and l(I) < rX must also be in X (since
the algorithm would have selected I before K to be
in X). Thus any interval that lies within the gap
must belong to X or Y �fK0g and therefore belong
to X 0 [Y 0. Observe that lY 0 � rX since any in-
terval excluded from X cannot \help" increase the
value of lY 0 beyond the point rX .

{ If a(J) � rX thenX 0 = X and Y 0 = Y �fKg[fJ 0g
where K is a leftmost interval in Y . Since X =
X 0 then rX0 = rX . A gap is produced only when
lY 0 � rX . Let I be an interval lying within the
gap. If l(I) = r(I) = rX then either I 2 X or
I 2 Y � fKg. If l(I) = rX and r(I) > rX then
I 2 Y � fKg. Therefore I 2 X 0 [Y 0.

182

