Testing Problems with Sub-L earning Sample Complexity

Michael Kearns Dana Ron*
AT&T Labs Research L aboratory for Computer Science, MIT
180 Park Avenue 545 Technology Square
Florham Park, NJ, 07932 Cambridge, MA, 02138
mkearns@research.att.com danar @theory.lcs.mit.edu

October 19, 1998

Abstract

We study the problem of determining, for a class of functions H, whether an unknown target
function f iscontained in H or is“far” from any functionin H. Thus, in contrast to problems of
learning, where we must construct a good approximation to f in H on the basis of sample data,
in problems of testing we are only required to determine the existence of a good approximation.
Our main results demonstrate that, over the domain [0, 1] < for constant d, the number of examples
required for testing grows only as O(s'/?+%) (where é is any small constant), for both decision
trees of size s and a specia class of neura networks with s hidden units. Thisisin contrast to
the Q(s) examples required for learning these same classes. Our tests are based on combinatorial
constructions demonstrating that these classes can be approximated by small classes of coarse
partitions of space, and rely on repeated application of the well-known Birthday Paradox.

* Supported by an ONR Science Scholar Fellowship at the Bunting Institute.

1 Introduction

A considerable fraction of the computational |earning theory literature is devoted to a basic and natural
question: for agiven class of functions A and adistribution 7 on inputs, how many random examples
of an unknown function f are required in order to construct a good approximation to f in H? In this
paper, we consider a natural and potentially important relaxation of this problem: how many random
examples of an unknown function f arerequired in order to simply test whether a good approximation
to f existsin H? Thus, in contrast to the standard learning problem, in problems of testing we are
not required to actually construct a good hypothesis, but only to assert its existence — so under the
appropriate definitions, the resources required for testing are alwaysat most those required for learning.
In this work, we show that for certain natural classes H, the number of examples required for testing
can actually be considerably less than for learning. Even more dramatic gaps are shown to hold when
the measure is the number of queries required.

The motivation for studying learning problems is by now obvious. Why study testing problems?
In addition to its being a basic statistical question, if we can find fast and simple solutions for
testing problems that require little data, we may be able to use them to choose between alternative
hypothesisrepresentations without actually incurring the expense of running the corresponding learning
algorithms. For example, suppose that in a setting where data is expensive, but the final accuracy of
our learned hypothesis is paramount, we are considering running C4.5 (a fast algorithm) to find
a decision tree hypothesis (a relatively weak representation). But we may also want to consider
running backpropagation (a slow agorithm) to find a multilayer neural network (arelatively powerful
representation, requiring more data, but with perhaps greater accuracy). ldedly, we would like afast,
low-data test that informs us whether this investment would be worthwhile.

The results we present here are far from providing tests of such practicality, but they do examine
natural and common hypothesis representations, and introduce some basic tools for testing algorithms
that may point the way towards further progress. Specifically, our main results demonstrate tests for
s-node decision trees, and for a special class of neural networks of s hidden units (both over [0, 1]%),
that require only O(s'/2*%) (for any small constant §) random examples when the input dimension d
is held constant and the underlying distribution is uniform. Thisis in contrast to the }(s) examples
required, under the same conditions, to learn a hypothesis that is even a weak approximation to such
functions.

The tests we describe will “accept” any function that is a size s decision tree or neura network,
and “rgect” any function that is “far” from all size s’ decision trees or neural networks, where s’ is
not much larger than s. Thus, even though acceptance ensures the existence of a small decision tree
or neural network nontrivially approximating the target function, we have far fewer examples than are
necessary to actually construct the approximation. We aso provide tests using membership queriesin
which the difference between testing and learning is even more dramatic, from €2(s) queries required
for learning to poly(log(s)) or even aconstant number of queries required for testing.

What form do these tests have? We begin by noting that they must look quite different from the
standard learning algorithms. With only roughly /s examples, if we begin by seeing how well we
can fit the data with a size s function, we will aways be able to achieve zero training error, even if the
labels were generated randomly. The tests we describe are based on two central ideas. locality and the
Birthday Paradox. Roughly speaking, for both decision trees and neural networks, we show that there
are different notions of two input points being “near” each other, with the property that for any size s

function, the probability that a pair of near points have the same label significantly exceeds 1/2. Itis
not hard to construct notions of nearness for which this will hold — for instance, calling two points
near only if they are identical. The trick is to give the weakest such notion, one sufficiently weak to
allow the application of the Birthday Paradox. In particular, we use the Birthday Paradox to argue that
asmall sampleislikely to contain apair of near points. Thus, all of the resulting tests are appealingly
simple: they involve taking asmall sample or making asmall number of queries, pairing nearby points,
and checking the fraction of pairs in which the two points have common labels.

The heart of our proofs are purely combinatorial lemmas in which we prove that certain notions
of locality yield relatively coarse partitions of space that can approximate the partition induced by
any small decision tree or neura network, respectively. We believe these combinatorial lemmas
are of independent interest and may find application elsewhere. Variations on these combinatorial
constructions can hopefully yield improved tests. There are two main aspects of our resultsthat call for
improvement: the exponential dependence on the dimension d (thus limiting their interest to a fixed,
small dimension), and the distance (from any decision tree or neura network of size s’) at which we
can ensure that atested function isrejected, whichis1/2 — ¢ for aconstant ¢. Thetwo casesfor which
we can provide tests that work for any distance are decision trees of dimension 1 (interval functions),
and classes of functions that are defined by all labelings of afixed set of partitions of the domain.

Prior Wor k

There are several lines of prior work that inspired the current investigation. Problems of testing and
their relationship to learning were recently studied by Goldreich et a. [GGR96], whose framework we
follow and generalize. They werein turn inspired by the PAC learning model, and built on the model
of Rubinfeld and Sudan [RS96] that emerged in the context of program testing. However, the testing
algorithms described in these papers, aswell asin other related work [BLR93, Rub94, GR97, GR9g],
all utilize queries, and except for illustrative examples we are not aware of any testing algorithms that
use only random examples and have lower sample complexity than that required for learning.

The function classes studied in these earlier works are defined by algebraic or graph-theoretic
properties. In particular, there are agorithms for testing whether a function is multilinear (or far
from any such function) [BLR93, BCH195] and for testing whether a function is a multivariate
polynomia [RS96]. These classes demonstrate very large gaps between the complexity of testing and
of learning, when queries are available and the input distribution is uniform.

Our work can aso be viewed as a study of the sample complexity of classical hypothesis test-
ing [Kie87] in statistics, where one wishes to accept or reject a*“null hypothesis’, such as “the datais
labeled by afunction approximable by a small decision tree”. Other related works from the learning
literature along these lines includes papers by Kulkarni and Zeitouni [KZ93], and Yaminishi [Yam95].

Outline

The outline of the paper is as follows. in Section 2, we introduce several related notions of testing.
Section 3illuminates the basic ideas of locality and the Birthday Paradox on asimple example, interval
functions on therea line. In Sections 4 and 5 we give our main testing results for decision trees and a
special class of neural networks, respectively. In Section 6 we give ageneral statement regarding the
complexity of testing classes of functions that can be approximated by families of labeled partitions.

In Section 7 we prove a connection between testing and the standard notion of wesk learning from
the computational learning theory literature. In Section 8 we show a lower bound on the number of
examples required for testing the classes we consider, which matches our upper bounds, in terms of the
dependence on s, up to logarithmic factors.

2 Dée€finitions

We start by noting that though we consider only Boolean function, our definitions easily generalize to
real-valued functions. We begin with a needed definition for the distance of afunction from a class of
functions.

Definition 1 Let f and f' beapair of functions over domain X, H aclassof functionsover X, and P a

distribution over X . Thedistance between f and f’ with respectto P isdistp(f, f') % Proup[f(z) #

#'(x)], and the distance between f and H (with respect to P) isdistp(f, H) % minpep distp(f, f').

For e € [0, 1],if distp(f, H) > ¢, thenwe say that f ise-far from H (with respect to P). Otherwise, it
is e-close. Weuse dist(-, -) asa shorthand for disty (-, -), where U isthe uniform distribution over X.

Before giving our definitions for testing problems, we reiterate the point made in the introduction
that, under the appropriate definitions, the resources required for testing for A will always be at most
thoserequired for learning H (see Proposition 14). Our interest isin cases wheretesting is considerably
easier than learning.

In our first definition of testing we generalize the definition given by Goldreich et al. [GGR96].
There the task was to determine whether an unknown function f belongs to a particular class of
functions H or is e-far from H. We relax this definition to determining whether f € H or f ise-far
fromaclass H', where H' O H. This relaxation is especialy appropriate when dealing with classes
of functions that are indexed according to size. In such acase, H might contain al functions of size at
most s (for instance, decision trees of at most s leaves) in acertain family of functions H (all decision
trees), while H’ might contain all functionsin H that have size at most s’, where s’ > s. Anideal test
would have H' = H (s’ = s), and e arbitrarily small, but it should be clear that relaxations of thisideal
are still worthwhile and nontrivial.

