39 NEAREST NEIGHBORS IN HIGH-DIMENSIONAL
SPACES

Piotr Indyk

INTRODUCTION

In this chapter we consider the following problem: given a set P of points in a
high-dimensional space, construct a data structure which given any query point ¢
finds the point in P closest to q. This problem, called nearest neighbor search',
is of significant importance to several areas of computer science, including pattern
recognition, searching in multimedial data, vector compression [GG91], computa-
tional statistics [DW82], and data mining. Many of these applications involve data
sets which are very large (e.g., a database containing Web documents could contain
over one billion documents). Moreover, the dimensionality of the points is usually
large as well (e.g., in the order of a few hundred). Therefore, it is crucial to design
algorithms which scale well with the database size as well as with the dimension.

The nearest-neighbor problem is an example of a large class of prozimity prob-
lems, which, roughly speaking, are problems whose definitions involve the notion of
distance between the input points. Apart from nearest-neighbor search, the class
contains problems like closest pair, diameter, minimum spanning tree and variants
of clustering problems.

Many of these problems were among the first investigated in the field of compu-
tational geometry. As a result of this research effort, many efficient solutions have
been discovered for the case when the points lie in a space of constant dimension.
For example, if the points lie in the plane, the nearest-neighbor problem can be
solved with O(logn) time per query, using only O(n) storage [SH75, LT80]. Similar
results can be obtained for other problems as well. Unfortunately, as the dimen-
sion grows, the algorithms become less and less efficient. More specifically, their
space or time requirements grow exponentially in the dimension. In particular, the
nearest-neighbor problem has a solution with O(d°™) logn) query time, but using
roughly n°@ space [Cla88, Mei93]. Alternatively, if one insists on linear or near-
linear storage, the best known running time bound for random input is of the form
min(2°(9) | dn), which is essentially linear in n even for moderate d. Worse still, the
exponential dependence of space and/or time on the dimension (called the “curse
of dimensionality”) has been observed in applied settings as well. Specifically, it is
known that many popular data structures (using linear or near-linear storage), ex-
hibit query time linear in n when the dimension exceeds certain threshold (usually
10-20, depending on the number of points). See e.g., [WSB98] for more information.

The lack of success in removing the exponential dependence on the dimension
led many researchers to conjecture that no efficient solutions exists for these prob-
lems when the dimension is sufficiently large (e.g., see [MP69]). At the same time,

IMany other names occur in literature, including best match, post office problem and nearest
neighbor.



2 Piotr Indyk

it raised the question: Is it possible to remove the exponential dependence on d,
if we allow the answers to be approxzimate. The notion of approximation is best
explained for nearest-neighbor search: instead of reporting a point p closest to g,
the algorithm is allowed to report any point within distance (1 + €) times the dis-
tance from g to p. Similar definitions can be naturally applied to other problems.
Note that this approach is similar to designing efficient approximation algorithms
for NP-hard problems.

During recent years, several researchers have shown that indeed in many cases
approximation enables reduction of the dependence on dimension from exponential
to polynomial. In this chapter we will survey these results. In addition, we will
discuss the issue of proving that the curse of dimensionality is inevitable if one
insists on exact answers, and survey the known results in this direction.

Although this chapter is devoted almost entirely to approximation algorithms
with running times polynomial in the dimension, the notion of approximate nearest
neighbor was first formulated in the context of algorithms with exponential query
times. Chapter 51, section 7 of this handbook covers those results in more detail.

Before proceeding further, we mention that our treatment of the topic is pri-
marly theoretical. For experimental evaluations and applications of the algorithms
described in this chapter, see e.g., [GIM99, CDF*00, HGI00, Shi00, Buh01, BT01,
Ya01, Buh02, OMST02, GSMO03]. In addition, we focus on algorithms operating
in main memory. For external memory algorithms, see e.g., recent proceedings of
SIGMOD and VLDB conferences.

39.1

APPROXIMATE NEAR NEIGHBOR

Almost all algorithms for proximity problems in high-dimensional spaces proceed
by reducing the problem to the problem of finding an approximate near neighbors,
which is the decision version of the approximate nearest neighbor problem. Thus,
we start from describing the results for the former problem.

For the definitions of metric spaces and normed spaces, see Chapter 8.

GLOSSARY

Approxzimate Near Neighbor, or (r,c)-NN: Given a set P on n points in a
metric space M = (X, D), design a data structure that supports the following
operation: For any query g € X, if there exists p € P such that D(p,q) < r, find
a point p' € P such that D(q,p') < cr

Dynamic problems: Problems which involve designing a data structure for a set
of points (e.g., approximate near neighbor) and support insertions and deletions
of points. We distinguish dynamic problems from their static versions by adding
the word “Dynamic” (or letter “D”) in front of their names (or acronyms). E.g.,
the dynamic version of the approximate near-neighbor problem is denoted by
(r,c)-DNN.

Hamming metric: A metric (3¢, D) where ¥ is a set of symbols, and for any
p,q € 2% D(p,q) is equal to the number of i € {1...d} such that p; # ¢;.




