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Abstract

We give algorithms to find the following simply described approximation to a given
matrix. Given an m x n matrix A with entries between say -1 and 1, and an error parameter
¢ between 0 and 1, we find a matrix D (implicitly) which is the sum of O(1/¢?) simple rank
1 matrices so that the sum of entries of any submatrix (among the 27") of (A — D) is at
most emn in absolute value. Our algorithm takes time dependent only on € and the allowed
probability of failure (not on m,n).

We draw on two lines of research to develop the algorithms: one is built around the
fundamental Regularity Lemma of Szemerédi in Graph Theory and the constructive version
of Alon, Duke, Leffman, Rodl and Yuster. The second one is from the papers of Arora,
Karger and Karpinski, Fernandez de la Vega and most directly Goldwasser, Goldreich and
Ron who develop approximation algorithms for a set of graph problems, typical of which is
the maximum cut problem.

i From our matrix approximation, the above graph algorithms and the Regularity Lemma
and several other results follow in a simple way.

We generalize our approximations to multi-dimensional arrays and from that derive
approximation algorithms for all dense Max-SNP problems.

1 Introduction

One motivation for this paper comes from certain graph problems; such as the maximum
weight cut problem. Here we have a graph G = (V, E) and weights w : E — R. For SCV
the cut (S,S) is the set of edges with exactly one end in S. Its weight w(S,S) is the total
weight of its edges. The problem is to find a cut of maximum weight. It is easy to produce a
cut (in polynomial time) which has at least 1/2 of the weight of the maximum cut. Goemans
and Williamson [17] made a breakthrough by devising a polynomial time algorithm which comes
within a factor of .878 of optimal. This problem is Max-SNP hard; so from the PCP results of
Arora, Lund, Motwani, Sudan and Szegedy [7] it is known that if we have a polynomial time
approximation algorithm for every fixed factor less than 1, (or a Polynomial Time Approximation
Scheme - PTAS), then NP would equal P.

However, Arora, Karger and Karpinski [6] gave the an algorithm for this problem which produces
a cut of weight at least the maximum weight of a cut minus en?W where W is the maximum
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weight of an edge, and n is the number of vertices in the graph. This additive error bound
implies a PTAS for the case when G has Q(n?) edges, each of weight 1 (henceforth referred

to as the “dense case”). The running time of their algorithm is O(no(1/52)). Fernandez de la

Vega [13] independently gave an 0(21/€2+D(1)n2) time algorithm for the unweighted Max Cut and
Maximum Acyclic Subgraph problems with similar bounds.

We describe a method of decomposing matrices into the sum of simple matrices plus an “error”
matrix. Ignoring the error matrix makes many problems easy to solve. In this way we obtain
algorithms which have running times 2001/ 1 i the probe model of computation (see Section
2.2). Our solutions are given implicitly and they can be quickly expanded to give explicit
solutions.

Algorithms with comparable running times to ours for the above problems have been obtained
earlier by Goldwasser, Goldreich and Ron through other means [18]. Sampling plays an important
role in all of the above papers. Goldwasser, Goldreich and Ron showed that by appropriate
sampling of a constant number of vertices one can determine with high probability whether a
graph has a cut close to a certain weight and in addition provide some auxilliary information
which implicitly defines the partition, enabling its quick construction later.

A second motivation for us comes from the Regularity Lemma of Szemerédi - a fundamental
result in Graph Theory. This lemma gives a partition of the vertex set of any graph into a
bounded number of pieces, so that the pieces satisfy some regularity properties — see Section 5.2
for a proper definition. While the original lemma was non-constructive, Alon, Duke, Leffman,
Ro6dl and Yuster [1] gave a polynomial time algorithm to find the partition. In an earlier paper
[15] we describe a related partition of the vertices with many fewer parts. This can be also
be put to algorithmic use in solving maximum cut as well as several other problems, with an
additive guarantee of error. In this context, we note that Duke, Lefmann and Rodl [11] used
another decomposition, different from ours and Szemerédi’s to approximate subgraph counts.
The number of parts in their decomposition is closer to ours than Szemerédi’s.

Using techniques from both these areas, we give here an algorithm for finding a natural approx-
imation to matrices stated in the abstract.

This approximation (applied to the adjacency matrix of graphs) helps us solve (in a uniform way)
the maximum cut and the other graph problems considered for example, in [18]. In addition, we
solve a version of the Quadratic Assignment Problem [9, 24] which contains the Minimum
Linear Arrangement Problem [16] as a special case.

We generalize our approximations to multi-dimensional matrices. Using this generalization, we
give approximation algorithms with an additive error guarantee for all Max-SINP problems.
(The class Max-SNP was introduced by Papadimitriou and Yanakakis [23]. We will briefly
explain the class in Section 7..)

Perhaps a central point of our paper is that all our algorithms are obtained from the matrix
approximation theorem with minimum effort.

We note that there has been fair bit of success in designing polynomial time approximation
schemes for certain graph problems (such as the Max Cut problem) on dense graphs, as mentioned
above and other problems like the QAP (Arora, Frieze and Kaplan [5]), the existence of such
schemes for general graphs would imply that NP=P by the powerful results of Arora, Lund,
Motwani, Sudan and Szegedy [7]. This mirrors the situation in approximate counting where
dense problems have sometimes been easier to attack — Annan [4], Broder [8], Jerrum and
Sinclair [21], Dyer, Frieze and Jerrum [12] and Alon, Frieze and Welsh [2]. We have not as yet

1The O notation hides polynomial factors in log1/e, log1/6. § will be our probability of error.



found a way of using our decomposition for such approximate counting problems.

We also use our matrix approximation Theorem (applying it again to adjacency matrices of
graphs) to derive a constructive version of Szemeredi’s Regularity Lemma. In Section 5.1 we
show how to use the matrix approximation Theorem, another partition where the number of
parts in the partition grows more slowly than Szemerédi’s. In our partition the logarithm of the
number of parts is polynomial in 1/¢ whereas in Szemerédi’s only log* of the number of parts
is — necessarily so, Gowers [19]. Of course our partition does not have as strong a regularity
property as Szemerédi’s. However, the weaker conclusion is enough for certain purposes; in fact,
as we mentioned earlier, we may also derive our algorithms from this version, see [15].

2 Statement of Results

2.1 Notation

We will be mainly concerned here with matrices having rows indexed by a set R and columns
indexed by a set C, |R| = m and |C| = n. The ith row of M is denoted by M;. We use the
notation that for any vector € R”, and any subset S of coordinates, z(S) = ;g #;. For such
an R x C' matrix M we use several norms:

M|lee = max |M(q, 7).
L )]
IM[lp = E M(i, j)2. Frobenius Norm
(i,j)ERXC
IMllc = max |M(S,T)|, Cut Norm
SCR,TCC

where
M(S,T) = > M(,j).

(4,5)€ESXT

We note that

Mz
IMlle < sup  Mzlh

< A4|[Mllc. (1)
zeR"\{0} 1E2IPS

The lower bound follows from considering z € {0,1}" and for the upper bound observe that
maximum of |[Mz]||; over ||z||eco < 1 occurs at z € {—1,1}".

Given S C R, T' C C and real value d we define the R x C' Cut Matriz C = CUT(S,T,d) by

[ d i) eSxT,
C(i,j) = { 0 otherwise.

Note that a cut matrix has rank one.

2.2 Model of Computation

We will design algorithms that run in constant {tme. Since the data size for these problems is
unbounded, we must be precise about what we mean. We use the Probe model in which we
assume that given (¢,j) € R x C' and matrix A we can in O(1) time determine A(%,j), by a



“probe”. Our results state that many problems can be implicitly solved using a constant number
of random probes. By implicitly, we mean that we obtain a short description of a solution, which
can be “expanded” explicitly in polynomial time, usually O(m+ n) time. Our results will mostly
be stated in this model, which was introduced in [18].

2.3 Matrix Decompositions

A Cut Decomposition expresses a matrix A as
A=DD 1D 4. ... DG LW, (2)

Here D(*) = CUT(R;,Cy,dy) for t = 1,2,...s. Such a decomposition has width s, coefficient
length (d3 + - - -4 d2)'/? and error ||W||c.

Theorem 1 Suppose A is an R x C matriz with ||Allc = M. Suppose €,6 are reals in the
interval (0,1). Then in time O(e=12671), we can, with probability 1 — 6, find a cut decomposition
of width O(e=*), coefficient length at most \/2TM and error at most e Mmn.

The next theorem claims a decomposition of smaller width. It takes longer to produce. In this
algorithm we can avoid the dependence on ||A||s-

Theorem 2 Let A, ¢,6 be as in Theorem 1. Then n time 26(1/52)/62, we can, with probability
1— 8, find a cut decomposition of width O(e=?), coefficient length at most /27||A||r//mn and
error alt most ex/mn||A||p.