Definition 2 Let H be a class of functions over X, let H' O H, lete € (0,1/2], and let P be a
distribution over X. Wesay that H is testable with rejection boundary (H', €) in m examples (respectively,
m queries) with respect to P if there is an algorithm 7" such that:

o If 7" isgiven m examples, drawn according to P and labeled by any f € H (respectively, 7' makes
m queriesto such an f), then with probability 2/3, 7" accepts.

e If 7" is given m examples, drawn according to P any labeled by any function f that is e-far from
H' with respect to P (respectively, 7' makes m queries to such an f), then with probability 2/3, T'
rejects.

If neither of the above conditions on f holds, then 7" may either accept or reject.

Note that our insistence that the success probability of the algorithm be at least 2/3 isarbitrary; any
constant bounded away from 1/2 will do, as the success probability can be amplified to any desired
valuel — 6 by O(log(1/6)) repetitions of the test.

3

Our next definition can be viewed as pushing the rejection boundary of the previous definition to
the extreme of truly random functions.

Definition 3 Let H bea classof functionsover X, and let P beadistribution over X. We say that H
is testable against a random function in 1m examples with respect to P if thereisan algorithm 7' such that:

e If T"is given m examples drawn according to P and labeled by any f € H, then with probability
2/3, T accepts.

e If T"isgiven m examples drawn according to P and labeled randomly, then with probability 2/3, T'
rejects. The probability hereis taken both over the choice of examples and their random labels.

Note that whenever H istestable with rejection boundary (H, €) in m examples (queries), and H
is such that with high probability a random function is e-far from H (for some e < 1/2), theniit is
testable against arandom function in m examples (queries).

Our final definition has a slightly different flavor than the previous two. Here there are two classes
of functions, H; and H,, and the task is to determine whether f belongsto H; or to H,.

Definition 4 Let H, and H, be classes of functions over X, and let P be a distribution over X. We
say that (H,, Hy) are testable in m examples (respectively, m queries) with respect to P if there is an
algorithm 7" such that:

o If T"isgiven m examples, drawn accordingto P and labeled by any f € H; (respectively, 1" makes
m queriesto such an f), then with probability 2/3, 7" outputs 1.

e If T"isgiven m examples, drawn accordingto £ and labeled by any f € H, (respectively, 1" makes
m queriesto such an f), then with probability 2/3, 7" outputs 2.

If neither of the above conditions on f holds, then 7" may output either 1 or 2.

Note that in the above definition it isimplicitly assumed that there is a certain separation between
the classes H; and H, — that is, that there exists some ¢ € (0, 1] such that for every h; € H; and
hy € H,, distp(hy, he) > €. Inparticular, thisimplies that H, N H; = (). Otherwise, it would not
be possible to distinguish between the classes in any number of examples. An alternative definition
would require that the testing algorithm be correct only when the function f belongs to one class and
is e-far from the other.

3 Interval Functions

We start by describing and analyzing a testing algorithm for the class of interval functions. The study
of this simple class serves as a good introduction to subsequent sections.

For any size s, the class of interval functions with at most s intervals, denoted INT;, is defined
as follows. Each function f € INT; isdefined by t < s — 1 switch points, a; < ... < a;, Where
a; € (0,1). Thevaueof f isfixedin each interval that lies between two switch points, and aternates
between 0 to 1 when going from one interval to the next.

Itisnot hardtoverify that learning theclassIN'T ; requires()(s) examples(evenwhen theunderlying
distribution is uniform). In fact, Q(s) is aso alower bound on the number of membership queries

4

necessary for learning. Aswe show below, the complexity of testing under the uniform distribution is
much lower — it suffices to observe O(+/s) random examples, and the number of queries that suffice
for testing isindependent of s.

Theorem 1 For any integer s > 0 and e € (0, 1/2], the class of interval functions INT; is testable
with rejection boundary (IN'T ., ¢) under the uniformdistributionin O(y/s/¢'*) examplesor O(1/¢)
gueries. The running time of the testing algorithm is linear in the number of examples (respectively,
gueries) used.

The basic property of interval functions that our testing algorithm exploits is that most pairs of
close points belong to the same interval, and thus have the same label. The algorithm scans the sample
for such close pairs (or queries the function on such pairs), and accepts only if the fraction of pairsin
which both points have the same labdl is above a certain threshold. In the proof below we quantify the
notion of closeness, and analyze its implications both on the rgjection boundary for testing and on the
number of examples needed. Intuitively, there is the following tradeoff: as the distance between the
points in a pair becomes smaller, we are more confident that they belong to the same interval (in the
casethat f € INT;); but the probability that we observe such pairs of points in the sample becomes
smaller, and the class H' in the rejection boundary becomes larger.

Proof: Wefirst describe the testing algorithm in greater detail. Let s’ = s/¢, and consider the partition
of the domain [0, 1] imposed by a one-dimensional grid with s’ equal-size cells (intervals) ¢, . . ., ¢y
Given asample S of sizem = O(v/s'/¢) (F0(v/5/¢"?)), we sort the examples x4, . . ., x,, into bins
B, ..., By, where the bin B; contains points belonging to the cell ¢;. Within each (non-empty) bin
B;, let x;,,x,,,...,z; betheexamplesin B;, ordered according to their appearance in the sample,
and let us pair the points in each such bin according to this order (thus, z;, is paired with z;,, «;, with
x;,, and soon). We call these pairs the close pairs, and we further call apair pureif it is close and both
points have the same label. The algorithm accepts f if the fraction of pure pairs (among all close pairs)
isat least | — 3¢/4; otherwise it rejects. When the agorithm is instead allowed queries, it uniformly
selectsm’ = O(1/¢) of thegrid cells, uniformly drawsapair of pointsin each cell chosen, and queries
f onthese pairs of points. The acceptance criteriais unatered.

Our first central observation isthat by our choice of m, with high probability (say, 5/6), the number
m' of close pairsisat least m' = O(1/¢). To obtain this lower bound on m", assume we restricted
our choice of pairs by breaking the random sample into 4m' random subsamples, each of size 2v/s/,
and considered only close pairs that belong to the same subsample. We claim that by the well-known
Birthday Paradox, for each subsample, the probability that the subsample contains a close pair is at
least 1/2. To see why thisis true, think of each subsample S’ as consisting of two parts, S; and S5,
each of size v/s'. We consider two cases: In this first case, S/ aready contains two examples that
belong to a common cell and we are done. Otherwise, each example in 5] belongs to a different cell.
Let this set of /s’ cells be denoted C' and recall that all cells have the same probability mass 1/s.
Thus, the probability that .S’ does not contain any example fromacell in C'is

B4 Vel
(1—|C|é) = (1—\%) < et < 1)2 1)

as claimed. Hence, with very high probability, at least a fourth of the subsamples (that is, at least m')
will contribute a close pair, in which case m” > m’. Since the close pairs are equally likely to fall in

5

each cell ¢; and are uniformly distributed within each cell, the correctness of the algorithm when using
examples reduces to its correctness when using queries, and so we focus on the latter. To establish that
the algorithm is atesting algorithm we need to address two cases.

Casel: f e INT,. Fort =1...,m/, let x, berandom variable that is 0 if the ¢th close pair is pure,
and 1 otherwise. Thus y; is determined by a two-stage process: (1) The choice of the ¢'th grid cell
¢t; (2) The selection of the two points inside that cell. When ¢; is a subinterval of someinterval of f,
then the points always have the same label, and otherwise they have a different label with probability
at most 1/2. Since f has a most s intervals, the number of cells that intersect intervals of f (that is,
are not subintervals of f’sintervals) isat most s, and since there are s/¢ grid cells, the probability of
selecting such acell isat most ¢. It follows that for each ¢,

Elv] < ¢ (1/2)+(1-¢)-0 = ¢/2. @)

By amultiplicative Chernoff bound, with probability at least 2/3, the average of the y;'s (whichisjust
the fraction of close pairs that are not pure), is at most 3¢/4, as required.

Case2: dist(f,INT,) > e. Inorder to provethat in this case theagorithm will reject with probability
at least 2/3 we prove the contrapositive: If the algorithm accepts with probability greater than 1/3
then there exists afunction f’ € INT that ise-closeto f.