Chapter 39: Nearest Neighbors in High-Dimensional Spaces 3

TABLE 39.1.1 Approximate Near Neighbors.

| # | APPROX. | QUERY TIME | SPACE | UPDATE TIME

la | Source: [KOROO0] (cf. [HIMO03]); Randomness: Monte Carlo

1+e€ | dlogn/min(e2,1) ‘ nO(1/e>+log(1+e)/(1+¢)) | nO1/e2+log(1+e)/(1+¢))
1b | Source: [Ind01]; Randomness: Monte Carlo

TFlog(TF<)

1+e€ | nO e ) ‘ dn | dlogo(l) n
2 | Source: [HIM03]; Randomness: Monte Carlo

lte | dnt/ (1<) ‘ 11/ 0+ 4 dn | dnl/(+e)
3 | Source: [Ind00]; Randomness: Las Vegas

1+e€ | (dlogn/e)O M) ‘ n1/eC® | static
4 | Source: [Ind00]; Randomness: Deterministic

3+e | (dlogn/e)O D) ‘ nt/e0® | static

RANDOM PROJECTION APPROACH

The first algorithms for (r,¢)-NN in high dimensions were obtained by using the
technique of random projections. This technique is applicable if the underlying
metric D is induced by an I, norm, for p € [0,2]. We first focus on the case where
all input and query points are binary vectors from {0,1}¢, and D is the Hamming
distance (or equivalently, the metric is induced by the I; norm). The parameters
of the algorithms discovered for this case are presented in the following table.

We mention that the idea of using random projections for high-dimensional
approximate nearest neighbor first appeared in the paper by Kleinberg [Kle97].
Although his algorithms still suffered from the curse of dimensionality (i.e., used
exponential storage or had Q(n) query time), his ideas provided inspiration for
designing improved algorithms.

Dimensionality reduction. The key technique used to obtain results (1a),
(1b), (3), and (4) is dimensionality reduction i.e., a randomized procedure which
reduces the dimension of Hamming space from d to k = O(logn/e?), while preserv-
ing a certain range of distances between the input points and the query up to a
factor of 1+ € This notion has been introduced earlier in Chapter 8 in the context
of Euclidean space. In case of Hamming space, [KOR00] showed the following.

THEOREM 39.1.1

For any given r € {1...d}, e € (0,1] and P € (0,1), one can construct a distri-
bution over mappings A : {0,1}? — {0,1}*, k = O(log(1/P)/€?), and a “scaling
factor” S, so that for any p,q € {0,1}%, if D(p,q) € [r,10r], then D(A(p), A(q)) =
S - D(p,q)(1 & €) with probability at least 1 — P.

The factor 10 can be replaced by any constant. As in the case of Euclidean
norm, the mapping A is linear. However, unlike in the Euclidean case where the
mapping was defined over the set of reals R, the mapping A is defined over GF(2)
(i.e., over the set {0,1} with addition and multiplication taken modulo 2). The
k x n matrix A is obtained by choosing each entry of A independently at random



4

Piotr Indyk

from the set {0,1}. The probability that an entry is equal to 1 is roughly r/d.

A different method of generating mapping A was proposed in [Ind00]. The
mapping is nonlinear, but somewhat easier to analyze (and derandomize). It is
based on “Locality-Sensitive Hashing,” described later in this section.

Algorithm (1a) is an immediate application of Theorem 39.1.1. Specifically,
it allows us to reduce the (r,c + €)-NN problem in d-dimensional space to (r,c)-
NN problem in k-dimensional space. Since the exact nearest-neighbor problem in
k-dimensional space can be solved by storing the answers to all 2% queries g, the
bound follows. Algorithm (1b) is follows by using a variation of this approach.
Algorithms (3) and (4) are obtained by using a deterministic version of Theo-
rem 39.1.1 [Ind00].

We note that one can apply the same approach to solve the near-neighbor prob-
lem in the Euclidean space. In particular, it is fairly easy to solve the (r,1+ €)-NN
problem in 1 using n(1/€)°(? space [HIM03]. Applying the Johnson-Lindenstrauss
lemma leads to an algorithm with storage bound similar (although slightly worse)
to the bound of algorithm (1a) [HIMO3].

Locality-Sensitive Hashing.  As may have been noticed, the storage bounds
for algorithms (1a), (3) and (4) are quite high. On the other hand, the query time
of algorithm (1b) is low only for fairly large values of € [Ind01]. In this context,
algorithm (2) provides an attractive tradeoff, since even for small values of € (e.g.,
€ = 1.0) its running time is fairly low (e.g., dv/n). The algorithm is based on the
concept of Locality-Sensitive Hashing, or LSH [HIMO03] (see also [KWZ95, Bro98]).
A family of hash functions h : {0,1}¢ — U is called (ry,rs, Pi, P2)-sensitive (for
ry <72 and P; > P,) if for any ¢,p € {0,1}¢

o If D(p,q) <y then Pr[h(q) = h(p)] > P,
e If D(p,q) > ry then Pr[h(q) = h(p)] < P»

where Pr[-] is defined over the random choice of h. We note that the notion of
locality-sensitive hashing can be defined for any metric space D in a natural way
(see [Cha02] for sufficient and necessary conditions for existence of LSH for D).
However, for Hamming space, LSH families are particularly easy: it is sufficient
to take all functions h;, i = 1...d, such that h;(p) = p;, p € {0,1}¢. Because
Pr[h(p) = h(q)] =1 — D(p,q)/d, it is immediate that this family is sensitive.

If we are provided with an LSH family with a “large” gap between P, and P,
the (ry/r1,r1)-NN problem can solved in the following way. During preprocessing,
all input points p are hashed to the bucket h(p). In order to answer the query g,
the algorithm retrieves the points in the bucket h(g) and checks if any one of them
is close to ¢. If the gap between P; and P, is sufficiently large, this approach can be
shown to result in sublinear query time. Unfortunately, the P, /P, gap guaranteed
by the above LSH family is not large enough. However, the gap can be amplified by
concatenating several independently chosen hash functions hy ... h; (i.e., hashing
the points using functions b’ such that h'(p) = (h1(p),--.,hi(p)). Details can be
found in [HIMO3].

A somewhat similar hashing-based algorithm (for the closest-pair problem)
was earlier proposed in [KWZ95], and also in [Bro98]. Due to different problem
formulation and analysis, comparing their performance with the guarantees of the
LSH approach seems difficult.