If A is a symmetric matrix then it will be useful to have what we call a symmetric decomposition.
This is easily done. If A = D) + D®) 4 ... 4+ D) + W then we use the decomposition

A DW (D(l))T D) (D(S))T W+ W7
= Gttt
= DW4D® 4 ... 1 D®-D D) LW (3)

The D) are not necessarily symmetric, but we use them in pairs indexed by 2j — 1 and 2j.
Note that B
[[Wllc < |[[W]lc.

Theorems 1 and 2 are proved in Sections 4.2 and 4.3.

2.4 Approximation Algorithms

Theorem 3 Max-Cut Let G denote the complete graph with vertex set V and edge weights
w:V xV —[=1,1]. Then in time 2°0/)log1/6 we can find a cut (S*,V\ S*) such that with
probability at least 1 — 6,

w(S*,V\ S*) > w(S,V\S)—en?

forallSCV.

(If the edge weights are in [—W, W] then by scaling we see that the error is at most eWn?.)



We can prove a related theorem on the conductance of graphs. Suppose G(V, E) is an undirected
graph. Let us define the conductance of G denoted Cond(G) by

Cond(G) = gﬂé%/l Cond(S5)

where
H{(u,v):u e S;veV\SH
ISIIVA S| '
When the degrees of all vertices are equal, this coincides with the definition of Jerrum and
Sinclair [21].

Condg =

Theorem 4 Given a graph G and ¢,6 > 0, there is a O(n26(1/52) log1/é) time algorithm which
returns a real number T so that with probability at lesst 1 — 6, we have

|Cond(G) — 7] < e.

We now consider the QAP. We focus on the Koopmans-Beckmann version of the QAP. Here
one is given a set of n items V which have to be assigned to a set of n locations X, one per
location. We are given two n x n non-negative matrices T,D. Here T(7,7) is the amount of
traffic between item i and i’ and D(z, 2') is the distance between location z and z'. Tf item i is
assigned to location w(7) for ¢ € [n] the total cost e(m) is defined by

e(m) =Y > T(i.i)D(a(i), x(i")). (4)

i=14'=1
The problem is to minimise ¢(7) over all bijections 7 : V — X.

A typical example is where a location is a room in a building (e.g. hospital) and each item is a
facility of some sort (e.g. operating theatre, intensive care unit etc.) and the total cost is the
sum over pairs of facilities of the product of traffic intensity and distance.

We will restrict our attention to the case where the n locations are the points of a finite metric
space X with metric D. We assume that

1. diam(X)=1 i.e. max, , D(z,y) = 1. (This can be assumed w.l.o..g. by scaling).

2. For all ¢ > 0 there exists a partition X = X; U Xy U---U Xy, £ = £(¢), such that
diam(X;) < e, for 1 < j < £ We call this an € — re finement of X.
We can then define an £ x £ matrix D such that if z € X; and 2’ € X, then [D(z,2') —
D(j, )| < 2¢.
Furthermore this partition is computable in time polynomial in n and 1/¢ — for the cases
we have in mind, this will be insignificant compared with that required by the rest of the
algorithm.

We call this the metric QAP.

The Minimum Linear Arrangement problem [16] where X = {0,1/n,2/n, ..., 1} is a special
case. Partition X is just [1/¢] intervals of length roughly equal to €, each containing roughly en
points.

Similiarly, if the points are in [0, 1]¢ then we divide this into [1/€—|d subcubes in the natural way.
Here diam(X) < d'/? and we need to scale to get the precise formulation.

We will also assume that T(¢,#') < 1 for all ¢,¢ and this can be achieved by scaling. Let #*
denote the permutation which minimises c.



Theorem 5 There is a randomised algorithm algorithm for the metric QAP which, with proba-
bility at least 1 — &, produces a permutation w. such that c(w.) < e(7*) + en? and which runs in

time 200477 log1/6 + C(e€). The algorithm requires us to compute a Ke~*-refinement for some
K > 0. C(e) is the time needed to implicitly construct a 1/(Ke*)-refinement.

We next look at the related Maximum Acyclic Subgraph Problem. Here we are given a
(weighted) digraph D with adjacency matrix T and the problem is to find the maximum (weight)
subset of the edges which induces an acyclic digraph.

Theorem 6 Let D be an edge weighted digraph with arc (i,j) having weight T(i,j) where

I[Tllco < 1. There is a randomised algorithm which in time 2001/ 1og 1/6, can with proba-
bility at least 1 — 6, find an edge set E C F which induces an acyclic subgraph and

T(E) > T(E*) — en?,

where E* is the optimal solution.

Theorems 3 — 6 are proved in Section 3.

2.5 Graph Partitions

The research that led to this paper was sparked by our realisation that given a decomposition
promised by Szemerédi’s Regularity Lemma, we could easily get a good approximation to Max-
Cut (Theorem 3). We then realised that we did not really need such a fine partition and that a
partition adequate for Theorem 3 can be computed more easily.

In Section 5 we describe Szemerédi’s partition as well as our weaker Pseudo-Regular partition.
We then show how to use our matrix decomposition algorithms to find such partitions.

2.6 Higher Dimensional Matrices

In Section 6 we will consider higher dimensional matrices. We will extend our notion of a cut
decomposition. We will prove (Theorem 11) that a recursive application of our 2-dimensional
algorithms can be used to yield good decompositions in higher dimensions.

This will lead us naturally to consider hypergraph versions of the partitions discussed in Section 5.
It is straightforward to construct regular partitions of hypergraphs from our higher dimensional
matrix decompositions.

Finally, using our higher dimensional matrix decompositions we will show in Section 7 how to
obtain a PTAS for a dense instance of any optimisation problem in MAX-SNP.

3 Combinatorial Problems

3.1 Max-Cut

In this section we prove Theorem 3 and show how to use the matrix approximation to find
approximately the maximum weight cut in a graph G(V, E). This illustrates the method used
for all problems. In Section 7, we use the same method generalized to multi-dimensional matrices



to solve approximately any general Max-SNP problem; but it is easier to understand the method
in the simple setting of Max-Cut in graphs first.

We take the matrix A with A(Z, j) equal to the weight w(i, j) of the edge (7, j). We use Theorem
2 to implicitly find cut matrices D), D) . DG s = O(1/€?) with DY) = Cut(R;, Cy, dy)
such that with probability at least 7/8

A= (DY +D® +... 4+ D)l < en||A|[r/10 < en?/10.
This takes time 20(1/¢%).
Suppose (S, S) is a cut in the graph. Then, A(S,S) is the weight of this cut and
|A(S,5) — (D + D@ ... £ DE))(S, 9)| < en?/10. (5)
But, D®)(S, S) = d;|S N R:||S N C;| and so

ED(U(S, g) = Edtftgt (6)
t=1 t=1

where
fi =|SN Ry and g; = |SNCy] fort=1,2,...s. (7)

We let v = [en/(9v2T)], (see our bound on the coefficient length of the decomposition), and we
consider approximations to f, g; defined by

= |L]e =2 ()

v

We see using the fact that |d;| < /27,

Z |figeds — figeds] < V/27s(2un 4 v?) < 3v2Tvns. (9)

t=1

We see from (5), (6), (7) and (9) that the values f;,g;, 1 <t < s almost determine the weight
of the corresponding cut. Thus our problem is reduced to finding the best values for f,§ and a
corresponding cut. Now each f; and g, take on one of only O(1/€3) values and so we can afford
to enumerate all O(1/€3)?* possible values of f.§, try to find a cut for each and take the best
cut found. Finding a cut for a given set of values f, 7 is an integer program which we replace by
its linear relaxation.

Max-Cut Algorithm

Let P be the coarsest partition of V (with at most 22 parts in it) such that each Ry, C; is the
union of sets in P. We explicitly construct a representation of P. We (i) construct a decision
tree which has a leaf for each P € P such that for any v € V we can determine P containing v
in O(1/€?) time and (ii) for each R;, C; we make a list of those P which are its subsets.