Let f* € INT,, bethe (equally spaced) s’-interval function that givesthe majority label according to
ftoeachgridcell. Weclamthat if f isaccepted with probability greater than 1/3 thendist(f, /') <.
For contradiction assume that dist(f, f’) > e. For each grid cell ¢; let ¢; € [0, 1/2] be the probability
mass of pointsin ¢; that have the minority label of f among pointsin ¢;. Thus, dist(f, f') = E;[¢;],
and so, by our assumption, E;[¢;] > ¢. Onthe other hand, if we define x, asin Case 1, then we get that

Elxd = E;[2¢(1—¢)] > Ejf¢] ©)

where the second inequality follows from ¢; < 1/2. By our assumption on f, E[x:] > ¢, and by
applying amultiplicative Chernoff bound, with probability greater than 2/3, the average over the x,'s
is greater than 3¢/4 (which causes the algorithm to reject). |

4 Decison Trees

In this section we study the more challenging problem of testing for decision trees over [0, 1]%. Given
aninput ¥ = (x1,...,2q), the (binary) decision at each node of the tree is whether =:; > « for some
i € {l,...,d} anda € [0,1]. The labels of the leaves of the decision tree arein {0, 1}. We define
the size of such atree to be the number of leaves, and we let DT¢ denote the class of decision trees of
size a most s over [0, 1]%. Thus, every treein DT? determines a partition of the domain [0, 1] into at
most s axis aligned rectangles, each of dimension d (the leaves of the tree), where all points belonging
to the same rectangle have the same labdl.

As in the testing algorithm for interval functions, our algorithm for decision trees will decide
whether to accept or reject afunction f by pairing “nearby” points, and checking that such pairs have
common labels. The naive generalization of the interval function algorithm would consider a “grid”
in d-dimensional space with (s/¢)? cells, each of uniform length in all dimensions. Unfortunately, in

order to observe even a single pair of points that belong to the same grid cell, the size of the sample
must be (1/(s/€)?), which for d > 2 islinear in s or larger, and thus represents no savings over the
sample size for learning.

Instead of considering this very refined and very large grid, our agorithm will instead consider
several much coarser grids. The heart of our proof is a combinatoria argument, which shows that
there exists a (not too large) set of (relatively coarse) d-dimensiona grids (71, . . ., G, for which the
following holds: for every function f € DTfj, there exists agrid &; such that a “significant” fraction
of thecdlsin (5; “fitinside” the leaves of f — that is, there are not too many cells of &; that intersect
adecision boundary of f.

Theorem 2 For any size s, dimension d and constant C' > 1, let &' = &'(s,d,C) o
24+1(25)1+1/C. Then the class of decision trees DT is testable with rejection boundary
(DTﬁ,, 1- W) with respect to the uniform distribution in O ((20d)2-5d : s%(”l/c)) ex-
amples, or O ((2Cd)2d+1 -1og(s)d+1) queries. Thetime sufficient for testing with examplesisat most

(21og(2s))? larger than the number of examples used, and the time for testing with queriesislinear in
the number of queries performed.

In order for the sample sizes of Theorem 2 to represent a substantial improvement over those
required for learning, we must think of the input dimension d as being a constant. In this case, for
a sufficiently large constant ', Theorem 2 says that it is possible to distinguish between the case in
which afunction is adecision tree of size s, and the case in which the function is a constant distance
from any tree of size s’ (where s’ is not much bigger than s), using only on the order of /s examples
or on the order of log(s) queries. Again, it iseasy to verify that (2(s) examples or queries are required
for learning in any of the standard models.

A possible criticism of the above result is that the distance parameter in the regjection boundary
implies that any function that has a significant bias towards either 1 or O (and in particular, a biased
coin) will passthe test. In Subsection 4.1 we briefly discuss how our testing algorithm can be modified
to address thisissue.

When queries are alowed we can aso obtain the following theorem.

Theorem 3 For any s and for any ¢, the class of decision trees DT is testable with rejection boundary
(DTfsd/E)d, e) and with respect to the uniform distribution with O(1/¢) queriesand intime O(1/e).

We now turn to prove Theorem 2. The proof of Theorem 3, which is very similar to the proof of
Theorem 1, is provided after the proof of Theorem 2.

The combinatorial lemmabelow isthemain tool in proving Theorem 2. We shall need thefollowing
notation: Forad-tuple R = (R, ..., Ry), where R; € [0, 1], weconsider the d-dimensional rectangle
whose length (projected) in dimension j is /2;. Thus, in what follows, our notion of arectangle R is
independent of the position of R in space. We let V (R) denote the volume of R, so

d
V(R) = JI&;. (4)
7=1
If Q and R are d-dimensional rectangles, we say that Q) fits in R if Q; < R; fordl ..

7

Lemma4 Let R',..., R’ berectanglesin [0, 1]¢, each of volume v € [0,1]. Then for any natural
number k > d, there exists arectangle @ in [0, 1]¢ such that V(Q) > v!*+{?=U/% and () fitsin at least
afraction k=Y of R',..., R".

Proof: We shall prove the lemmaby induction. For d = 1 the“rectangles” R!, ..., R' aresimply line
segments of length at least v, and so the line segment of length exactly v fitsin al of them. Assuming
the induction hypothesis holds for d — 1, we prove it for d. For each rectangle R and 1 < j < d,
we denote by R§ the length of R* in dimension j. By our assumption on the volume of the rectangles,
[, R >v. Let

Vit (R ﬁ R (5)

be the volume of the projection of R* tothefirst d — 1 dimensions. Thus, for each B¢, v < V,_; (R!) <
1. Assume, without loss of generdlity, that R, ..., R' are ordered according to V,;_,(R'), so that
Vi1 (R') islargest.

Given a natural number & > d, we partition the rectangles R!, ..., R’ into k bins as follows.
For{=1,... k letb, = v#, and let the (th bin, denoted B,, consist of all rectangles R’ such that
by < Vi1 (RY) < by_y (where by %). Since there are only bins, there exists a bin, denoted B,,
that contains at least £~! of therectangles R!, ..., R'. We focus on the rectangles in this bin.

Consider the set, denoted B/, of (d — 1)-dimensional rectangles containing the projections of the
rectangles in B, to the first d — 1 dimensions. Then, by definition of the bins, each of the (d — 1)-
dimensional rectangles in B;, has volume at least b,. Assume without loss of generdlity that they all
have volume exactly b,. ' By applying the induction hypothesis on the rectangles in B!, we have that
there exists a rectangle)’ (of dimension d — 1) that has volume at least b} (4=2)/* and fitsin at least
k=12 of the rectanglesin By,

On the other hand, for each R* € B,, we dso have that R, > 5 (recall that V(R") = vand

Va_1(R') < b,_1). Combining this with the above application of the induction hypothesis, we know
that there exists a d-dimensional rectangle () such that

v

d—2
by T 6)
by_1

ViQ) =

and @ fitsin at least k~(4~1) of dl rectangles R', . . ., R*. If wenow substitute b,_; and b, in the above
lower bound on V' (@), we get that

v 1442
V(Q) > — .(.U%) z
1_9= 1+ gk+d 2))

14 +gd2)

_ U(
(1+ ©
whichfor g <=k (and v < 1) isat least v!+ % |

= v

!If thisis not the case, we can consider amodified set, denoted B}/, of (d — 1)-dimensional rectangles, which we define
asfollows. For eachrectangle R = (Ry, ..., Rq—2, R4—1)in Bé wehave arectangle R’ = (R, ..., R4_2, R},_;) such
that R, | = R4—1 - b,/V(R) sothat R’ hasvolume exactly b,. Clearly, if some (d — 1)-dimensional rectanglefitsin a
certain fraction of rectanglesin By, thenit fitsin at least the same fraction in By.

8

Lemma 4 shows that some “large” rectangle () must fit inside “relatively many” rectangles in a
given collection; this statement ignores the absol ute position of the rectangles under consideration. We
now translate this to a statement about decision trees, where the rectangles defined by the leaves do in
fact have absolute positions. We show that if we now take a“grid” in which every cell is anidentica
(scaled) copy of), then therewon’t be too many cellsthat intersect a decision boundary of the decision
tree — that is, a non-negligible fraction of the cells are purely labeled by the function.

Lemma5 Let f beadecisiontreein DT?, andlet R, . .., R° bethe d-dimensional rectangles defined
by theleaves of f (ignoringtheir positioninspace). Let 3 € [0, 1], and supposethere exists arectangle
Q = (Q1,...,Qq) suchthat thetotal volume of the rectanglesamong R, . .., R* inwhich @ fitsisat
least 3. Consider arectilinear partition i over [0, 1]¢ wherefor every j € {1,....d}, eachcdl in ¢
isof length /2 in dimension j. Then the fraction of grid cellsin (7 that fall entirely inside leaves of
fisatleast 3-27¢.

Proof: For each rectangle ', let L' be the leaf in f to which R’ corresponds. We say that R’
(respectively, L) is good with respect to () if @ fitsinside R'. We shall show that for each good leaf
L' thetotal volume of all grid cells that fit inside it isat least 2=¢ - V(R*). Since the total volume of
all good leavesisat least 3, the lemma follows.