We also mention that the above algorithm can be modified to solve the ap-



Chapter 39: Nearest Neighbors in High-Dimensional Spaces 5

proximate nearest-neighbor problem, within the same time bounds (i.e., without
incurring any additional overhead, as is the case for the reductions presented in the
next section). Details can be found in [Cha02].

Eztensions to I, norms.  The approximate near-neighbor problem under [,
norms, for p € [1,2], can reduced to the same problem in Hamming space. The re-
duction is particularly easy for the I norm. If we assume that all points of interest p
have coordinates in the range {1... M}, then if we define U(p) = (U(p1),...,U(pa))
where U(z) is a string of z ones followed by M — z zeros, we get [|[p — ¢|l1 =
D(U(p),U(q)). In general, M could be quite large, but can be reduced to d°(!) in
the context of approximate near neighbor [HIM03]. Thus we can reduce (r,c)-NN
under /; to (r,c)-NN in Hamming space.

In order to obtain algorithms for I, norm where p € (1, 2], we use the fact that lg

can be embedded into lf @) with bounded distortion (see Chapter 8). Alternatively,

for p = 2, one can solve the problem directly in Euclidean space [HIMO03], as
described earlier.

DIVIDE-AND-CONQUER APPROACH

The dimensionality reduction and locality-sensitive hashing techniques have natu-
ral limitations. In particular, they cannot be used for solving the near-neighbor
problem under the o, norm. Fortunately, this norm has other nice properties which
makes designing approximate nearest-neighbor data structures possible.

The only algorithm known for solving (r,c)-NN under the 4 norm [Ind98] has
the following parameters, for any p > 0:

e Approximation factor: ¢ = O(4|log,,log4d]); if p = logd then ¢ = 3

e Space: dn!*tr

e Query time: O(dlogn) for the static, or (d 4+ logn)®) for the dynamic case
e Update time: d®("n? (described in [Ind01])

The basic idea of the algorithm is to use a divide and conquer approach. In
particular, consider hyperplanes H consisting of all points with one (say the ith)
coordinate equal to the same value. The algorithm tries to find a hyperplane H
having the property that the set of points P, C P which are on the left side of H
and within distance > r from H, is not “much smaller” than the set Py; of points
within distance r from H. Moreover, a similar condition has to be satisfied for an
analogously defined set Pr of points on the right side of H. If such H exists, we
divide P into P, = Pr, U Py and set P, = P\ Pr and build the data structure
recursively on P; and P». Tt is easy to see that while processing a query g, it suffices
to recurse on either P; or P, depending on the side of H the query ¢ lies on. Also,
one can prove that the increase in storage caused by duplicating Pps is moderate.
On the other hand, if H does not exist, one can prove that a large subset C' of P has
O(r) diameter. In such a case we can pick any point from C as its representative,
and apply the algorithm recursively on P\ C.

GLOSSARY



6 Piotr Indyk

Product metrics: An f-product of metrics My,... M with distance functions
Dy, ... Dy is a metric over M; X ... x My with distance function D such that

D((p17"'7pk)7(q17"'7q/9)) = f(Dl(p17q1)7'"7Dk(pk7qk))'

Although the [, data structure seems to rely on the geometry of the I, norm,
it turns out that it can be used in a much more general setting. In particular,
assume that we are given k metrics M ... My such that for each metric M; we
have a data structure for (a variant of) (r,c¢)-NN in metric M;, with Q(n) query
time and S(n) space. In this setting, it is possible to construct a data structure
solving (r, O(cloglogn))-NN in the max-product metric M of My, ..., M (i.e., an
f-product with f computing the maximum of its arguments) [Ind02]. The data
structure for M achieves query time roughly O(Q(n)logn + klogn) and space
O(kS(n)n't9), for any constant § > 0. The data structure could be viewed as an
abstract version of the data structure for the I, norm (note that the % norm is
a max-product of I} norms). For the particular case of the 19, norm, it is easy to
verify that the result of [Ind02] provides a O(loglog n)-approximate algorithm using
space polynomial in n. At the same time, the algorithm of [Ind98] has O(log log d)-
approximation guarantee when using the same amount of space. Interestingly, the
former data structure gives an approximation bound comparable to the latter one,
while being applicable in much more general setting.

EXTENSIONS VIA EMBEDDINGS

Most of the algorithms described so far work only for I, norms. However, they can
be used for other metric spaces M, by using low-distortion embeddings of M into
I, norms. See Chapter 8 for more information.

AVERAGE-CASE ALGORITHMS

The approximate algorithms described so far are designed to work for any (i.e.,
worst-case) input. However, researchers have also investigated eract algorithms
for the NN problem, which achieve fast query times for average input. Below we
describe three such results.

Near-neighbor in Hamming space. Consider the point set P where each
point is chosen independently and uniformly at random from the set {0,1}%. In
addition, assume that the nearest neighbor p of the query point ¢ is located within
distance r from ¢. In this setting, it was shown in [GPY94] that g can be retrieved
in O(dn"/%) time, using a data structure which requires O(dn'*7/¢) space. The
basic idea of their approach is similar to the locality-sensitive hashing approach
of [HIMO3]; however, the set of projected coordinates is chosen in a deterministic
fashion, to optimize certain parameters.

Nearest neighbor in the I$ norm  Consider the “continuous” version of the
Hamming distance scenario, such that each point in P is chosen independently and
uniformly at random from the set [—1,1]?. In addition, assume that the nearest
neighbor p of the query point g is located within distance r = 2bv/d for some (small)



Chapter 39: Nearest Neighbors in High-Dimensional Spaces 7

constant b. The value of b is always small enough so that r does not exceed the
average distance between two random points.