Let K = {0,1,2,...,[10v/27s/c]}. For each (f,3) € vK? we define the following integer
program: for each P € P, zp represents the unknown |S N P|.
IPj ;: find an integer solution to

0 < zp < |P] YPeP
fo <D xp < fitv 1<t<s
PCR;
g < > (Pl-zp) < gi+v
PCC,



Let LPj; denote the linear relaxation of this problem. This program is feasible whenever f.q
are derived from a set S as in (7) and (8) - take zp = |SNP|, in which case } " pp zp = [SN Ry
ete.. -

If LPy ; is feasible we round down each zp to the nearest integer (below it) to get yp. Then, we
have for each ¢, the upper bound on ZPCRt xp 1s still satisfied 1.e ZPCRt yp < fi +v. Also we

have B
> yp > fi 2%
PCR;

Similary we have

g < > (IPl—yp) < gi+v+27.
PCC,

After finding the yp, we take any S* = S*(f,g) with |S* N P| = yp for all P € P (such S*’s
exist as P is a partition). We have

|ReNS*| = fil Sv+2 <2
IC: N S*| = gl Sv+2% <2,

for n high enough, since 2%° ¢ 20(1/%)

This implies that (arguing as in (9)), for each feasible set of f;, g;, we can find S* with

ST IR0 SH |G S |dy = fugeds| < 5V2Twns. (10)

t=1 t=1

So, taking the best S*(f, ) as (f,g) runs over vK?*, we see from (5), (9) and (10) that we get
a cut which is at least the maximum minus 8v/27vns 4+ en?/10 < en® as claimed. At least we
manage this with probability at least 7/8. By repeating O(log1/6) times and taking the best
cut found we obtain our theorem. |

All subsequent algorithms use this strategy. So when we say ”compute a decomposition sat-
isfying ...” we implicitly mean compute one with probability at least 7/8. Repetition of the
decomposition plus optimisation O(log1/é) times is used to improve the probability to 1 — 6.
We will not always say this explicitly in what follows.

3.2 Conductance

In this section we prove Theorem 4. Let ¢; = ¢/8 and assume e is sufficiently small. Let d(v)
denote the degree of vertex v and for S C V' let d(S) = > 5 d(v). We first estimate all the
degrees. For this we pick an independent sequence v, v, ..., vp of randomly chosen vertices,
T = 64logn/e?. Let d'(v) = nB, /T where B, is the number of i such that v; is adjacent to v.
B, has distribution Bin(T,d(v)/n) and so (see Corollary A.7 of Alon and Spencer [3])

Pr(|d' (v) — d(v)| > e1n/8) = Px(|B, — Td(v)/n| > Te1/8) < n™ %

So assume that

|d'(v) — d(v)| < e1n/8 Yv e V.
Case 1: There is some v € V with d'(v) < egn. Then, d(v) < en/4 and so with S = {v}, we get

{(u,v) :u € Sjwe V\S}
ISIV\ S|

<¢€/3,



whence we may output 7 = 0 and stop.

Case 2 d'(v) > e1n, Yv € V. Now for any S C V with |S| < €¥n/2, we have

d(S) _ d(S) - |S|”

. H(u,v):ue S;veV\S}H _ d(S)
(= )205] < I8V 5]

ISI[VA S| - nlS]

S COIldS = (1+€1)

We then have that,

d(5) d(5) 2
1- < Condg < (1 — V|S| < 2.
( €1)n|5|_ OIIS_( +€1)n|5|7 | |_€1TL/
So, min5:|5|sefn/2 Condg can be found with error at most € by just arranging the vertices in
increasing order of (estimated) degrees and examining the vertices in this order. (We will not
give the simple details.)

Now we deal with sets S with ¢Zn/2 < |S| < n/2. For this, we start by finding an approximation
D to A so that for all S C V, we have

|A(S,S) —D(S, S)| < ecin?/3. (11)
For any S C V| let
. D(S,V\S9)
Condy = ———~+
* TSIV S

Then for these large S, we have, from (11),
|Conds — Condg| < ¢,

so it suffices to find the minimum of Condg . This is done in a manner similar to the maximum
cut problem in time 20(1/¢%),

3.3 Quadratic Assignment

In this section we prove Theorem 5. We start by applying Theorem 2 and decomposing
T=70 47 4 ...y 76) W

as a sum of cut matrices T®) = CUT(R;,C;,d;) and |[|[W||¢ < en?/4. Thus for bijection
m:V — X we have

e(m) =" 37 T HD (), 7(5)) + As (12)
where Ay < |W(V, V)| < en?/4.

We compute an ¢;-refinement of X, €; = ¢/(8,/7s) (A similar idea was used in ([5])). Then let
SEW) = 771(X;) for 1 <i <€ ={(e1). In which case we can write

s £

i zn: T, /D (a(i), 7()) = > > de|Re 1S |Ce NSV DG, j) + Az (13)

k=14,j=1 k=14,j=1

where |As| < 24/27se1n? < en?/4. We use the fact that |dg| < /27, the bound on the coefficient
length of the decomposition.



We let v = |en/(12v/27¢s)| and
2Ty = RN S| /v) and y, = (|G S /w] Vi,
So,

s s £

L
SN ARSI NSTDG ) =0 Y Y dial T + As (14)

k=14,j=1 k=1i,j=1
where |Az| < 3v/27vlsn < en?/4.

As we vary m each of ],y takes on one of O(£/€3) values. So, as in the case of max-cut we
try all O((£/€%)2%*) choices for the vector (27, y]”k) and take the best “feasible” one.

In a similar manner to that in Section 3.1 we implicitly compute the coarsest partition P, |P| < 4°
such that each Rj and C} is the union of members of P. We introduce variables A\; p, P € P,1 <
i < £ and for each trial vector (& i, 7; ) we check the feasibility of the linear system

&r < Z Aip < &+l Vi, k
PCRx
mk <Y, Aip < Mg+l Vi k
e (15)

LIXil/v]

IN

,
ZALP < UXal/v]+1
i=1

Assuming feasibility in (15) we round down a solution A; p to integer values y; p and choose any
bijection which maps between y; pv and (y; p + 1)v members of P to X; for every ¢, P. In this
way, we find a solution 7, such that for any other solution 7, ¢(7.) < e(m)+3nv+A;+As+ Az <
¢(w) + en? and this proves Theorem 5.

3.4 Maximum Acyclic Subgraph

In this section we prove Theorem 6. Let v = |en/2| and X = [n]. Let X1, Xs, ..., X, be
a partition of X into sets of size v or v + 1 such that if ¢ < j then maxX; < minX;. We
re-formulate the problem as one of finding a bijection 7 : V' — X which maximises

e(w) = Z T(z,y).
(z,y)EE
w(z)< 7 (y)

We define a distance matrix D by

1 zeX,yEX;i<ij
D($7y)—{ 0 otherwise.

We then observe that 0o
o(m) =Y T(i,i)D(x(i), 7(i") + A,
i=14'=1

where |A| < en?/2. Comparing with (4) we see that we can proceed as in the previous section.
The reader might be troubled by the fact that D does not define a metric. However this is
not essential. All we need to be able to do is define a good approximating matrix D and here

D(7,j) = 1;<; will suffice.

10



4 Computing Decompositions

4.1 Existence

In order to help motivate the more technical constructive proofs, we first give a simple non-
constructive version of our decomposition theorems.

Theorem 7 Suppose A s a real m x n matriz with rows R and columns C'. Then
there exist cut matrices DY) D) DG DO = CUT(Ry,Cy,dy) for 1 <t <s<1/é
such that if

W =A_— (DY 4+D® 4...4 D)

then

WS, T)| < e/IS[ITIAlIFYS C R, T C C. (16)
VSCRTCC.
Proof Assume inductively that we have found ¢ < 1/¢? cut matrices

DY) = CUT(R;,Cj,d;), 0<j<t (D =0),

such that W = W) gatisfies
W7 < (1=0]All7

We show that either (16) holds, proving the theorem (with s =) or else we can find a decompo-
sition with ¢ + 1 matrices that also satisfies (16). By inspection, (16) precludes ¢ > 1/¢? and the
theorem is proved. So assume that there exis R, 7' C C such that |[W(S,T)| > e+/|S||T||A]|r-
Let Rt+1 = S, Ct+1 =T and dt+1 = W(S, T)/(|S||T|) Then

[WEDZ — [W[F = [[W-DUFD| —|[W]7
= S (W 5) = dipr)” = Wi, §)7)
1€Ry11,J€C11
= —|Rip1l|Ciqaldiy,
W(Rit1,Ci41)?
| Reg1||Cryal
—c*||A]l7.

INA

The theorem follows. O

4.2 First Algorithm

Proof of Theorem 1. We assume that M = 1. The general case is dealt with by scaling.

At a general stage, for some ¢t > 0, we will, with sufficently high probability, have found cut
matrices DOV, ... D® such that W) = A — (D(l) +- D(t)) satisfies

a4
WOz < (1- 295 a3 (17)
F= 6400 F

We will prove this by induction on ¢. It is clearly true for ¢ = 0 and for general ¢ there are 2
possibilities:

11



(i
(W (S,T)| < ey/mnlS|[T] (18)

forall SC R, T CC.

In this case the conditions of Theorem 1 are satisfied.
(i) IS C R, T C C with |[W(S,T)| > ex/mn|S||T|.

We will show that in case (ii) we can find a ¢t + 1’st cut matrix so that (17) holds. Thus after at
most 6400/(3€?) iterations we will find ourselves in case (i).