Consider any goodrectangle R' = (R:, ..., R}) andthecorrespondingleaf ‘. For eachdimension
j.letr! def R’ /Q;. Hence, by definition,

V(R) = V(@Q)-IIr5- te)

Let R* = (R:, ..., R}) bethe d-dimensional rectangle defined by the grid cells of that fit inside '
Since the grid cells have length at most (/2 in each dimension j, we have that

By > Rj—Q;/2 (©)
and so B
V(R) TI0 - 1/2) (10)
J
Therefore
V(R)/V(R) > H (ri —1/2)/r (11)
Since @ fitsinside R', i > 1 for each j, and so V/(R')/V(R') > 27¢, asclaimed. |

Proof of Theorem 2: We prove the correctness of the algorithm described in Figure 1. Asin the
proof of Theorem 1, we first show that based on our choice of the sample size m, with probability at
least 5/6, for every grid, the number of pairs that belong to acommon grid cell, is at least m’. Details
follow. Asin the proof of Theorem 1, we break the sample into 4m' random samples each of size2v/s’
and consider only close pairs that belong to the same subsample. By the same argument used in that
proof, if we now fix aparticular grid, the probability that any given subsample contains apair of points
from a common cell, isat 1/2. By a multiplicative Chernoff bound, the probability that less than a
fourth of the subsamples (that is, less than m") contribute such apair, is at most exp(—m’/12). Since

9

Testing Algorithm for Decision Trees
Input: size s, dimension d, and a constant C'.

1. For Examples Version of the algorithm let .S be a uniformly chosen sample of size

m = O(22%(Cd)**1(25) 201+ L loglog(s)).

2. Letn = [(14+1/C)-log(2s)]. For each setting of (¢1, .. ., 74) suchthat the:;’s areintegers
ranging between 1 and », and 3" ¢; = n, consider the grid G = G(7y,...,14) over [0, 1]
whose grid cells have length 2-¢+1) in dimension j and do the following:

e Query Version

(@ Uniformly sdlect m’ = O((2Cd)**! - loglog(s)) grid cellsin &, and for each cell
chosen, uniformly select a pair of pointsin the cell and query f on these points.

(b) If the fraction of selected pairs that have the same label isat least § + W, then
ACCEPT.

e Examples Version

(8 Foreachcdl cinG, let 25, ..., z; be the examples in the sample S that belong to ¢
(according to their order in S). For each 1 < i < |t/2], the pair of points z5,_; and
x5, arereferred to as a close pair.

(b) If the fraction of close pairs (among all close pairsin al cells) that have the same label

i 1
isatleast 5 + sarrogya= then ACCEPT.

1
(Cd)

3. If no grid caused to ACCEPT then REJECT.

Figure 1: Testing Algorithm for Decision Trees

the number of gridsis bounded by n? < (21og(2s))? (whilem’ = Q(dlog log s), the probability that
for some grid there are less than ' pairs of points from acommon cell, is bounded by a small constant
as required. It thus follows that we can restrict our attention to analyzing the query version of the
algorithm.

The proof that for any f such that dist(f, DT?) > % — W the algorithm rejects £ with
probability at least 2/3, (or, equivalently, that any function that is accepted with probability greater
than1/3is (3 — W)-closeto DT?), isanalogous to the special case of theinterval functions
proved in Theorem 1. In particular, if f isaccepted with probability greater than 1/3 then there must
be at least one grid G = G(e1,...,14) that, when considered, causes the algorithm to accept with
probability greater than 1/(3k), where k < n? < (2log(2s))? isthe total number of grids considered.
Let f' be the decision tree (of size s) whose leaves correspond to the cells of (7, and where the label
of each leaf is the majority label according to f. We define y; and ¢; analogously to the way they
were defined in the proof of Theorem 1. Namely, x; is a 0/1 random variable that is 1 if an only if
the ¢’th pair of points (uniformly selected in auniformly chosen grid cell of &) have adifferent label;
¢; € [0,1/2] isthe probability mass of pointsin j'th cell of G that have the minority label according

10

to f. Then we get that
Elx = Ejl2¢;(1 —¢;)] > Ejle] = dist(f, f) (12)

Since f is accepted with probability greater than 1/(3k) when the grid G is considered, then by
applying an additive Chernoff bound (and our choice of '), it follows that

1 1

dist(f, f') < 5~ W . (13)

In the remainder of the proof we analyze the case in which the function f isin fact adecision tree
in DT?. We show that for each f € DT?, there exists a grid ¢ = G(il, ..., ig4), such that fraction
of grid cells that fits inside leaves of f is at least 2-(4+2) . (C'd)~?. We prove the existence of ¢
momentarily, but first show how this the proof that f is accepted with probability at least 2/3 follows
from the existence of (i. If we define Y¢ as above (with respect to G), then similarly to the proof of
Theorem 1, we have that

El] < (1—270 . (Cd)™)- %
_ % 2-(3) . ()~ (14)

By an additive Chernoff bound (and our choice of m’), the function f is accepted with probability at
least 2/3 asrequired. We now turn to proving the existence of G.

Let R',..., R be the rectangles corresponding to the leaves of f. Consider those rectangles
among R', ..., R* that have volume at least 1/(2s), and assume, without loss of generality that these
ae R',... R'. Thus, thetota volumeof R', ..., R'isatleast 1/2. Wewould like to apply Lemma 4
to these rectangles; however, they do not all have exactly the same volume. We therefore “cut them
up” into rectangles of volume exactly 1/(2s). More precisely, for each rectangle &* = (R:, ..., RY)

suchthat V(R') > 1/(2s), let
def

rE VI(RY)/(1/(29)] (15)
be the number of (whole) rectangles with volume 1 /(2s) that can fit (“side-by-side’) in R:. For each
1<e<rle R = (R, ..., RY), where

R, ¥ (1/(25) /HRZ (16)

Thus, for each ¢, V(R"*) = 1/(2s), and R", ..., R*"" canall fit“side-by-side” in R’ (with apossible
“left-over” smaller rectangle). The rectangles

al have volume exactly 1/(2s), and their total volumeisat least 1 /4.

Suppose we now apply Lemma 4 to these (at most 2s) rectangles, setting £ = C' - d. Then, by
the lemma, there exists a rectangle Q (Ql, ..., Qq), that has volume at least (1/(2s))'+'/¢ and
fits inside at least a fraction (C'd)~(*~1) of R™',..., R, Recal that R!,..., R*"" are simply

11

sub-rectangles of a subset of R',..., R?, their total volume is at least 1/4, and they al have equal
volume. Therefore, the total volume of the rectangles among R!, ..., R® into which Q) fitsis at least
L.(Cd)=t=1). Since

V(Q) > (1/25)70HVD > o7 (17)

(Wwheren isas set in Step (2) of the algorithm), there must be at least one iteration of the algorithm in
which the grid G/(¢1, . .., 74) has cells with length at most ();/2 in each dimension j. Let us denote
this grid by a. By applying Lemma 5 we obtain that the fraction of grid cells (in G) that fit inside
leaves of f isat least 27 (2 . (C'd)~(4-1), u

Proof of Theorem 3: Theagorithm on which the correctness of this theorem is based, isageneraliza-
tion of the query version of the algorithm for testing interval functions. Thealgorithm considersasingle
grid (¢, whose cells have length ¢/(sd) in each dimension. It then uniformly chooses m’ = O(1/e¢)
grid cells, uniformly selects two points in each chosen cell, and accepts only if the fraction of pairs
selected by the algorithm that have the same label isat least 1 — 3¢/4.

CAasE 1 (f € DT?). We show that in this case, the fraction of grid cellsin ¢ that fit inside leaves of
fisatleast 1 — e. Similarly to the argument made in the proof of Theorem 2, this implies that the
expected fraction of pairs that have the same label is at least 1 — ¢/2, and so with probability at last
2/3 thefraction is at least | — 3¢/4 as desired. To obtain the bound on the fraction of grid cells that
fit inside leaves of f, consider any axis-aligned hyperplane (of d — 1 dimensions), which separates
two leaves of f. Each such hyperplane is either aligned with the grid, or it intersects (sd/¢)?~! grid
cells. Since the number of such separating hyperplanesis at most s - d, while the number of grid cells
is((sd)/e)?, the fraction of grid cells that are intersected by leaves of f isat most ¢, as claimed above.

Cask 2 (dist(f, DT?Sd/E)d) > ¢€). This case follows analogously to Case 2 in the proof of Theorem 1.
Here we have that for any function f that is accepted with probability greater than 1/3, the function
g € DT 44/« Whoseleaves correspond to the cells of the grid GG and the label of each leaf (cell) isthe
majority label according to f, is at distance at most ¢ from f.

4.1 Biased Functions

As noted previously, Theorem 2 implies that any function that has a significant enough bias towards
either 1 or O (and in particular, a biased coin) will pass the test with high probability. The following
theorem is arefinement of Theorem 2, and can be used to address this issue (as discussed below).

Theorem 6 For any constant v € [0, 1/2], let DT?W be the class of decision tree over [0, 1]¢ that have
sizeat most s and bias at least . Thatis, for every function f € DT{_, either Pr[f(z) = 1] > 1+,

or Pr[f(z) = 0] > £ +~. Then for any ~, the class DTjN is testable with rejection boundary

(DTi,, i %),Wheres’ isassetin Theorem2 (with the same sample/query complexity).