Under these assumptions, it was shown in [Yia00] that the k-d-tree data struc-
ture (augmented in a proper way) enjoys O(dn”) query time, where p is a function
of b. The analysis in the paper is idealized (i.e., uses approximations not shown to
be rigorous).

We note that if d is large enough, then the distance between the query point and
any data point is sharply concentrated around its mean (say 2t\/c_l). In this case, if
r = 2btv/d, b € (0,1), then by using locality-sensitive hashing with approximation
factor 1/b, one obtains an algorithm with query time dn®. It appears that this
bound outperforms the computational bound given in [Yia00]. However, the k-d-
tree data structure used in [Yia00] uses only linear space, unlike the LSH-based
approach.

Nearest neighbor in the ¢, norm. Consider a point set generated as before,
but with the query point generated from the same distribution as the input points
(and independently from the latter). In this setting, it was shown [AHLO1, HLO02]
that there is a nearest-neighbor data structure using O(dn) space, with query time
O(nlogd). Note that a naive algorithm would suffer from query time of O(nd).
The algorithm uses a clever prunning approach to quickly eliminate points that
cannot be nearest neighbors of the query point.

39.2 REDUCTIONS TO APPROXIMATE NEAR
NEIGHBOR
GLOSSARY

We define the following problems, for a given set of points P in a metric space

M = (X, D):

Approximate Closest Pair, or c-CP: Find a pair of points p', ¢’ € P such that
D(pla ql) < cminp,qEP,pqéq D(p; Q)

Approzimate Close Pair, or (r,c)-CP: If there exists p,q € P,p # g, such that
D(p,q) <, find a pair p',q' € P,p' # ¢', such that D(¢',p') < cr.

Approximate Chromatic Closest Pair, or c-CCP: Assume that each point
p € P is labeled with a color ¢(p). The goal is to find a pair of points p, g such
that c¢(p) # c¢(q) and D(p,q) is approximately minimal (as in the definition of
c-CP).

Approximate Bichromatic Closest Pair, or c-BCP: As above, but ¢(p) as-
sumes only two values.

Approximate Chromatic/Bichromatic Close Pair, or (r,c)-CCP/(r,c)-
BCP: Decision versions of ¢-CCP or ¢-BCP (as in the definition of (r,c)-CP).

Approximate Furthest Pair, or Diameter, or c-FP: Find p,q € P such that
D(p,q) > maxy gep D(p',q")/c. The decision problem, called Approzimate
Far Pair, or (r,c)-FP, is defined in the natural way.

Approximate Furthest Neighbor, or c-FN: A maximization version of the
Approximate Near Neighbor. The decision problem, called Approximate Far
Neighbor or (r,c)-FN, is defined in a natural way.



8

Piotr Indyk

Approximate Minimum Spanning Tree, or c-MST: Find a tree T spanning
all points in P whose weight w(T) = >, »er D(p,¢) is at most c times larger
than the weight of any tree spanning P.

Approxzimate Bottleneck Matching, or c-BM: Assuming |P)| is even, find a
set of |P|/2 non-incident edges E joining points in P (i.e., a matching), such
that the following function is minimized (up to factor of c)

max D(p,
{p,a}€E (p,9)

Approximate Facility Location, or c-FL: Find a set F' C P such that the
following function is minimized (up to factor of ¢), given the cost function c :

P > Rt
> )+ minD(p, f)

pEF pEP

In general, we could have two sets: P, of cities and Py of facilities; in this case
we require that F' C Py and we are only interested in the cost of P..

Spread (of a point set): The ratio between the diameter of the set to the distance
between its closest pair of points.

In this section we show that the problems defined above can be efficiently re-
duced to the approximate near-neighbor problem discussed in the previous section.

First, we observe that any problem from the above list, say ¢(1 + §)-P for some
4 > 0, can be easily reduced to its decision version (say (r,c)-P), if we assume that
the spread of PU{q} is always bounded by some value, say A. For simplicity, assume
that the minimum distance between the points in P is 1. The reduction proceeds
by building (or maintaining) O(log, 5 A) data structures for (r,c)-P, where r takes
values (1 +6)?/2 for i = 0,1.... It is not difficult to see that a query to c(1 + §)-P
can be answered by O(loglog; s A) calls to these structures for (r, c)-P, via binary
search.

In general, the spread of P could be unbounded. However, in many cases it
is easy to ensure that A < n©M. This can be accomplished, for example, by
“discretizing” the input to ¢-MST or ¢-FL. In those cases, the above reduction is
very efficient.

Reductions from other problems are specified in the following table. The
bounds for the time and space used by the algorithm in the “To” column are
denoted by T'(n) and S(n), respectively.

We mention that a few other reductions have been given in [KOR00, BOR99b].
For the problems discussed in this section, they are less efficient than the reductions
in the above table. Additionally, [BOR99b] reduces the problems of computing
approzximate agglomerative clustering and sparse partitions to O(n logo(l) n) calls
to a dynamic approximate nearest neighbor data structure. See [BOR99b] for the
definitions and algorithms.

Also, we mention that a reduction from (1 + €)-approximate furthest neighbor
to (1 + €)-approximate nearest neighbor (for the static case and under the /5 norm)
has been given in [GIVO01]. However, a direct (and dynamic) algorithm for the
approximate furthest neighbor in ¢, achieving a better query and update times of
dnt/ (1+€)2, has been recently given in [Ind03]. The former paper also presents an
algorithm for computing a v/2 + e-approximate diameter (for any e > 0) of a given
pointset in dn logo(l) n time.