Assume then that (18) is not satisfied and let W = W), We will describe a procedure which
finds a pair Riy1, Ciq4q with

|[W(Riy1,Cip1)| > ¢2mn/40. (19)

The pair Riy1, Ciy1 will then be used to define D0+,

We have for any subset S of the rows and any subset T of the columns,

(S5 wn)

ueESveT

2
|S] Z (Z W (u, v)) Cauchy-Schwartz

ueS \veT

|S|Z Z W (u, v)W (u,v")

ueSvv'eT

EDY (Z W(u,v)W(u,T)) .

veT \u€eR

W(S,T)?

IN

Defining
F0) = W(u,v)W(u,T),

ugeS

we see that

> fw) > %@2

Also, it is easy to see that for each v, we have f(v) < m|T|. So if

W(S,T)?
Qz{veC:fv z.—}
)2 31
then (s )2 (s )2
W(S,T W(S,T
QIm|T| + |T|—= > :
|Qm|T| + |T 3SI[T] B
and so
W(S,T)?
>~/ 2

Now choose a pair S, T which violate (18). ;From (20) we see that for this S, T we have

Q| > ¢*n/2.

12



Fix attention on this pair S,7 and on a v in Q. Define a function G = G, : R — 2% as follows:

[ {ueR:W(u,v) >v} ifv>0
G(V)_{{UER:W(U,U)gy} ifv<0 (21)

It is easy to see from a = fol lz<adz etc. and v € () that

emn/2 < f(v) :/0 W(G(v),T) du—/_IW(G(V),T) dv.

Thus for v € @, if v is chosen uniformly at random from [-1,1]
B, ([W(G(v), T)]) > ran/4.

Note next that |[W(G(v),T)| < /mn||W||r < mn Vv (using the inductive assumption (17)).
Let
0 = Pr(|W(G(v), T)| > 2mn/8).
Then for v € @,
?mn/4 < E,(|W(G(v),T)|) < 8mn + (1 — 0)e*mn/8

which implies § > ¢?/8 or in other words that given v € @Q, if we pick v at random in [—1, 1],
with uniform density, then we have

Pr ({W(G(v),T) > ¢mn/8 and v > 0} OR {W(G(v),T) < —e*mn/8 and v < 0}) > ¢*/8.
(22)
Define

Pw(R) ={z€C: W(R,z)>0} Nw(R) =C\Pw(R) VR CR
Pw(C") ={u€R: W(u,C') >0} Nw(C') =R\Pw(C) YC'CC. (23

Equation (22) implies the following:

Lemma 1 If3S C R, T C C with |[W(S,T)| > ex/mn|S||T| and we pick v at random from C
and v at random (with uniform density from [—1,1]), then with probability at least ¢*/16, we
have

W(G(v), Pw(G(v))) > mn/8 OR W(G(v), N\w(G(v))) < —*mn/8. (24)

O

We propose to use this lemma as follows: pick v, at random as above. Check whether (24)
holds. (While 7" was unknown, both Pw(G(v)) and Nw(G(v)) are known once v, v are.) If
not, we repeat the trial a certain number of times. Whence we can argue that the probability
of failure in all trials is low. Once we have v, v satisfying (24) we can take R;y1 = G(v) and
Cit1 = Pw(G(v))) or Nw(G(v))). Then we can argue as in the proof of Theorem 7 that the
Frobenius norm of our error matrix drops significantly. The catch is that checking whether
[W(G(v), Pw(G(v)))| > e2mn/8, takes O(n?) time if naively done. We use sampling to do an
approximate version of the check in time 6(6_126_1) below.

Steps 5-10 choose a random v, v and try to see if (24) holds. R= G(v)is represented by RNU for
a small random subset UU. ' is defined as in (25) below. Tt is important to realise that R,C are
not explicitly computed. The value of W(R, C) is estimated by W = mn|W(RNU;, COV1))|/q>.
Here Uy, Vi are also small random subsets. This is done rg times and the best ff, C are re-checked
in Step 11. If |W| is large enough then we take steps (12,13) to ensure that |R| > m/3, |C| > n/3.
This is used in the proof that the coefficient length of the decomposition is small.

We describe the algorithm and prove its correctness later. The constants in the algorithm are:

13



to = [2500¢4].

p = [10°c~*log(6rosoted~1)].

ro = [32¢74].

Sg = |—10g2(3t05_1)-| .

q = 30prg.

° ql = |_30p80t06_1-| + |—2 X 1086_81H(1280t0/6)-|.

First algorithm to find a cut decomposition of A

1 Fort=0,1,...15— 1 do:

2 Set W = A — (DM 4+ DB 4.+ D).
3 Fors=1,2,...50 do:
4 Forr=1,2,...rg do:

11

12

13

14

5 Pick a v from C' uniformly at random.
6 Pick v uniformly at random from [—1, 1].
7 Pick random subsets U, Uy of R independently with |U| = p and |U| = q.
8 Pick a random subset V] of C' independently with |V;| = q.
9 R — G(v) and
~ Pw(RNU) ifvr>0 .
C= { Nw((fm U)) if v <0 (25)

10 Compute the following estimate W = ma|W(RNU;,CNW)/g® of
W(R, ). Go to the next r.

Let R, C refer to the largest value of |IW| found in the last execution of loop

4-10.

Choose new random subsets Uy C R,V C C, |Uy| = |[Vi]| = ¢’ and recompute

W with ¢’ replacing q.

If [W| < e2mn/9 goto the next s, unless s = sg, in which case go to 15.

Compute the estimate p for [R|: p=m|RNU,|/q .

If p > 2m/5 goto 13, otherwise

Estimate W(R, C) by Wi = mnW (U, cnvi)/g?

If Wy > e¢2mn/19 then R «— R, W — W; and p «— m, otherwise

R— R\ R, W — maW(U;,V1)/q'* — Wy and p — m — p.

Compute the estimate « for |C|: & = n|C N Vi]/q.

If kK > 2n/5 goto 14, otherwise

Estimate W(R, C) by Wo = mnW (RN Uy, V1)/q"”

If Wy > ¢2mn/39 then C «— R, W «— W5 and k «— n, otherwise

C — C\é’, W — mnW(Ul,Vl)/q'2 — Wy and kK «— n — k.

Rip1 — R, Cypy — C,dypq — W/pk and

D(H_l) — Cut(Rt+1, Ct+1~dt+1)

and go to the next ¢, unless ¢ = ¢y in which case FAIL.

15 Terminate with D) 4+ D 4 . D) as the approximation to A.

14



The proof of correctness is based on the following sequence of lemmas. They show that the
estimates are accurate enough with high enough probability.

Lemma 2 Suppose W is an m x n matriz with set of rows R and set of columns C'. Fiz Y C R.
Suppose U is a random subset of R of cardinality p. Then

By (W(Y. Pa(U 1Y) 2 WY, Par(¥)) = 22 [ W (26)
B (W(Y, N (U 1)) € WY, Nw (V) + [ [W] (27)

Proof We prove (26) only, as the proof of (27) is almost identical. Let 7 = Pw(Y) and
7' = Pw(UNY). We write

W(Y,7') = W(Y, Z) - W(Y, By) + W(Y, Bs), (28)
where
By = {z€C: W(Y,z)>0and WU NY,z) <0},
B, = {z€C: W(Y,z) <0and W(UNY,z)>0}.

Now if X, = W(U NY,z2), Wa(z) = > oy W(u, z)? then

X, = Z W(u, z)lyecr
u€eY

and so
E(X.)= ZW(V,2) and Var(X.) < ZWa(z)
m m

Hence, for any & > 0,

> ¢) < () (20)

P
Pr (‘X ~ Pwyy,
g m (¥, 2) mé?

If z € By then X, —(p/m)W (Y, z) < —(p/m)W (Y, z) and so applying (29) with ¢ = pW (Y, z)/m
we get that for each fixed z,

1 mWs(z)
PI(Z S Bl) < W
Thus,
) mWa(z)
E Z W(Y, z)) < E min{ W(Y, z), ———
(ZEBl {z€C: W(Y,z)>0} { pW(Y’ Z) }
< Z mWa(z) (30)

{zeC: W(Y,z)>0} p

By an identical argument we obtain

E(Z W(Y,z)) > — > mWa(z) |

2€B> {zeC: W(Y,z)<0} p

15



Hence, (using the Cauchy-Schwartz inequality),

E(W(Y,2) > W(Y,2) - 3 mW°(z >W(Y,Z) — = ||W||F

zeC
This proves (26) and (27) is proved similarly. ad
We use the lemma with Y = R = Gv). Let 7 = Pw(Y)ifv >0and 7 = Nw(Y) if v < 0, and

let Z' = C (as in Step 9 of the algorithm). From Lemma 2 and the Markov inequality applied
to the non-negative random variable W(Y, Pw(Y)) — W(Y, Pw (U NY)) we see that

Pr <W(Y, Z) -~ W(Y,Z') > 2, /ﬂHWHF) < 1/2,  when v >0,
P

and similarly

Pr (W(Y, Z) - W(Y,2Z') < -2, /@HWHF) < 1/2,  when v < 0.
P

To aid the analysis, we define some events for each execution of the loop of Steps 4-10:

By = {W(R, Pw(R)) > ¢*mn/8}
Ey = {W(R,Nw(R)) < —¢*mn/8}
Es = {W(R, Pw(RNU))> W(R, Pw(R)) — 2v/mn/p||W||r}
By = {W(R,NW(ROU))§W(R,NW(R + 2¢/mn/p||W||r}

Then

v

Pl‘((El A E3) vV (Eg A E4)) Pl‘(El A Eg) + Pl‘("El A E2 A E4)

= Pr(Fs| F1)Pr(F1) + Pr(Es | ~E1L A E2)Pr(—FEy A Es)

> prm)2+ (5 -Pren) /2

= ¢*/32. (31)
for each execution of the Steps 4-10.