Thus, in order to avoid accepting any function f that is biased away from 1/2, the algorithm can
first approximate the bias of f and then run the testing algorithm for DTfﬁ with the appropriate .

Proof: The testing algorithm for DT?W is the same as the testing algorithm described in Figure 1,
except that the acceptance criterion is slightly altered: a function is accepted only if the fraction of

12

pairs with the same label is at least 1 + 4% — W Showing that every f that is beyond the
rejection boundary isin fact rejected (or more precisely, proving the contrapositive statement), is done
asin Theorem 2.

We now prove that if f € DT} then it is accepted with probability at least 2/3. Here too it
sufficesto prove this holdsfor the query version of the algorithm. Asshownin the proof of Theorem 2,
there exists a grid ¢ = G/(i1,...,14), such that fraction of grid cells that fit inside leaves of f is
at least 27442 . (C'd)~%. We refer to these cells as pure and to the rest as mixed. Let N denote
the number of cdllsin &, and let o = 2-(#+2) . (C'd)~*. Assume, without loss of generality, that
Pr[f(z) = 1] > + v, and let 1/2 + ~; bethe probability that f(x) = 1 for z in grid cell j (so that
~; can be negative). Then

1 1 1
— — o> = : 18
sz:<2+%) =317 (18)
Let y; be defined as in the proof of Theorem 2. Then,
1 1 1
E = —- Y 2(= N
bal =5 ; (2 +7]) <2 7])
1 1
< - ——25 747 19
< 57w Ej ; (19)

In order to upper bound the above expectation, we lower bound the term % =237 77. We know that
the pure cells (y; = 1/2 or v; = —1/2), contribute atotal of at least «/2 to this term, and we would
like to lower bound the contribution of the mixed cells whose set we denote A .

Let o bethefraction of cellsthat are both pureandlabeled 1 by f. Then by breaking the summation
in Equation (18) into two parts we get that,

1 1 1
Oz1—|-N'Z<§‘|"}/j) > §—|-’}/. (20)
JEM
Since the fraction of mixed cellsisat most 1 — « (and «; < «), Equation (20) implies that
1 «
N2z 15 (21)
N G ! 2
Recall that we are interested in lower bounding % 23 7]2. Thissumis minimized when al ~;’s are
equal. Substituting in Equation (19) we obtain

1 «
Elx:] < 5—72—5'(1—7)- (22)
By substituting the value of « and applying an additive Chernoff bound we get that f is accepted with
probability at least 2/3. |

5 Aligned Voting Networks
In this section we study arestricted class of neural networksover [0, 1]¢ called Aligned Voting Networks.

These are essentially neural networksin which the hyperplane defining each hidden unit is constrained
to be parallel to some coordinate axis, and the output unit takes a majority vote of the hidden units.

13

Definition 5 An aligned hyperplane over [0, 1]% is a function % : [0,1]* — {+1,—1} of the form
h(Z) = sign(xz; — a) for some dimension: € {1,...,d} and somea € [—1, 1] (Where sign(0) is
defined to be +1). An aligned voting network over [0, 1]¢ is a function f : [0,1]¢ — {+1,—1} of the
form
f(@) = sign (Z hj(f))
7=1

where each k;(Z) is an aligned hyperplane over [0, 1]¢. The size of f is the number of voting
hyperplanes s.

An alternative way of viewing an aigned voting network f is asaconstrained labeling of the cells
of arectilinear partition of [0, 1]¢. For each dimension :, we have positionsa; € [0, 1] and orientations
ul € {+1,—1}. The hyperplanes z; = a] define the rectilinear partition, and f is constant over each
cell ¢: for any #, we define

d s
#(F) = DD sign(; — ulal)
i=1j=1
(where s, is the number of aigned hyperplanes that project on dimension :), and then f(Z) =
stgn(#(Z)). By extension, for each cell ¢ of the partition, we define #(c¢) as the constant value of
#(Z) forall ¥ € ¢, and f(c) asthe constant value of f(Z) for al & € c.

A decision tree of size s definesapartition of space into only s cells, each of which may be labeled
arbitrarily. An aigned voting network of size s also naturally defines a partition of space, but into
many more cells, on the order of s2. Indeed, already in 3 dimensions, if s/3 of the aligned hyperplanes
project into each dimension, the rectilinear partition defined by these hyperplanes has (s/3) cells, and
waiting for two pointsto fall in acommon cell will take morethan s examples. Instead, we will exploit
the fact that the labels of the cells in this partition are far from arbitrary, but are instead determined by
the vote over the hyperplanes. It will turn out that if instead of considering two points to be near only
if they fall in the same cell of the partition, we consider them to be near even if they fall in the same
dlice of the partition (where aslice contains all the cells sharing some fixed range of valuesfor asingle
dimension), we can obtain the desired balance: with a number of examples sublinear in s, we can get
anear pair, and the chances that such apair is purely labeled is significantly greater than 1/2.

Theorem 7 Let AVN* denote the class of aligned voting networks of size at most s over [0, 1]%. Then
for any s and d, AVN? is testable with rejection boundary (AVN* § — s With respect to

2.624%1 50 2
the uniform distribution in O(62*** /) examples (and time), or O(62***) queries (and time).

Again, the theorem isinteresting in comparison to the resources required for standard learning only
if d isaconstant with respect to s. Along the lines of Theorem 6, here too we can slightly modify the
algorithm so that it will not automatically accept biased random functions.

Before giving the proof of Theorem 7, let us make some simple but useful technica observations
about aligned voting networks. For a given network f € AVN? defined by hyperplanes {a!} and
orientations {u; }, wedefine slice(z, ;) to consist of all those partition cellsin which the ;th component
falls between af and ! ™" (that is, the cells falling between the jth and j + 1st aligned hyperplanesin
dimension :). Note that in going from slice(z, j) to slice(z, § + 1), either the count #(c) of every cell
c increases by 2, or the count of every cell decreases by 2 (depending on the orientation u?), since the

14

only change is with respect to af. Thisimplies that for any ¢, and for any 7 and j’, the ordering of the
cells by their countsis preserved between the parallel slice(z, 7) and slice(t, j'). Thisleadsto asimple
but important property that we call the continuation property: if ¢ hasthe ¢th largest count in slice(z, 7),
and at least ¢ of the cells have positive counts (and thus, f is+1 on them), then the projection ¢’ of
c into any parallel slice(z, j') containing at least ¢ positive counts will aso satisfy f(¢') = +1. The
following combinatorial lemma, which is central to our proof, exploits this property.

Lemma8 Let f bean aligned voting network over [0, 1)¢ of sizeat most s, and let v, = 1/(62°""). If

. 1
Prigja[f(Z) = +1] > 7~V (23)
then there exists a dimension : such that the total probability mass (with respect to the uniform
distribution) of the slice (s, j) of f for which

; . 1
PZ'] = Prslice(i,j) [f(.]?) = —I'l] Z 5 + Yd (24)
is at least 2+,4. (Note that Pf is simply the “ positive bias” of f on a random point from slice(z,7).)
Thus, as long as an aligned voting network is not significantly biased away from +1, the probability
mass of the slices on which the network in fact has a significant bias towards +1 is non-negligible.

In fact, the lemma remains true (with aslightly different setting of +,) if we exchange 1/2 by some
p > 1/2. However, in our application, theworst caseiswhenp = 1/2.

Proof: Fori € {1,...,d} leta} < ... < a}" bethealigned hyperplanes of f. We prove the claim by
induction on d. For thebase cased = 1, we have at most s intervals of [0, 1] each labeled either +1 or
—1. If the overall probability that f is+1 isat least (1/2) — ~1, thenin fact the total probability mass
of theintervals labeled +1 is(1/2) — ;. Solving 2, = (1/2) — 4, yiddsy; = 1/6.

Now suppose the claim holds for every d' < d, and assume that the probability that f is +1 over
[0,1]*isat least (1/2) — 4. Let 0 < oy < r (the subscript H stands for “high bias”) denote the total
probability mass of all slice(d, j) satisfying P; > (1/2) 4 4, and let oy, be the total probability mass
of slice(d, j) satisfying P; < (1/2) — ~4—1 (“low bias”). Then we have that

ar ((1/2) =ya-1) + (L —ap —ap) ((1/2) +ya) +ap -1 = (1/2) =74 . (25)
From thiswe obtain |
ag > 172 =7 ((va + va—1)ar — 274) - (26)
If oy, satisfies
o > ((1/2) — va)27va + 274 27)

Yd + Yd-1
then we have ayy > 2,4, asdesired.
Otherwise, let k be the index j that satisfies Pj > (1/2) — v,; While minimizing P3; thus,
slice(d, k) is the slice that “comes closest” to being low bias without actually being low bias. Note
that f restricted to slice(d, k) meets the inductive hypothesis for d — 1 dimensions; thus slice(d, k)

15

must contain “subslices” (in which now both z; ranges between a% and /™' and for some other

dimension d’ < d, and some k', z4 is between a%, and a%*') whose relative probability (with
respect to slice(d, k)) is at least 41 and whose positive (+1) bias exceeds (1/2) + v4-1 (that is, the
probability that f is+1 exceeds (1/2) + ~v4—1 in each of these subslices). Since slice(d, k) was chosen
to have minimum positive bias among all the slice(d, 7) of positive bias at least (1/2) — ~4_1, by the
continuation property, if ¢ isacell of slice(d, k) that is positively labeled by f, then the projection of
¢ into any of these paralld slice(d, j) must aso be positively labeled by f. In other words, we may
take each positive cell in the biased subslices of slice (d, k), and when we project each such cell aong
dimension d, it remains positive.