Chapter 39: Nearest Neighbors in High-Dimensional Spaces 9

TABLE 39.2.1 Reductions to Approximate Near Neighbors.

|#] FrOM | TO | TIME | sPAcE
1 | Source: [HIMO3].
¢(1+9)-NN ‘ (r,c)-NN ‘ T(n) log® M) n ‘ S(n)log® M) n
2 | Source: [Epp95]; amortized time.
¢-DBCP ¢-DNN T(n)log®Mn | S(n)log® M n
(r,c)-DBCP (r,c)-DNN T(n)1og®Mn | S(n)log® M n
3 | Source: [HIMO3]; via Kruskal alg.
¢(1 + 8)-MST \ (r,¢)-DBCP \ nT(n)logPM n \
4 | Source: [GIV01, Ind01]; via Primal-Dual
3c3(1 + 6)-FL ‘ (r,c)-DBCP ‘ nT(n)1log® M n ‘
5 | Source: [GIV01, Ind01].
2¢-BM ‘ c-DBCP ‘ nT(n)1log® M n ‘

We now describe briefly the main techniques used to achieve the above results.

Nearest neighbor.  We start from the reduction of ¢-NN to (r,c)-NN. As we
have seen already, the reduction is easy if the spread of P is small. Otherwise, it is
shown that data set can be clustered into n/2 clusters, in such a way that:

o If the query point ¢ is “close” to one of the clusters, it must be far away from
a constant fraction of points in P; thus, we can ignore these points in the
search for an approximate nearest neighbor.

o If the query point g is “far” from a cluster, then all points in the clusters are
equally good candidates for the approrimate nearest neighbor; thus we can
replace the cluster by its representative point.

These ideas were originally introduced in [IM98], but their data structure was
quite complex and inefficient. In [HP01] Har-Peled presented a considerably simpler
data structure, achieving better time and space bounds.

Bichromatic closest pair. A very powerful reduction from various variants
of ¢-DBCP to ¢-DNN was given in [Epp95]. His algorithm was originally designed
for the case ¢ = 1, but it can be verified to work also for general ¢ > 1 [Epp99].
Moreover, as mentioned in the original paper, the reduction does not require the
distance function D() be a metric.

The basic idea of the algorithm is to try to maintain a graph that contains an
edge connecting the two closest bichromatic points. A natural candidate for such a
graph is the graph formed by connecting each point to its nearest neighbor. This,
however, does not work, because a vertex in such a graph can have very high degree,
leading to high update cost. Another option would be to maintain a single path,
such that the ith vertex points to its nearest neighbor of the opposite color, chosen
from points not yet included in the path. This graph has low degree, but its rigid
structure makes it difficult to update it at each step. So the actual data structure is
based on the path idea but allows its structure to degrade in a controlled way, and



10

Piotr Indyk

only rebuilds it when it gets too far degraded, so that the rebuilding work is spread
over many updates. Then, however, one needs to keep track of the information
from the degraded parts of the path, which can be done using a second shorter
path, and so on. The constant factor reduction in the lengths of each successive
path means the total number of paths is only logarithmic.

Minimum spanning tree. Many existing algorithms for computing MST (e.g.,
Kruskal’s algorithm) can be expressed as a sequence of operations on a CCP data
structure. For example, Kruskal’s algorithm repetitively seeks the lightest edge
whose endpoints belong to different components, and then merges the components.
These operations can be easily expressed as operations on a CCP data structure,
where each component has a different color. The contribution of [HIM03] was
to show that in case of Kruskal’s algorithm, using an approzimate c-CCP data
structure enables one to compute an approrimate ¢-MST. Also, note that ¢-CCP
can be implemented by logn ¢-BCP data structures [HIM03]. Other reductions
from ¢-MST to ¢-BCP are given in [BOR99b, IST99].

Minimum bottleneck matching. The main observation behind this algorithm
is that a matching is also a spanning forest with the property that any connected
component has even cardinality (call it an even forest). At the same time, it is
possible to convert any even forest to a matching, in a way that increases the
length of the longest edge by at most a factor of 2. Thus, it suffices to find an even
forest with minimum edge length. This can be done by including longer and longer
edges to the graph, and stopping at the moment when all components have even
cardinality. It is not difficult to implement this procedure as a sequence of ¢-CCP
(or ¢-BCP) calls.

Other algorithms. The algorithm for the remaining problem (¢-FL) is obtained
by implementing the primal-dual approximation algorithm [JV99]. Intuitively, the
algorithm proceeds by maintaining a set of balls of increasing radii. The latter
process can be implemented by resorting to ¢-CCP. The approximation factor follow
from the analysis of the original algorithm.

39.3

LOWER BOUNDS

In the previous sections we presented many algorithms solving approximate ver-
sions of proximity problems. The main motivation for designing approximation
algorithms was the “curse of dimensionality” conjecture, i.e., the conjecture that
finding exact solutions to those problems requires either superpolynomial (in d)
query time, or superpolynomial (in n) space. In this section we state the conjec-
ture more rigorously, and describe the progress toward proving it.

We start from the exact near-neighbor problem. For this problem, the curse
of dimensionality can be formalized as follows. Assume that d = n°V, but d =
w(logn).

Conjecture 1 Any data structure for (r,1)-NN in Hamming space over {0,1}7,
with d°Y) query time, must use n“Y) space.

The conjecture as stated above is probably the weakest version of the “curse



Chapter 39: Nearest Neighbors in High-Dimensional Spaces 11

of dimensionality” phenomenon for the near-neighbor problem. It is plausible that
other (stronger) versions of the conjecture could hold. In particular, at present, we
do not know any data structure which simultanously achieves o(dn) query time and
2°(d) space for the above range of d. At the same time, achieving O(dn) query time
with space dn, or O(d) query time with space 2? is quite simple (via linear scan or
using exhaustive storage).

Also note that if d = O(logn), achieving 2°(%) = o(n) space is impossible via a
simple incompressiblity argument.