The above shows that with sufficient probability, we “see” a pair R, C' for which |W(R C)|
large. We will now argue that with high probability, the estimated value |mnW(R NU,CN
V1)/¢?| and the real one — |W(R,C)| — are close so that we make no mistake. For this, we will
need the definition of two other events.

B = {m” (RNUy, Pw(RNTU)NVL) — (Rpwmy‘ \/ IIWIIF}
q

Eg

{q2 W(RNU;, N\w(RNU)NV;) — (R,NW(ROU))‘Z 7||W||F}.

The lemma below will bound the probability of Ex, Es.

Lemma 3 Suppose Uy, Vi are random subsets of R, C respectively with |Ui| = |Vi| = q. Then,

for any fired X C R and Y C C' we have
Pr(‘W(X,Y) WX NU,YNW) 1/ ||W||F> < — (32)

16



Proof Fix X C R, Y C C and consider the random variable
Z=WXNULY V)= > &y
zeX yeY

where
617;?/ = W(.CL‘, y)leUl 1yEV1 :
Thus for all z,y, E(&: ) = ¢*W(z,y)/mn and hence

2
B(7) = LWEY)
mn
Now
E(Z%) =51+ S2+ S35+ 54
where
q2 2
= — W 4
Sl mn Izy: (I’y)
2
qa(q — 1) /
= 2 7 Wz, y)W

y#y',w

= mnqn_—ll (ZWmY ZWry )
Sy = L(ZWX@/ —ZW(m,y)z)

= m(mq—(ql)_na_l) 2 W W@y

z#z! y#y’

- m(n;f—(ql)_naz— 1) (W(X’Y)z =D W@ Y) =) WXy + Zw(r,y)z) :

Y W(z,Y)’ <nl|W|[j and Y W(X,y)* <m|[W|[.
T Y

Hence,
vax(7) < 2L w2
mn
and so for any ¢ > 0 we have

343
mné?’

Pr((\Z— v W<X,Y>\ > 5||W||F) <
mn

To obtain (32) we put £ = in (33). O

2
(pmn)1/2

Consider an execution of Steps 4-10 i.e. a fixed t,s. This will be considered successful if
(E1 A E3) V (E3 A Ey) occurs at least once and E5 V Eg never occurs. In this case the values of
R, C' passed onto Step 11 will satisfy

[W(R,C)| > mn/8 and |W — W(R, C)| < 3mn/\/p. (34)

17



We see from (31) and Lemma 3 that

4\ 7o .
Pr(Steps 4-10 are successful) > (1 — (1 _ ;_2) > <1 _ 3P7°0)
q

> 1/2.
So the probability that none of the R, C etc. passed to Step 11 satisfy (34) is at most 27%° <
8/(3tg).

We next observe that it follows from Lemma 3 that with probability at least 1 — &/(3to) all
of the estimates W made in Step 11 and W7, W5 made in Steps 12,13 are accurate to within

Vmn/p||W||r < e2mn/10000.

We now consider the accuracy of the estimates p, k in Steps 12,13.

Lemma 4

. 6
Pr(|p — |R|| > ¢'mn/3000) <
680t0
. 6
Pr(|x — |C|| > €*mn/3000) <
680t0

Proof We need only deal with p,x as produced in the first statements of Steps 12,13.
Applying the results of Section 6 of Hoeffding [20] (sampling with replacement) we see that for
any £ >0 ~

Pr(||R| —mp/q'| > ém/q') < 2exp{-26*/q'}.

Putting & = ¢*¢’/3000 we see that

Pr(|| R — mp/q'| > ¢*m/3000) <

680t0 '
Similarly,
Pr(||C| — nr/q'| > €*n/3000) < .
680t0
O
We summarise what we want from Lemma 2, 3 and 4.
Lemma 5 For each fized t, with probability at least 1 — 26/3tq:
o If3S,T with |[W(S,T)| > emn then the algorithm returns Riy1, Cipq with
eZmn
[W(Rit1,Cty1)| > 10 (35)

If the algorithm returns a pair Riy1, Ciy1 then (35) holds.

[W — W (Ryy1, Cor)| < 7000 -

4
€

|Riy1| > %a lp— [Rey]] < 308%‘

4
|Ciq1] > 5, & = [Cry1ll < 5555-

18



O

i, From Lemmas 5 and 4 we observe that with probability at least 1 — § the following holds
throughout the algorithm:

W(Rit1,Ct41) 1 1
W - 10
‘|Rt+1||0t+1| B 1‘ <1
PR — 10
In which case, if
5 W (Ri41,Cry1)
diyy1 = ————2 36
T R [1Cen ] (36)
then ;41 = dyy1 — cit+1 satisfies
160011 < |diga/2- (37)

Finally note that

Y (W=D, j))* — ZW(LJ’V = Yo (W(i,5) = depr = 6e41)” = W(i, j)?)

1% 1€ERy41,j€EC 41
= —|Ripl|Crprld? s + [Rigal|Coga |87y, (38)
< =3|Rugal|Cigaldiy, /4
= —3W(Ri1,Ci41)?/ (4 Rig1l|Cipa )
< —3¢*mn/6400, (39)

which establishes (17).

We now deal with the coefficient length of the decomposition. Arguing from (37) and (38) we
see that

IW — D12 — |W]|7 —|Riy1] [Cegrldigr(digr — 141)

< ~[Rent] [Crpaldiy /3.
Consequently,
1 S
3 DR ICHdT < [ |Al7 (40)
t=1
Our bound on the coefficient length follows from |R;| > m/3 and |Cy| > n/3. O

4.3 Second Algorithm

Proof of Theorem 2. At a general stage, for some ¢ > 0, we will, with sufficently high
probability, have found cut matrices DY) .. .D® guch that W®*) = A — (D(l) + -+ D(t))
satisfies

a2
WOz < (1230 a2, (a1)
F= 192 F

We will prove this by induction on ¢. It is clearly true for t = 0.
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In the following we let W = W) We will describe a procedure which either determines that
[[W]|c < ex/mn]||A]|r or finds a subset Y341 of R and a subset Z;41 of C such that

|W(Pw (Zi41), Pw(Yey1))| > ev/mnl|A][p/4. (42)

The idea of the algorithm is as follows: Suppose W (S, T) is large and positive for some S, T.
We choose random p-sets U C R,V C C. By enumerating all subsets of V we will eventually,
(without knowing it) come across V! = TNV. Let S’ = Pw(V'). By enumerating all subsets of
U we will come across U' = UNS’'. Let T" = Pw(U'). We show that W(S’,T") is likely to be
large. This is Steps 5-7. Step 8 checks the best looking pair U’, V' found in Steps 5-7. Steps 9
and 10 boost the sizes of our guesses S, T" for R¢11,Cty1. This is needed to prove a bound on
the coefficient length of the decomposition.

The constants in the algorithm are:

o 7o = [logy(3t0/0)]
e p= [1056_2 + 2log, 1/6—|.

o g = 30p2?.
Second algorithm to find an approximation to A

1 Fort=0,1,...,tc — 1 do:

2 Set W = A — (DM + D@ 4 . . DW).
3 Forr=1,2,...,r9 do

4 Independently choose random subsets U, U; C R, V,V; C C with |U| = |[V|=1p
and |U1| = |V1| =q.

5 ForalU' CUand V' CV
6 Compute an estimate W = mnW (Pw (V)N Uy, Pw(U')N V1) /q? of

W(Pw (V'), Pw(U"))
7 Search for R;y1,Ciy1 giving a large negative value of W. Analogous to 5-6
but with Pw replaced by Nw etc.

8 Let U', V'R — Pw(V'),C = Pw(U') (or R — Nw(V'),C = Nw(U")) refer
to the largest value of |I/~V| found in the previous execution of loop 5-7.
Choose new random values for U7, V; and recompute Ww.

If |W| < 3e/mn||A||F/4 then go to the next 7, (unless r = g, in which case
go to Step 12) otherwise

Compute the following estimates p, k for |Pw (V')| |Pw(U")| respectively:
p—m{uelU:W(uV')>0}/pand k —nl[{v e V: WU’ v) > 0}|/p.
[Remark: we now boost the sizes of R, C' — needed to prove our bound on the
coefficient length of the decomposition).]