Since the total probability mass of slices (along dimension d) having bias at least (1/2) — ~4-1 is
at least 1 — «z,, weobtain that the total probability of slices along dimension d’, that have positive bias
atleast ((1/2) + v4—1)(1 — ar), isat least 2y,_,. For thisbiasto beat least (1/2) 4 v4 we must have

Yd—1 — Vd
o < ———— = 28
LS) F e @9
and in addition we need v4_1 > 4.

Returning to the earlier constraint on «;, given by Equation (27), we find that Equations (27)
and (28) can both be satisfied provided

((1/2) = 7a)2va + 274 < -1

- 29
Yd + V-1 — (1/2) + v4-1 (29)
First note that
((1/2) = 7a)27a + 274 (1/2)27a+ 27 _ 3w (30)
Yd + Vd-1 - Yd-1 Yd-1
and
Yd—1 — Vd
—_— " > - > _1/2 1
(1/2) ‘I”}/d—l = Yd-1 Yd = Vd 1/ (3)

(where the last inequality holds whenever v, < ~4_1/2, which holdsin our case assuming v; < 1/2),
so it sufficesto enforce that 3v4/va—1 < 7a—1/2 or equivaently v, < v3_,/6. Thuswe obtain the

constraint v; < 42*/6¢, which is satisfied by the choice 7, = 1/(6>*"") given in the lemma. u

The corollary below follows directly from Lemma 8.

Corollary 9 Let f be an aligned voting network over [0, 1]% of size s, and let v, = 1/(6*"""). For
ie{l,....,dyandj € {0,...,2-s-~7' —1},letb! = j-74/(2 - s), and let slice(z, j) betheslice
between the hyperplanes z; = b and z; = b/, If Py 3a[f(Z) = +1] > (1/2) — 74 then there
exists a dimension ¢ such that the total probability mass (with respect to the uniform distribution) of
the slice(z, j) for which Pric.i [f(Z) = +1] > (1/2) + yq isat least y4.

All that is missing for the proof of Theorem 7 is to show that any function defined by an arbitrary
labeling of some s’ paralld slices (determined by a set of axis aligned parallel hyperplanes) can be
computed by an aligned voting network of size s'.

Lemma 10 For any integer s, dimension: € {1,...,d}, and values {bf};?':l, consider a partition of
[0, 1] into slices defined by the hyperplanes z; = b/. Then for any {41, —1} labeling of these slices,
there exists an aligned voting network ¢ of size at most s’ that is consistent with this labeling.

16

Proof: Consider only those hyperplanes #* . . ., b’t that separate slices that have difference labels, and
let o' = b, ..., at = b’ bethe aligned hyperplanes of g. Assume, without loss of generality, that
the “last” dlicedefined by o' < z; < 1 islabeled +1. Let the orientation of the hyperplanes aternate
so that u* = +1, u'~' = —1 and so on. If ¢ is even, then for the last dlice ¢, we have #(c) = 0, and
otherwise #(c) = +1. Ineither case, thesignis +1 asrequired. Itiseasy to verify that for every other
slice ¢’ that should be labeled +1, #(¢') = 0 (respectively, #(c¢’) = +1) while for every slice ¢’ that
should be labeled —1, #(¢') = —2 (respectively, #(¢') = —1). Thelemma follows. |

Testing Algorithm for Aligned Voting Networks
Input: size s, dimension d.

1 Let~, = 1/(6*""). Using O(1/+2) uniformly chosen examples, approximate the bias of
the function: If the fraction of examples labeled +1 (similarly, —1) isat least L + 2+, then
ACCEPT.

2. Otherwise, fori € {1,...,d}andj € {0,...,2- 47" -s — 1}, letb! = j - 74/(2- 5), and
let slice(7, 7) bethe slice between the hyperplanes z; = b/ and z; = b!™.

3. e Queries Version: Uniformly select O(1/+5) slicesand query f onauniformly selected pair
in the slice. If the fraction of pairs with the same label is at least ; + 72, then AccepT.
Otherwise, REJECT.

e Examples Version: Uniformly select O(v;%\/s) examples. For each slice(i,j), let
2p?,... 2y’ be the examples in the sample that belong to slice(i,j). For each
1 < k < [t/2], the pair of points z5;_, and z3;, are referred to as a close pair. |f
the fraction of close pairs with the samelabel is at least % + ~3, then ACCEPT. Otherwise,
REJECT.

Figure 2: Testing Algorithm for Aligned Voting Networks

Proof of Theorem 7: Asargued in the proof of Theorem 1 (using the Birthday Paradox) it sufficesto
prove the correctness of the query version of the algorithm. Consider first thecasewhere f € AVNY. If
Pryo 1a[f(Z) = +1] < (1/2) —~a (sothat the probability that the value of the functionis —1 is greater
than (1/2) + ~4), then with high probability f is accepted in Step 1 of the algorithm. Otherwise we
may apply Corollary 9 to obtain that there exists adimension : such that the total probability mass (with
respect to the uniform distribution) of the slice(z, j) for which Pr ;.. j)[f(Z) = +1] = (1/2) 4+ 4
isat least v,4. For any such slice, the probability that two points selected uniformly in that slice have a

different label is at most | | |
2= — — = - —29%, 32
(2 ”) (2 +7d) 9 4 (32)

For any other slice, the probability of thiseventisat most 1. Letrn’ = O(1/~5) bethe number of pairs
of points uniformly selected by the algorithm, and for ¢t = 1,...,m’ let y; be a0/1 random variable
that is 1 if an only if thet’th pair of points have adifferent label. Then,

1 1 1

Elxd < %z-<§—27§>+(1—7d)-2 = 5—273- (33)

17

By an additive Chernoff bound, with probability at least 2/3, the average value of the x,’s measured
by the algorithm is at most % — ~3, causing the agorithm to accept.

We now turn to the casethat f isbeyond the rejection boundary. To show that any such f isreected
with probability at least 2/3 we again prove the contrapositive. Let f be afunction that is accepted
with probability greater than 1/3. It followsthat either f is accepted with probability greater that 1/6
in the first step of the algorithm or is accepted with probability greater that 1/6 in the third step. In
the former case, it must have bias of at least £ + 1+,, and so it is (5 — $74)-Close to the “trivial”
network that has constant value on the whole domain. Inthelatter case consider the network f” defined
by the slices considered in the algorithm, where the label of each slice is the majority label according
to f. The existence of such a network follows from Lemma 10. If we define x; as above, and let
€; € [0,1/2] bethe probability mass of pointsin slice(z, j) that have the minority value according to
£, then we have (analogously to the proofs of Theorem 1 and Theorem 2),

Elx:] > Eijle;] = dist(f, f) (34)

and the claim follows by applying an additive Chernoff bound. |

6 A Generalization

The common theme of the results presented in the previous sections is that in al cases, we showed
that the class H; we would like to test can be “approximated by” a bounded number of fixed partitions
of the domain. More precisdly, if we consider the family of functions /' defined by these partitions
(when we allow all labelings of the cells of the partitions), then for every function in H; there exists
afunction in £ that approximates it. Furthermore, these partition functions can be implemented by a
class H, where s’ > s. The dgorithms described essentialy performed the same task: for each fixed
partition, pairs of pointsthat belong to acommon cell of the partition were considered, and if there was
a sufficiently strong bias among these pairs towards having a common label, then the tested function
was accepted. The following theorem formalizes this unifying view.

Theorem 11 Let H and H' O H be classes of functions over domain X and let P = {P!, ..., P*}
be a set of partitions over X, where each P* consists of s’ equal-size components. Let PARp be
the class of all functions g, such that there exists a partition P = (X¢,..., X%) in P and a vector
be {0,1}* such that for each j € {1,..., '}, and for each € X, g(z) = b;. Supposethat:

1. PARp C H';

2. There exists @ € [0,1] and 3 € [0,1/2] such that for each f € H, there is a partition
P such that on at least a fraction o of the component X@ of P, for some b; € {0,1},
Pr,cxilf(x) = b] > 1/2 + B,

Then for any § € (0,1/2], H is testable with rejection boundary (H',1/2 — (2a3* — §)) and with
respect to the uniform distribution in O(log & - v/s'/6?) examples or O(klog k/6?) queries. The
running time of the examples version of the algorithm is an order of k times the sample size, and the
running time of the query versionislinear in the number of queries.