Below we describe the work toward proving the conjecture. The first result
addresses the complexity of a simpler problem, namely the partial match problem.
This problem is of importance in databases and other areas and has been long inves-
tigated (e.g., see [Riv74]). Thus, the lower bounds for this problem are interesting
in their own right.

GLOSSARY

Partial match: Given a set P of n vectors from {0,1}?, design a data structure
that supports the following operation: For any query g € {0, 1, x}¢, check if there
exists p € P such that for all i = 1...d, if ¢; # * then p; = ¢;.

It is not difficult to see that any data structure solving (r,1)-NN in the Ham-
ming metric {0, 1}%, can be used to solve the partial match problem using essentially
the same space and query time. Thus, any lower bound for partial match problem
implies a corresponding lower bound for the near neighbor problem. The best cur-
rently known lower bound for the partial match has been established in [BOR99a],
following earlier work of [MNSW94]. Their lower bound holds in the cell-probe
model, a very general model of computation, capturing e.g., the standard Random
Access Machine model. Specifically, they show that any (possibly randomized) cell-
probe algorithm for the partial match problem, in which the algorithm is allowed
to retrieve at most O(n'~¢) bits from any memory cell in one step for € > 0, must
either have Q(logd) query time or use n?(°¢ 9 memory cells.

For the exact near-neighbor problem, an exponentially larger bound was given
in [BROO]. They showed that any (possibly randomized) cell-probe algorithm for
(r,1)-NN in d-dimensional Hamming space, with cell size restriction as above, must
either have query time > t, or use 2%(%/%) space. Thus, if t = o(d/logn), the space
used must be superpolynomial in n.

The two aforementioned lower bounds are proved in a very general model, using
the tools of communication complexity. As a result, they cannot yield lower bounds
of w(d/ logn) for the required query time, assuming n®(") space, as we now explain.

The communication complexity approach interprets the data structure as a
communication channel between Alice (holding the query point ¢) and Bob (hold-
ing the database P). The goal of the communication (for Alice) is to learn the
nearest neighbor of ¢. Since the data structure has polynomial size, each access to
one of its memory cell is equivalent to Alice sending O(log n) bits of information to
Bob. If we show that Alice needs to send at least b bits to Bob to solve the prob-
lem, we obtain Q(b/logn) lower bound for the query time. However, b < d, since
Alice can always choose to transmit the whole input vector ¢. Thus, Q(d/logn)
lower bound is the best result one can achieve using the communication complexity
approach. A partial step toward removing this obstacle was made in [BV02], em-
ploying the branching programs model of computation. In particular, they focused



12

Piotr Indyk

on randomized algorithms that have very small (inversly polynomial in n) proba-
bility of error. They showed that any algorithm for the (r,1)-NN problem in the
Hamming metric over {1...d®%}¢, has either Q(dlog(dlogd/S)) query time or uses
Q(S) space. This holds for n = Q(d®). Thus, if the query time is o(dlogd), then
the data structure must use 24" space.

This completes the survey of lower bounds for the exact near-neighbor search.
For the approximate version of this problem a cell-probe-based lower bound was
shown in [CCGL99]. Specifically, the authors show that any deterministic data
structure for the c-approximate nearest neighbor {0,1}? requires either
Q(loglog d/ logloglog d) query time, or use n“(!) space. They assume that a mem-
ory cell can contain up to d°() bits accessible in one step. Moreover, the approxi-
mation factor ¢ can be as high as 20°69" ™ for any € > 0.

For comparison, if randomization is allowed, then by using Theorem 39.1.1
combined with binary search one can get a data structure for the same problem
(for any fixed ¢ > 1), with polynomial size and query time O(loglog,d). Note that
the assumption ¢ > 1 is crucial for those algorithms to achieve polynomial space
bound.

REDUCTIONS

Despite the recent progress toward resolving the “curse of dimensionality” conjec-
ture and the widespread belief in its validity, proving it seems currently beyond
reach. Nevertheless, it is natural to assume the validity of the conjecture (or its
variants), and see what conclusions can be derived from this assumption. Below we
survey a few results of this type.

In order to describe the results, we need to state another conjecture.

Conjecture 2 Let d = n°Y but d = log“’(l) n. Any data structure for the partial
match problem with parameters d and n which provides d°) query time must use
PLE space.

Note that, for the same ranges? of d, Conjecture 2 is analogous to Conjecture 1,
but much stronger: it considers an easier problem, and states stronger bounds.
However, since the partial match problem was extensively investigated on its own,
and no algorithm with bounds remotely resembling the above have been discovered
(cf. [CIPO2] for a survey), Conjecture 2 is believed to be true.

Assuming Conjecture 2, it is possible to show lower bounds for some of the
approximate nearest-neighbor problems discussed in Section 39.1. In particular, it
was shown [Ind98] that any data structure for (r,c)-NN under I for ¢ < 3 can
be used to solve the partial match problem with parameter d, using essentially the
same query time and storage (the number of points in the database is the same in
both cases). Thus, unless Conjecture 2 is false, the 3-approximation algorithm from
Section 39.1 is optimal, in the sense that it provides the smallest approximation
factor possible while preserving polynomial (in d) query time and subexponential
(in d) storage. Note that this result resembles the non-approximability results based
on the P # NP conjecture.

On the other hand, it was shown [CIP02] that the exact near-neighbor problem

2For d = logo(l) n, Conjecture 2 is true by a simple incompressibility argument. At the same
time, the status of Conjecture 1 for d € [w(logn),1og®(!) n] is still unresolved.