If W < 0 then go to 11, otherwise

9 If p > 2m/5 go to 10, otherwise
Estimate W(R, (~7) by W1 = mnW (U, cn Vi)/q?.

If W1 > 3ey/mn||Al|r/8 then let R=R,W =W, and p—m,
otherwise let R = R\ Pw(V'"), W= mnW (U, Vi) — Wy and p = m — p.
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10 Tf k > 2n/5 go to the next ¢, otherwise
Estimate W(R, C) by Wy = mnW (RN Uy, V1)/q>.
If Wy > 3ey/mn||A||r/16 then C — C, W — Wy and & — n,
otherwise C = C\ Pw(U'), W —mnW(U;, V1) — W, and £ < n — k.
Set Rf+1 — R,CH_l — C, dt+1 = W/(ph) and

D(H_l) — CUt(RH_l, Ct+1~dt+1)

and go to the next ¢, unless ¢ = ¢y in which case FAIL.
11 Similar to 9,10.

12 Terminate with D) 4+ D® 4 . D) as the approximation to A.
The proof of correctness is based on the following sequence of lemmas:

Lemma 6 Suppose there exist S C R, T C C such that [W(S,T)| > ey/mn||A||p. Then with
probability at least 3/4 we have

WS, )| > [W(S,T)| — ev/mml|Allp/100 (43)
where S' = Pw (T NV) and T' = Pw(S'NU) or 8" = Nw(TNV) and T' = Nw(S' N U).

Proof Let S, T maximise W(S,T'). Then
Evv(W(S,T)-W(S", 7)) = Ev(W(S,T) - W(S", 7))+ Ev(Eg(W(S", T) - W(S", T") | V)).
Tt follows from Lemma 2 and (41) that
Ev(W(S,T)-W(S',T)) < +/mn/p||Allp,

Ey(W(S" T) - W(S' T) | V) < mn/pl|Allr,

and so
Evv(W(S,T) - W(S', T")) < 2/mn/p||Allr.

Now W(S,T) — W(S’",T") > 0 and so by the Markov inequality

Pr(W(S,T) - W(S",T") > 16/mn/p||A||r) < 1/8.
A similar argument deals with large negative values of W(S,T). |

We observe next that at some time during the enumeration of the subsets of U,V we will have
U'=UnS and V! = VNT. We say that the loop Steps 5-7 is successful if (43) holds for these

values U/ = U NS,V =V NT and
mn
</ lIAllr
P

for all X = Pw(U"),Y = Pw(V’) and for all X = Nw(U’),Y = Nw(V’). Applying Lemmas 3
and 6 we see that

W(X,Y) - %W(X NULY NV

. 3PP
Pr(Steps 57 are successful) > % <1 _3p >
q
> 1/2.

So the probability that none of the R, C etc. passed to Step 8 satisfy (43) is at most 2770 <

8/(3t0).
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We next observe that it follows from Lemma 3 that with probability at least 1 — /3 all of the
new estimates W made in Step 8 and all of the estimates W, Ws made in Steps 9,10,11 are

accurate to within \/mn/p||A||r < ey/mn||Al|r/100.

So with probability at least 1 — 8/to the outputs Riy1, Ciq1, p, £ satisfy
IW(Ri41,Ceqr)| > ev/mnl|A][p/8

|Rt‘|'1|7 |Ct+1| Z 1/3 (44)
m n
p K
— =1, | =—-1] < .03
‘|Rt+1| ‘ ‘|Ct+1| ‘ -

We deduce that (37) holds for diy1 as defined in (36).

i, From which it follows that
D (W =D\, ) =Y W(i,j)’ < —3€*||A||7/192.
i,j 1%

This verifies the inductive hypothesis (41).

The bound on the coefficient length of the decomposition is proved as in the first algorithm. In
particular, (40) still holds. O

4.4 Maximising |[W(S,T)| approximately

We can easily modify the second algorithm to find a pair S, T that approximately maximises

(W(S,T)|.

Theorem 8 Let A,¢€,6 be as in Theorem 2. Then with probability at least 1 — 6 we can in time
2001/*) /82 find S C R, T C C such that

A(S,T)| > |A(X,Y)| - o/mnl|Allr VX CRYCC.

Proof We simply execute Steps 3-11 once (i.e. take tg = 1). If max|A(X,Y)| = amn,a > ¢
then with probability at least 1 — § we can find S, T with |A(S,T)| > (a — €)y/mn]||A||r - in
our proof we show that we make an additive error of at most ex/mn||A||p.

5 Partitions

As previously mentioned, an earlier paper [15], was concerned with the algorithmic uses of
a certain partition of the vertex sets of graphs and hypergraphs. We now show how such a
partition can be recovered quickly from our matrix decomposition.

Let G = (V, E) be a graph with n vertices and let A be its adjacency matrix. For disjoint sets
A, B CV let e(A, B) denote the number of edges between A and B. The density d(A, B) is
defined by

e(A, B)

d(A,B) = .

|A]|B|
We let d(A, A) = e(A,A)/(lél). A disjoint pair A, B C V is said to be € — regular if for every
X C A with |X| > ¢|A| and Y C B with |Y| > ¢|B|, we have

d(X,Y) - d(A, B)| < e.

22



5.1 Pseudo-Regular Partitions

Let P = Vi,..., Vs be a partition of V. Let d;; = d(V;,V;). For X C V and I C K =
{1,2,...  k} welet X7 = J;c; Xi where X; = X NV;. For disjoint subsets S,T of V let

Ap(S,T)=e(S,T) =D D dilSilITl.
€K jeK
The term d; ;|S;||7;| would be (approximately) e(S;,T;) if the pair V;, V; were e-regular. So
Ap(S,T) measures the total deviation from regularity.

A partition P is e-pseudo-regular if
|Ap(S,T)| < en? for all disjoint subsets S, T of V.

Notice that we do not insist on the subsets being of (almost) the same size. This can easily be
enforced, at a small extra cost, see Section 5.1.1 below.

The reader will observe that if P is e-pseudo-regular then for every disjoint pair S, 7 C V, e(S,T)
is almost determined by the values |S;|, |Tj|. Thus we can for example approximately solve Max-
Cut by choosing values for |S;, |T;| which approximately maximise ) ;¢ > "o x di ;15 [T] +
Y iex di,i|Si|Ti|. This was the approach taken in [15] viz. compute an e-pseudo-regular partition
and then proceed as indicated.

We show next how we can obtain such a partition from our matrix decomposition algorithms.

For a partition @ = Wy, Ws, ..., W, we define the n x n matrix Ag by Ag(p,q) = d;; for
(p,q) € Wi x W; for (p,q) € W; x W;. Thus for disjoint S,T

A(S,T) = e(ST),
Ag(S,T) = Y ) dijlSilITyl,
i€EK jEK
and so
A(S,T)—Ag(S,T)=Ag(S,T). (45)

S C V is said to be compatible with Q if S = Uie] W; for some I C K. A matrix M is said to
be compatible with Q if M(p, q) is constant over W; x W; for all 1,j € K.

Lemma 7 (a) Let partition @ = Wi, W, ... Wy be a refinement of partition P. If M is
compatible with P then

sup |A(S,T) — Ag(S,T)| <2 sup |A(S.T)—M(S,T)|.
5, TCvV STCV

(b)
[|A = Apl||lr < [|A - M]||p.

Proof (a) Let m; ; denote the common value of M(p, q) for (p,q) € W; x W;. Then for
disjoint S, T C V,

[AQ(S,T) = M(S, T)| = | Y (d(Wi, Wy) = mi j)|S N Wil [T N W1 (46)

i,j
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Keeping S fixed we see that the extremal values of the RHS of (46) are obtained for 7" which are
compatible with Q. Indeed to maximise the sum we would put TNW; = W; if >~ . (d(W;, W;) —
m; ;)|SNW;| > 0 and TNW; = 0 otherwise. Similarly, for a fixed 7" we should choose S which is
compatible with @. But when S, T  are both compatible with @ we find that Ag(S,7) = A(S,T)
and so

sup |[Ag(S,T) —M(S,T)| < sup [A(S,T)—M(S,T)|

S, TCV S, TCV
sSNT=0 sSNT=0

and (a) follows from

sup |A(S,T) — Ag(S.T)| < sup [A(S,T) ~ M(S,T)|+ sup [Ag(S,T)~ M(S,T)|.
sy szey STV

(b) Now let m; ; denote the common value of M(p, ¢) for (p,q) € Vi x V;. Then

Yo D (Apg) —mig) — (Alpg) — d(Vi, V))))

4,J (p,q)EVixV;

1A =M%~ [|A - Ap|l7

= D IWillVil(mij = d(Vi, Vj))? (47)
i,J
> 0.
O
Returning to the problem of computing an e-pseudo-regular partition, let DM DO . D)
be cut matrices as defined in (3). Let Vi, Va, ..., Vi, k < 4° be the coarsest partition of V' into

subsets such that each R; is the union of subsets of the partition. We obtain precisely the same
partition if we use the Cj.