18

We note that while the bound on the running time of the query version of the algorithm is always
strictly smaller than the bound on the running time of the examples version, the bound on the query
complexity is smaller than the bound on the sample complexity only when & is small relative to s’. In
other words, when k is relatively large, we do not know of a way to exploit the power of the queries,
and we are better off using the examples version of the agorithm (that is, asking uniformly chosen
queries).

Classes of Partition Functions. A specia case of the above theorem applies to classes of functions
that are defined by al possible labelings of a fixed partition (or fixed set of partitions). In this case we
can get the following stronger result.

Theorem 12 Let P = {P!, ..., P*} beaset of partitions over a domain X, where each P* consists
of at most s components. Then, for any ¢ € (0, 1/2], the class PARp (as defined in Theorem 11) is
testable with rejection boundary (PAR», ¢) and with respect to any distribution in O(log & - \/s/¢)
examples, and O(k - log k - \/s/¢) time. In case the underlying distribution is such that its restriction
to any part of the domain is efficiently sampleable, then testing can be performed using O (k - log k/€)
gueriesin time linear in the number of queries.

Proof of Theorem 11: Thealgorithm weanalyze isageneralization of the algorithmswe presentedin
the previous sections: it worksin k stages, wherein each stageit considers adifferent partition P* € P .
In the query version of the algorithm, in each stageit uniformly selectsm’ = O(log k/é*) components
of the partition considered, and in each component chosen it uniformly selects two points and queries
the function f on these points. In the examples version it pairs the m = O(log k - \/s'/6%) sample
points according to the components they belong to (as done in the other algorithms). In both cases, if
for some partition, the fraction of such close pairs that have the same label is at |east % + 2a3? — g
then the algorithm accepts, otherwise, it rejects.

The analysis of the algorithm uses similar arguments to those aready presented. In particular,
as shown in the proof of Theorem 2, based on our choice of the sample size m, and the number of
components selected in each partition by the query version of thealgorithm, 2/, it sufficesto analyzethe
query version of the algorithm. First consider the case f € H. By the theorem’s premise concerning
H, there exists a partition P* such that on at least a fraction « of the component X of P*, for some
b; € {0,1}, szex;‘ [f(xz)=1b;] > 1/2 4 3. Let x; bea0/1 random variable that is 1 if an only if the
#'th pair of points (uniformly selected in auniformly chosen component of P?), have a different label.

Then
1 1

¢ 1 1 ¢ 2
Blal < a'<2<2+ﬁ><2_”8>>+(1_0‘)'2 = 52 (35)
The probability that the average of the x,’s will deviate by more than 6/2 from this expectation is
exp(—2(6/2)%-m’) = O(1/k), and so the probability that the algorithm acceptswhen P* isconsidered,
is greater than 2/3.

We now turn to show that in case f is far from H' then the algorithm regjects with probability at
least 2/3. Asin previous proofs we prove the contrapositive. Assume f is accepted with probability
greater than 1/3. Then there must be at least one partition P that causes the algorithm to accepts with
probability greater than 1/(3k). Let f’ be the function in PAR» C H' that labels the pointsin each
component of P* according to the majority label of f in that component. If we define y; as above,

19

then as shown before (see Equation (12) and preceding discussion), E[x.| > dist(f, f'). Since with
probability at least 1/(3k) the average of the y,’sisat most 1 — 2a/3% + £ (which is the event in which
that algorithm accepts when considering P*), given our choice of m’, the expected value of y;, and
hence dist(f, f'), isat most 3 — 2a/3% 4 6. [

Proof of Theorem 12: Here too the algorithm worksin k& stages, where in each stage it considers
a different partition . In the query version of the agorithm, in each stage it randomly selects
m' = O(log k/¢) components, where each component is chosen according to its probability weight,
and in each component it randomly selects two points. In the examples version of the agorithm it
pairsthem = O(+/s - log k/¢) sample points according to the components they belong to (as donein
the other algorithms). If for some partition, all pairs belonging to common components have the same
label, then the algorithm accepts. Otherwiseit rejects.

Clearly, if f € PARp then the algorithm always accepts. Suppose dist(f, PARp) > ¢, then we
show that the algorithm rejects with probability at least 2/3. Consider first the query version of the
agorithm, and let us fix a partition 7. We next show that the probability that we obtain a pair of
points in a common component having a different label isat least 1 — 1/(3%), and so the probability
that we obtain such a pair for each partition, is at least 2/3. For each component X! in P*, let w;
be the probability wei ght_(assi gned by the underlying distribution) to X7, and let «; be the relative
weight of the points in X having the minority label according to f. Since for every g € PARp, we
havethat dist(f, g) > ¢, inparticular thisistrue for the function ¢ which labels the components of P*
according to the majority label of f. Sincedist(f,g) = >=; w; - v;, wehavethat)~ w; - v; > e. For
t=1,...,m, let x, be asdefined in the previous proofs. Then,

Prfxe=1] = 3w 2y(l—7)) 2 Dwi-vy > e (36)

It follows that Pr[>>7%, x; = 0] (that is, the probability that al pairs have the same label), is bounded
by (1 — €)™ < 1/(3k), as desired.

We now turn to the examples version of the algorithm. In case al components of each partition
have exactly the same probability weight, then, as we have seen before, the analysis reduces to that
of the query version, and we are done. Otherwise we appeal to the following technical lemma whose
proof is aslight adaptation of a proof given in the paper [GGLR98], and is reproduced in the appendix.

Lemmal13 Let 5y,...,5, 11,..., 1 bedigoint sets of elements over domain X. For each j, let the
probability of selecting an element = in S; (when z is chosen according to some fixed distribution on
X)), be p;, and the probability of selecting an element in 7;, be ¢;. Supposethat for all 7, ¢; > p;, and
that 3-; p; > ¢ for somee > 0. Then, for some constant ¢, if we uniformly select ¢ - \/s/¢ elementsin
X, then with probability at least 2/3, for some j we shall obtain one element in S; and onein 7;.

In our application of the above claim, for each ;, 5; U T; = X, where S; is the subcomponent
of X} having the minority label, and 7 is the one having the majority label. Thus, p; = w; - v;, and
¢; =w; - (1 —~;),s0that ¢g; > p;, and Y p; > e asrequired. Since the sample we useislog k times
larger than that specified by the lemma, the probability that we obtain a pair with an opposite labdl is
atleast 1 — 1/(3k). The correctness of the examples version of the algorithm follows. [

20

7 Testing and Weak Learning

The intuition that testing is easier (or at least not harder) than learning can be formalized as follows
(generalizing asimilar statement in Goldreich et a. [GGR96]).

Proposition 14 Let /' beaclassof functionsthat islearnable by hypothesisclass H , under distribution
P, withconfidence5/6 andaccuracy e € (0, 1/2], inm randomexamples. Thenfor every e’ € (0,1/2],
the class I is testable with rejection boundary (H, ¢ + ¢') with respect to P using m + O(1/(¢')?)
examples. If /' islearnable with any accuracy ¢ in m/(e) examples, then F' is testable with rejection
boundary (H, ¢) with respect to P using m(e/2) + O(1/¢) examples.

Below we present atheorem concerning the reverse direction — namely, any classthat is efficiently
testable against a random function (see Definition 3) is efficiently weakly learnable. Recall that
testing against a random function (with respect to a particular distribution P) is our least stringent
definition whenever, with respect to P, arandom function is far from any function in the class (with
high probability). We expect this property to hold for any function class and distribution that emerge
naturally in the context of learning.

Theorem 15 Let H be a class of functions over domain X, and P a distribution over X. If H is
testable against a random function in rm examples with respect to P, then H is weakly |earnable with
respect to P with advantage Q(1/m) and constant confidence in O(m?) examples.