Chapter 39: Nearest Neighbors in High-Dimensional Spaces 13

under the I¥, norm can be reduced to solving the partial match problem with
the parameter d = (k + logn)?"); the number of points n is the same for both
problems. In fact, the same holds for a more general problem of orthogonal range
queries. Thus, Conjecture 2, and its variant for the (r,1)-NN under {4 (or for
orthogonal range queries), are equivalent. This strengthens the belief in validity of
Conjecture 2, since the exact nearest neighbor under [, norm and the orthogonal
range query problem received additional attention in the Computational Geometry
community.

39.4

LOW VS. HIGH DIMENSIONS IN
COMPUTATIONAL GEOMETRY

It is apparent that nearest neighbors and related problems in high dimensions enjoy
properties quite different from their low-dimensional counterparts (see Chapter 51).
Among the main differences are:

e Exact computation seems (and is conjectured to be) intractable in high dimen-
sions; on the other hand, very efficient algorithms exists in low-dimensional
cases.

e The core problem that seems to capture the computational difficulty is the
near-neighbor problem in Hamming space {0,1}%, a problem trivial for con-
stant dimension.

e Unlike the low-dimenional case, the tools of combinatorial geometry are rarely
used to design or analyse algorithms in high dimensions. This phenomenon
seems to reflect the fact that the typical tools (such as complexity of ar-
rangements, or packing bounds) lead to exponential algorithmic complexity.
Instead, tools from functional analysis (most notably embeddings) are used.

Nevertheless, there seems to be interesting connections between low and high
dimensional scenarios. For example, the key componenent of several reductions
given in Section 39.2 is the result of Eppstein [Epp95]. His algorithm was originally
developed with low-dimensional applications in mind; however, its framework was
sufficiently general to be useful in high-dimensional case as well.

As an example of impact in the other direction, one could mention the nearest-
to-near neighbor reduction of [IM98]. When applied in the low-dimensional case,
their result gave the first algorithm for (1 + €)-approximate nearest neighbor, with
polynomial space and polylogarithmic query time, for dimension d up to O(logn)
(earlier results could provide that bound only for d = O(loglogn), due to exponen-
tial dependence of the query time on the dimension). These results were further
refined in the low-dimensional context in [HP01, AMO02], yielding an efficient ap-
proximate nearest-neighbor data structure for low dimensions.

Finally, we mention an example of a fruitful marriage between low- and high-
dimensional techniques. Consider the following problem. For a constant d, assume
we are given n (d—1)-dimensional flats H; ... H, living in R?, as well as a set P
of n points P in R?. The goal is to compute a tree spanning the points in P, such
that the total number of times a tree edge crosses a flat is as small as possible.

In [HPIOO], the authors provided a c-approximate algorithm for this problem,
with running time O(n24/(H+D+6 4 p141/e1o60M )y for any § > 0 (the factors



14 Piotr Indyk

polynomial in 1/(c — 1) are omitted). Note that this time is subquadratic for any
constant d and ¢ > 1. The main idea of the algorithm is to observe that the number
of flats crossed on the way from point p to p' is a metric, and moreover, this metric
can be isometrically embedded into n-dimensional Hamming space. This allows one
to use the high-dimensional approximate MST algorithms from Section 39.2. To
make that algorithm run fast, one needs to perform the dimensionality reduction
before computing MST (essentially as in Theorem 39.1.1). However, just computing
the n-dimensional representation of each of n points in P requires Q(n?) time.
To avoid this bottleneck, the dimensionality reduction performed on “implicit” n-
dimensional representations of the points in P, by using partition trees of Matousek.

RELATED CHAPTERS

Chapter 8: Low-distortion embeddings of discrete metric spaces
Chapter 24: Arrangements

Chapter 36: Range searching

Chapter 51: Pattern Recognition

REFERENCES

[AHLO1] H. Alt and L. Heinrich-Litan. Exact l.-nearest neighbor search in high dimensions.
Proc. 17th Annu. ACM Sympos. Comput. Geom., pages 157-163, 2001.

[AMO02] S. Arya and T. Malamatos. Linear-size approximate voronoi diagrams. Proc. ACM-
SIAM Sympos. Discrete Algorithms, pages 147-155, 2002.

[BOR99a]  A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional near-
est neighbor search and related problems. Proc. 31st Annu. ACM Sympos. Theory
Comput., 1999.

[BOR99b] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms
for clustering problems in high dimensional spaces. Proc. 81st Annu. ACM Sympos.
Theory Comput., 1999.

[BROO] O. Barkol and Y. Rabani. Tighter bounds for nearest neighbor search and related
problems in the cell probe model. Proc. 82nd Annu. ACM Sympos. Theory Comput.,
2000.

[Bro98] A. Broder. Filtering near-duplicate documents. Proc. FUN, 1998.

[BTO1] J. Buhler and M. Tompa. Finding motifs using random projections. Proc. Annu.
Internat. Conf. Computational Molecular Biology (RECOMBO01), 2001.

[Buh01] J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics, 17:419-428, 2001.

[Buh02] J. Buhler. Provably sensitive indexing strategies for biosequence similarity search.
Proc. Annu. Internat. Conf. Computational Molecular Biology (RECOMB02), 2002.

[BV02] P. Beame and E. Vee. Time-space tradeoffs, multiparty communication complexity,
and nearest-neighbor problems. Proc. 84th Annu. ACM Sympos. Theory Comput.,
2002.

[CCGL99] Amit Chakrabarti, B. Chazelle, Benjamin Gum, and Alexey Lvov. A lower bound

on the complexity of approximate nearest-neighbor searching on the hamming cube.
Proc. 31st Annu. ACM Sympos. Theory Comput., 1999.