Let D =DM 4+ D@ 4 ... 4 D) and note that D is compatible with P.
We claim that:

Partition Vi, Vs, ...V} is 2e-pseudo-regular. (48)
Applying Lemma 7(a) with @ =P and M = D we see that

sup |[Ap(S,T)| = sup |[A(S,T)—Ap(S,T)| by (45)
She—o S

< 2 sup |}&0Sa73 _'I)(Saju|
s, TCV
sSNT=0
= 2 sup |[W(S,T)|
s, TCV
sSNT=0

2en?,

IN

and (48) follows.

5.1.1 Equitable Partitions

Let a partition P = V4, Va, ..., Vi of V' be equitable if ||V;| — |V;|| <1 for all 4, j. The decompo-
sition in Szemerédi’s theorem can be assumed to be equitable (see Theorem 9 below). We show
that equitability can be achieved at a small extra cost.

After finding an e-pseudo-regular partition P as described above we take each V; and partition
it into V; j, 1 < j < 's; where |V; j| = |en/(10k)] for 1 < j < s; and |Vj,,| < en/(10k) to obtain
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a partition @ which is a refinement of P. Applying (48) and Lemma 7(a) with M = Ap we see
that
sup |Ag(S,T)| <2 sup |Ap(S,T)| < 2en?.

S,7C

S, TCV TCV
sSNT=0 -

Now if R = UiEK Vi s, then |R| < en/10 and so if we equitably spread the vertices in R over the

other subsets of @ we will obtain an equitable partition @', say, with sup s,rcv |Ag/(S,T)| <
snT=0

Jen?.

In some circumstances we want k£ to be at least a certain amount kq. In this case we simply

replace |en/k]| by min{|en/k], [n/ko]}.

Finally note that if we want to partition a digraph (or bipartite graph) in an analogous way,
then we can dispense with the symmetric construction (3) and use Theorem 2 directly.

5.2 Szemerédi’s partition

Theorem 9 (Szemerédi’s Regularity Lemma) For every ¢ > 0 and integer m > 0 there
are integers P(e, m), Q(e, m) with the following property: for every graph G = (V, E) with n >
P(e,m) vertices there is a partition of V into k classes Vi, ..., Vy such that

e m<k<Q(e,m).

o P is equitable.

o All but at most ek? of the pairs (V;,V;) are e-regular.

The partition alluded to in the theorem will be referred to as an € — RL partition.

As mentioned previously, Szemerédi’s proof is non-constructive but Alon et al show how to
construct an e-RL partition (with different values of P, Q) in time O(a1(e)M(n)). where M(n)
is the time needed to multiply two n x n 0-1 matrices.

We now give an alternative proof to [1] of

Theorem 10 An e-RI partition is computable in polynomial time. (We can in fact produce an
implicit description in time dependend only on ).

We start with an arbitrary equitable partition P = V1, V5, ... Vi e.g. P = V. We will show that
if P is not e-RL then we can find a new equitable partition P’ with at most k?4%%¢~* subsets
such that

A = Apil[3 < [|A — A3 — *n?/200. (49)

The process stops after at most 200/¢3 iterations.

Let I = {(i,j) : V;,V; is e-irregular}. Suppose |I| > ek?. For each (i,j) € I we consider the
corresponding V; x V; submatrix A; ; of A — Ap. We follow (3) and using the second decompo-
sition algorithm construct matrices DE}]») = CUT(R;;,Ci;, 6 ;) and Dg? = CUT(C;;, Rij, 6 ;)
such that say,

1A — (D + D) /2112 < [|As 4113 — E(n/k)2/100. (50)
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To verify (50) we introduce the notation: X = R; ; x C;j and Y = C;; X Ry j, Ai j(p,q) = ap g
and § = é; ;. The LHS of (49) can then be written as

(O‘z,q - (ap,q - %6)2) + E (az,q - (ap,q - 5)2)

(p,)E(X\Y)U(Y\X) (p,Q)EXNY
=2 > (6564 D (205,60 —687)

(p,9)E(X\Y) (p,g)eXNY

FIX\Y]

=2 [ e N
E ap,q6 7 X NY|
(p,9)EX
> 6% X]|

3 2
>
> e |n/k]

as in the proof of Theorem 2.

Let D = %Z(i,j)el Zle DS? and let @ = Wy, W5, ..., W, be the coarsest partition such that
each R;; and Cj; are the union of members of Q. For an arbitrary V x V matrix M we let
Mo (p, q) = M(W;, W;)/(|1W;||W;]) for (p, q) € W; x W; — an extension of the previous definition.
We observe that

(i) 1A — Ap — DI} < [|A — A} — ck? [en/k|?/100.

(i) [[A - Agllr =[l(A—Ap) — (A —Ap)ollr < [|[A—Ap —D||r.

(iii) ¢ < k4.

Inequality (i) follows from the fact that in every irregular pair V;,V;, we find S C V;, T C
Vi, IS|,|T| > ev, v = |n/k] such that A(S,T) > ev?/8. Subtraction of the corresponding cut
matrices reduces the Frobenius norm by at least 3¢?v?/192. Inequality (ii) follows from Lemma

7(b). Inequality (iii) follows from the fact that each V; is cut into at most 4 pieces by this
construction.

@ may not be equitable and so as in Section 5.1.1 we first split each W; into sets W;; of
size p = |On/f], 0 = €* and put a total < On elements into a remainder set R. Consider a
new partition Q' = X1, Xs,..., X, consisting of the sets W; ; plus a singleton subset for each
member of R. It follows from Lemma 7 that

I[A—Agllr <[|A—Agllr.

We then transform @’ into an equitable partition P’ by spreading R equitably over the large
sets of @', We claim that for sufficiently small e,

A — Ap||7 < [|A = Ag/l[F + 2607, (51)
Indeed from (47) we have, where m; ; is the common value of Ap:/(p,q) for (p,q) € X; x Xj,
A = Api |7 — [[A = Agr||F =D 1X] X |(mi j — d(Xi, X;))° (52)
i,j
There are three types of term in (52):

o |Xi|=1X;]=1: contribution < |R|? < §?n?.
|X;| =1,|Xj| = p: contribution < |R|n < 6n?.
X = |X;|=p: contribution < (n/p)?u?(30)% < 96%n2.
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To explain the third assertion: |m;; — d(X;, X;)| is the absolute change in density after adding
< O vertices to large X; and X;. This is at most 36.

This proves (51) and hence (49).

Finally note that if we want to partition a digraph (or bipartite graph) in an analogous way,
then just as in the previous section, we can dispense with the symmetric construction and use
Theorem 2 directly.

6 Multidimensional Extensions

In this section, we consider higher dimensional matrices. We apply our decompositions recur-
sively. Only the notation presents any real difficulty. Consequently we will be content to sketch
the proofs. Suppose r > 3 and X, Xs,...X, are finite sets. An r-dimensional matrix M on
X7 x Xy x...X, is amap

M : X1 XX2~~~><X,« — R.

IfS; C X;fori=1,2,...r, and d is a real number the matrix M satisfying

| d foree S; xSy xS,
M(e) = { 0 otherwise

1s called a cut matrix and is denoted
M = CUT(51, S2,...5;d).

We will show that we can usefully approximate any r—dimensional matrix as the sum of a small
number of cut matrices.

We need to extend some of the notation from 2-dimensional matrices to r-dimensional ones. For
S;i € X;,t=1,2,...r, we define

M(S1,Ss,...,S) = > M(e).

e€S1 X Sax xS,

We then let
M|l = max{|A(S1,S52,...,5)]: S CX;fori=1,2,...,r}.

(5

e€EX 1 X XoX XX,

|IM][r

A cut decomposition of an r-dimensional matrix A has the same form as before, (2). The notions
of width, coefficient length and error are defined as in the 2-dimensional case.

We wish to extend both of our decomposition algorithms. Let A = [];_, |X;|. In the case of the
First Algorithm we assume ||A||cc < 1 and define p = A. For the Second Algorithm we define
p=AVZ|Allp.