Proof: Let 7" bethetesting algorithm that distinguishes between functionsin A and arandom function.
We start by using a standard technique first applied in the cryptography literature [GM84]. Let usfix
any function f € H, and consider the behavior of the algorithm when it is given a random sample
drawn according to P and labeled partly by f and partly randomly. More precisely, for: = 0, ..., m,
let P; be the probability, taken over arandom sample x4, ..., x,, drawn according to P, and a vector
7 uniformly chosen vector in {0, 1}™~¢, that the test 7" accepts when given asinput (z1, f(z1)), . . .,
(s, f(2)), (Tig1,71))s « o oy (Tmy Tm—i). SinCE P, > 2/3, while Py < 1/3, there must exist an index
1 <i < msuchthat P, — P,_; = Q(1/m). Thus, by observing O(m?) examples (and generating
the appropriate number of random labels) we can find an index : such that 7' has significant sensitivity
to whether the :th example is labeled by f or randomly. From this it can be shown [KLV95] that
by taking another O(mi’) examples, we can find a fixed sequence 5; of : examples labeled according
to f, and a fixed sequence S, of m — i examples having an arbitrary (but fixed) 0/1 labeling such
that the difference between the probability that 7' accepts when given as input Sy, (x, f(z)), S2 and
the probability that it accepts when given as input Sy, (z, = f(x)), S2, is Q(1/m), where now the
probability is taken only over the draw of . Let h(x) be the following probabilistic function. If
T(51,(x,0),53) = T(S1,(x,1),5,), then h outputs the flip of a fair coin. If for b € {0,1},
T(S1,(x,b),S2) = ACCEPT and T'(Sy, (x,—b), S;) = REJECT, then h outputs b. Then from the
preceding arguments, A has an advantage of €2(1/m) over arandom coin in predicting f. |

Thefollowing result translates testing apair of function classes (see Definition 4) to weakly learning
(amost all functionsin) one of the classes.

Theorem 16 Let H; and H, be finite classes of functions over domain X, and P a distribution over
X. If (Hy, H,) istestable in m examples with respect to P, then for any v > 0, one of the following
must hold:

21

o Thereexistsan: € {1,2} and asubclass H' C H; suchthat |H'| > (1 — ~)|H;|, and H' is
weakly learnable with advantage ©(1/m) and constant confidence in O(m?) examples.

o Thereexistsan: € {1, 2} suchthat //; isweakly learnablewith advantage(2(1/m) and constant
confidence in O(m?*/~) examples.

Proof: By asimilar argument to the one given in the proof of Theorem 15, we can show that for any
fixed f, € H, and f, € H, itispossibleto construct (using O(m?) examples) a pair of (randomized)
hypotheses i, and k., such that for either ¢ = 1 or: = 2, h, hasan advantage of {2(1/m) over random
guessing in predicting f;. When: = 1 we say that f, losesto f;, and otherwise, f; losesto f,. Fix
~v > 0, and let us say that a function f; € H,; isbad if it loses to at least afraction 1 — ~ of the
functionsin H,. Then if there exists abad function in H;, then by fixing f; to be this bad function in
the above construction, we have an algorithm that can weakly learn the 1 — ~ fraction of the functions
in H; that f; losesto. On the other hand, if there is no bad function in Hy, then we can weakly learn
any functionin H;: for any fixed f; € H,, if werandomly sample afunction f, € H, thereisat |least
probability ~ that we will draw afunction that f; does not lose to. Thus, in O(1/~) tries, we will be
able to weakly learn f;. |

8 Lower Bounds

For both function classes we consider, DT? and AVNY, we can show alower bound of 2(/s) onthe
number of examples required for testing against a random function and with respect to the uniform
distribution. Thus, in terms of the dependence on s, this lower bound almost matches our upper
bounds, where note that in these case, testing against a random function is not harder than testing with
the rejection boundaries we achieve. We prove the lower bound for the class of interval functions
INT,. Since INT, = DT}, and INT, C AVN}, this lower bound holds decision trees and aligned
voting networks. As we shall see below, the proof is based on the lower bound associated with the
Birthday Paradox.

Theorem 17 The sample complexity for testing the class IN'T, against a random function and with
respect to the uniform distribution is (/s).

Proof: We definethefollowing distribution £; over functionsin INT,. Thedistribution P; isnon-zero
only on functions having switch point in the set {j/s};’?;}, and it assigns equal probability to each
function that is constant over the equal-size subintervals, (5 /s, (7 4+ 1)/s]. In other words, in order to
draw afunctionin IN'T; according to P7, werandomly label the above subintervals (and then put switch
points between any two subintervals that got opposite labels). Consider the following two distributions
Dy and D, over labeled samples S.

In both distributions, the examples are drawn uniformly. In D; they are labeled according to a
function in IN'T'; chosen according to £;, and in D, they are labeled randomly. Note that whenever
the examples chosen do not include a pair of examples that belong to the same subinterval, then the
distribution on the labelsisthe samein D, and D (that is, it isuniform). It follows that the statistical
difference between D, and D, is of the same order asthe probability that the sample doesinclude apair
of points that fall in the same subinterval. However, the probability that a sample of size m contains

22

such a pair of examples is bounded by (”;) - (1/s), which for m = «+/s, is bounded by a?. Thus,
for any testing algorithm 7", there exists at least one function f € INT, such that the probability that
f is accepted (distinguished from random) when 7" is provided with a.\/s examples labeled by f, is

O(a?*), which for an appropriate choice of « islessthan 2/3. |
References
[BCH*95] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity testing in

[BLR93]

[GGLROS]

[GGRY6]

[GM84]

[GR97]

[GROSg]

[Kie87]
[KLV95]

[KZ93]

[RS96]

[Rub94]

characteristic two. In Proceedings of the Thirty-Sxth Annual Symposium on Foundations
of Computer Science, pages 432—441, 1995.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applicationsto numerical
problems. Journal of Computer and System Sciences, 47:549-595, 1993.

O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing monotinicity. Long
version of extended abstract that will appear in proceedings of FOCS98, available from
http://theory.lcs.mt.edu/ danar,1998.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing anditsconnectionto learningand
approximation. In Proceedings of the Thirty-Saventh Annual Symposium on Foundations
of Computer Science, pages 339-348, 1996.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270-299, 1984.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pages 406415,
1997.

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, 1998.

Jack Carl Kiefer. Introduction to Satistical Inference. Springer Verlag, 1987.

M. Kearns, M. Li, and L. Valiant. Learning boolean formulae. Journal of the Association
for Computing Machinery, 41(6):1298-1328, 1995.

S. R. Kulkarni and O. Zeitouni. On probably correct classification of concepts. In Pro-
ceedings of the Sxth Annual ACM Conference on Computational Learning Theory, pages
111-116, 1993.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SSAM Journal on Computing, 25(2):252-271, 1996.

R. Rubinfeld. Robust functional equations and their applications to program testing. In
Proceedings of the Thirty-Fifth Annual Symposium on Foundations of Computer Science,
1994. To appear in SIAM Journal on Computing.

23

[Yam95] K. Yamanishi. Probably almost discriminative learning. Machine Learning, 18:23-50,
1995.

A Proof of Lemma 13

Asamental experiment, we partition the sample of elements into two parts of equal size, ¢ - \/s/(2e).
Let .J be arandom variable denoting the (set of) indices of sets S; hit by the first part of the sample.
We show below that with probability at least 5/6 over the choice of the first part of the sample,

€
dYopi > — (37)
JjeJ ! \/g
The claim then follows since conditioned on Equation (37) holding, and by the lemma’s premise that
that ¢; > p; for @l 3, the probability that the second part of the sample does not include any elements
fromJ,c; T}, isa most

e/5/(2€) . e/5/(26)
(1—2%) < (1—$) < exp(—¢/?)

whichislessthan 1/6 for an appropriate choice of c.

To provethat Equation (37) holdswith probability at least 5/6, we assumewithout loss of generality
that the sets S; are ordered according to size. Let Sy,...,5; be all sets with probability weight at
least ¢/(2s) each (i.e, p1 > ... > p: > €/(2s)). Then, the total probability weight of all other sets
Sti1,- .., 55 islessthan ¢/2, and Z;’:l p; > ¢/2 follows. We first observe that by a (multiplicative)
Chernoff bound (for an appropriate choice of ¢), with probability at least 11/12, the first part of the
sample contains at least 4 - /s elementsin 5 & (Ji_, 3.

Let J' & Jn{1,...,t}. Thais, J'is arandom variable denoting the indices of sets S,
J € {1,...,t} that are hit by the first part of the sample. Conditioned on there being at least 4 - /s
elements from S in the first part of the sample, we next show that with probability at least 11/12,
djer i = \/Lg (from which Equation (37) follows). Since conditioned on an element belonging
to S it is distributed according to the underlying distribution restricted to S, we may bound the
probability of the above event, when randomly selecting 4,/s elementsin S according to the underlying
distribution. Consider the choice of the ¢'th element from S, and let .J;_, denote the indices of sets
S., 7 €{l,...,t}, among thefirst ¢ — 1 selected elements of S. If

2- Et':l Pj

p; > =g
then, since >-’_, p; > 5, we are done. Otherwise (Yien_ pi < (2 >_%—1 pi)/+/s), the probability
that the ¢'th element belongsto J' \ J;_, (i.e, ithitsasetin {5, ..., S;} that was not yet hit), is at
least 1 —2/+/s, whichisat least 3/4 for s > 36. Sincewe are assuming that thefirst part of the sample
includes at least 4 - /s elements from S, with probability at least 11/12, we succeed in obtaining a
new element in at least 2 - /s of these tridls. Sincethe sets 51, . .., S; al have probability weight at
least ¢/(2s), the claim follows. [

24