Chapter 39: Nearest Neighbors in High-Dimensional Spaces 15

[CDF100]

[Cha02]

[CIP02]

[Cla88]

[DW82]

[Epp95]
[Epp99]
[GGO1]

[GIM99)]

[GIVO1]

[GPY94]

[GSMO3]

[GW97]

[HGI00]
[HIMO03]
[HLO2]
[HPO1]
[HPI00]
[TM98]

[Ind98]

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and
C. Yang. Finding interesting associations without support prunning. Proc. 16th
Internat. Conf. Data Engineering (ICDE), 2000.

M. Charikar. Similarity estimation techniques from rounding. Proc. 34th Annu. ACM
Sympos. Theory Comput., 2002.

Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query,
partial match, orthogonal range searching and related problems. Internat. Colloguium
on Automata,Languages, and Programming, 2002.

K. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput.,
17:830-847, 1988.

L. Devroye and T.J. Wagner. Nearest neighbor methods in discrimination. Handbook
of Statistics, volume 2, P.R. Krishnaiah and L.N. Kanal, editors, North-Holland,
1982.

D. Eppstein. Dynamic euclidean minimum spanning trees and extrema of binary
functions. Discrete Comput. Geom., 13:111-122, 1995.

D. Eppstein. Personal communication. 1999.
A. Gersho and R.M. Gray. Vector Quantization and Data Compression. Kluwer, 1991.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.
Proc. 25th Internat. Conf. Very Large Data Bases (VLDB), 1999.

A. Goel, P. Indyk, and K. Varadarajan. Reductions among high-dimensional geomet-
ric problems. Proc. ACM-SIAM Sympos. Discrete Algorithms, 2001.

D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval.
Proc. 35th Annu. IEEE Sympos. Foundations of Computer Science, pages 722—731,
1994.

B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high di-
mensions: A texture classification example. Proc. 9th International Conference on
Computer Vision, 2003.

M.X. Goemans and D.P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. Approzimation Algorithms,
1997.

T. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for clustering the web.
WebDB Workshop, 2000.

S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. Submitted, 2003. Merges [IM98] and [HPO1].
L. Heinrich-Litan. Exact l.-nearest neighbor search in high dimensions. Proc. 18th
European Workshop on Computational Geometry, 2002.

S. Har-Peled. A replacement for voronoi diagrams of near linear size. Proc. Sympos.
Foundations of Computer Science, 2001.

S. Har-Peled and P. Indyk. When crossings count - approximating the minimum
spanning tree. Proc. Annu. ACM Sympos. Computational Geometry, 2000.

P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse
of dimensionality. Proc. 80th Annu. ACM Sympos. Theory Comput., 1998.

P. Indyk. On approximate nearest neighbors in I norm. J. Comput. Syst. Sci.,
to appear. Preliminary version appeared in Proc. Sympos. Foundations of Computer
Science, 1998.



16 Piotr Indyk

[Ind00]
[Ind01]
[Ind02]
[Ind03]
[1ST99]

[IV99]

[K1e97]
[KORO0]
[KWZ95]
[LT80]
[Mei93]
[MNSW94]
[MP69]
[OMSTO02]
[Riv74]
[SHT75]
[Shi00]

[WSB9g]

[Ya01]

[Yia00]

P. Indyk. Dimensionality reduction techniques for proximity problems. Proc. 9th
ACM-SIAM Sympos. Discrete Algorithms, 2000.

P. Indyk. High-dimensional computational geometry. Dept. of Comput. Sci., Stanford
Univ., 2001.

P. Indyk. Approximate nearest neighbor algorithms for frechet metric via product
metrics. Proc. Sympos. Comput. Geom., 2002.

P. Indyk. Better algorithms for high-dimensional proximity problems via asymmetric
embeddings. Proc. ACM-SIAM Sympos. Discrete Algorithms, 2003.

P. Indyk, S.E. Schmidt, and M. Thorup. On reducing approximate mst to closest pair
problems in high dimensions. Manuscript, 1999.

K. Jain and V. Vazirani. Primal-dual approximation algorithms for metric facility
location and k-median problems. Proc. Sympos. Foundations of Computer Science,
1999.

J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. Proc.
Twenty-Ninth Annu. ACM Sympos. Theory of Computing, 1997.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457-474, 2000.

R.M. Karp, O. Waarts, and G. Zweig. The bit vector intersection problem. Proc.
36th Annu. IEEE Sympos. Foundations of Computer Science, pages 621-630, 1995.
R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM J.
Comput., 9:615-627, 1980.

S. Meiser. Point location in arrangements of hyperplanes. Information and Compu-
tation, 106:286-303, 1993.

P.B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. Data structures and asymmetric
communication complexity. Proc. 26th Annu. ACM Sympos. Theory Comput., 1994.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, 1969.

Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov. Cluster-Based Delta Compression
of Collections of Files. Proc. International Conference on Web Information Systems
Engineering (WISE), 2002.

R.L. Rivest. Analysis of Associative Retrieval Algorithms. Ph.D. thesis, Stanford
Univ., 1974.

M.I. Shamos and D. Hoey. Closest point problems. Proc. 16th Annu. IEEE Sympos.
Found. Comput. Sci., pages 152-162, 1975.

N. Shivakumar. Detecting digital copyright violations on the Internet (Ph.D. thesis).
Dept. of Comput. Sci., Stanford Univ., 2000.

Roger Weber, H.J. Schek, and Stephen Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. Proc. 24th Int. Conf.
Very Large Data Bases (VLDB), 1998.

C. Yang. MACS: Music Audio Characteristic Sequence Indexing for Similarity Re-
trieval. Proc. Workshop on Applications of Signal Processing to Audio and Acoustics,
2001.

P.N. Yiannilos. Locally lifting the curse of dimensionality for nearest neighbor search.
Proc. ACM-SIAM Sympos. Discrete Algorithms, 2000.