Theorem 11 Suppose A is an r—dimensional matriz on X1 X Xg X --- x X,.. We assume
that v > 3 is fized. Suppose ¢,6 are reals in [0,1]. We can with probability at least 1 — 6
find a cut decomposition of error at most ep. FEither (First Algorithm) the width is O(e*=47),
the runnming time 1s O(r0(1)6_0(1°g2 7)6_1) and the coefficient length is at most C" for some
absolute constant C' > 0, or (Second Algorithm) the width is O(¢*=2?"), the running time is

O(rO(1) =08, ’")26(1/52)6_2) and the coefficient length is at most C"||A||%/A.
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Proof Let B be the following (2-dimensional) matrix with rows indexed by Y1 = X7 x - -+ x
Xi, 7 = |r/2] and columns indexed by Y5 = Xpy1 x - x X, If i = (21,...,27) € Y7 and
J=(xp41,...,2,) € Yy then B(4,j) = A(x1,23,...,2,). Applying a decomposition algorithm
we obtain

B=DW 4D ...+ DG LW

where for 1 <t < sq,
DY) = CUT(Ry, Cy, dy),

[W]le < cp/2 and Y d? < 27[|A|[3/A. (53)

t=1
Each R; defines an #-dimensional 0-1 matrix R(*) where R(t)(ml, cooyxp) = Viff (2, ..., 28) €
R;. C® is defined similarly. Assume inductively that we can further decompose
R® = DO ...y DOs) 4w
c — ptl ... LDt L wt)

Here

Dtu)  — CUT(Riwn, .- Rius diw) 1<t u< sy,
DY = CUT(Riait1,- - Reapr dia) L<tu<sy,

where

)

X; 1<i<
Xiyi 1

1<r—rp

IA

C
; C

IN

bl

IWOlle < e [T 1] and [WOlle < e [T 1%l

i=1 i=r+1
and e; = e/([(sé/z) for some suitably large constant K > 0.

It follows that we can write

so 51 81

A= Z Z Z CUT(Riwr, - Rewi, Riaigt, s Rear, diva) + Wi

t=1lu=14a=1

Here, for 1 <t <sp,1 <u<sy,1<u<s,

andforS:T1><T2,T1251><~~~><S,:,T2:S,:+1><~~-><Sr,

W, (S) = W(S) + Z d;(WO(THYWO(Ty) + WO(T)CO(Ty) + RO(T )W (Ty)).
Hence

IWille < [[Wllc +3cA) " |dif

t=1

o 1/2
||Wllc + 3e2 A5y’ (E d) :
t=1

IN
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In the case of the Second Algorithm we see that our bound on the coefficient length of the
decomposition implies

IWllc + 18easy*p
ep/2 + 18628(1)/2/3
ep. (54)

We see that the coefficient length, (for the second algorithm), of our decomposition is

) s1 2 §1
S (o) (Set)
t=1 u=1 u=1

Assume inductively, that for some L > 0 we have

IWille

IN N IA

2

s1 51
Y di, < L¥land » di, < L2707
u=1 a=1

Then the coefficient length of the decomposition is at most

27|| Al

L2r—2zdt2 S L2r—2 X ,

t=1
(See (53). Putting C' = /27 yields our bound on the coefficient length for the second algorithm.
The analysis for the First Algorithm is similar.

Note finally that the claimed running times and sizes of the partitions can be verified by induc-
tion. a

6.1 Hypergraph Partitions

We note next that the the matrix decomposition described above can be used to partition
hypergraphs as we did for graphs in Section 5. See Chung [10], Frankl and Ro6dl [14] and Promel
and Steger [25] for non-constructive versions of Szemerédi’s lemma in hypergraphs.

Let H = (V, E) be an r-uniform hypergraph, i.e. each e € F is of size r. For disjoint sets
A1, Agy .o Ay we let e(Aq, Ag, ..., Ay) denote the number of edges e = {v1,vq,...,v,} such
that v; € A;, 1 < ¢ < r. The density

(A1:A2a"' aAr)

|Ax|[Ag] - - [ A

d(Ar, A,y ... A) =&

A partition P = V1, Vs, ..., V; of V is said to be e-pseudo-regular if for all disjoint sets
S1,59,...,5- CV we have

r

(S, 82, S) = > d(Vi, Vig, . Vi) [[ Vi N Sif| < en”

21,82,... ,0r t=1

This notion generalises what we have already seen in Section 5.1 for the case » = 2. Assuming
r 1s fixed, an e-pseudo-regular partition can be computed using Theorem 11 in an analogous
manner to that used for the case r = 2. (Details are left to the reader).

Similarly, we can compute an e-RL partition generalising the results of Section 5.2. Here, given
€, m we compute a partition P = V1, Vs, ...,V of V such that
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e m<k<Qr(e,m).
e P is equitable.
o All but ek” of the r-tples (V;

i1y Vig -. ., Vi) are e-regular.

Here (V;,, Vi Vi,) is e-regular if for all A;, CV;,, [Ai,| > €|Vi, [, 1 <t <7,

ig -0y Vig

ld(As,, Agy o A ) —d(Vi, Vi, . Vi) < e

219

Here again, no new ideas are needed to extend the case r = 2.

7 Max-SNP Problems

Let MAX-r-FUNCTION-SAT be the problem where the input consists of m Boolean functions
fi,f2, .. fm in n variables - V = {uy, usg, ... u,}, but where each f; depends on only r variables
(r fixed). The aim is to assign truth values to the n variables, so as to satisfy as many of the f; as
possible. Tt is well-known [23] that a Max-SNP problem can be viewed as a MAX-r-FUNCTTON-
SAT problem for a fixed r.

We may formulate the MAX-r-FUNCTION-SAT problem as follows: There are at most £ = 22
possible Boolean functions of r variables; we number them 1,2, .. .£. We will have £ r-dimensional
matrices A, A A® on V x V x - x V, with 0-1 entries to represent the data of the
problem. The matrix A®) will have a 1 in the (71,12, ...1,) entry iff there is an f; among the
given functions fi, fa,... fm which has as its arguments u;,, u;,,...u;, and is the pth function
of these arguments; for convenience, we then say that the type of this function f; is p.

Suppose for the moment we have in mind a fixed truth assignment T : V — {0, 1}. We will also
denote by T the set {u: T(u) = 1}.

We may express each function in Disjunctive Normal Form. So based only on the type p of
a function f;, we can determine a subset @, of {0,1}" such that fi(u;1,u;2,...u;r) is TRUE
under T iff

(T(ui 1), T(ui2), - - T(uir)) € @y

For each r-tuple of variables, (u;,, %;y, ... u;.) =€ (say), we let T'(e) denote the r-tuple
(T'(usy ), T(uiy), ... T(u;,)). Then we have

{i:fi=1under T} =" > [{e: AP(e) = 1; T(e) = a}|. (55)
P a€Qy
For a € {0,1}", and 1 < g < r, define
Sela) ={veV: T(v)=a,}.
Let
S(a) = Si(a) x Sa(a) x -+ x Sp(a).
Then,

SN He: AP(e)=1; T(e) =a}| =D > AlPX(S (56)

P a€Qy P a€Qp

We will approximately maximize the right hand side of (56) and so approximately maximise our
actual objective, (55).
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To this end, we find r-dimensional Cut matrices {Dgp) s p=12, Ot =1,2,...s} where
s = 0e?~%") and such that

JA® — (D + DY 4 £ D)o < en” /(8 x 27727), (57)

where Dgp) = Cut(RE{?, Rg{?z), . Rﬁp,?, d(p)).

Now,
33 AV = 30 3 3D s(@) + A
P a€Q, P agQ, t=1
where
|A1] < 2% 27en"/(827°27) = en" /8.
Now,
5 SpSLLTEIED 3) 9 3T | (CXCLET
P a€Q, t=1 P a€eQ, t=1
Let

RPN Sy(a) = fP)(a)  for1<t<s;1<p<t;l1<q<r;ac{01}.

Let K = C", our bound on the coefficient length of the decomposition, so that |d§p)| < K. Let

v =en/(8Kst4") and
(p)
44)0) = V o )J v 59

v

Note that f(p)( ) < n, and so, for each ¢, p,a

|H (p) Hg(p) ) < n" 1o,
Then we have that

3 Zd(’”Hw JARY) =2+ > Y Zd(”)Hggpq), (59)

P a€qQ, t=1 P a€Q, t=1

where [A] < s4"n" 1K < en” /8.

Thus the number of functions f; satisfied by our assignment 7" is almost determined by the values
ggpq)( ). We consider how to find the “best” set of values.

Now, each g(p)( ) has O(e'~?") possible values, so the total number of sets of values for all
ggpq)( )is O ((1/61—21«)0(52—“))’ (r is constant).

As in previous algorithms we enumerate all these sets of values. We argue that for each set of
. . . 2—-2r .

such values, we can check (approximately) by a linear program in O((¢'=2")2(¢™™)) variables

if there 1s some set of feasible f(p)( ) (feasible means that these values can be attained by for

some truth assignment T') whose “round down” is the enumerated g(p)(a). To this end, let P

be the coarsest partition of V (with at most 2% parts in it) such that each Ri?q) is the union of
some sets in P. We explicitly construct P. For each P € P, let zp = |T'N P|; these are to be
determined.
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It is easy to see that all the f(p)( ) can be expressed as sums of these zp. So, given a set of
values of g( )( ), we may write the following Integer Program with variables zp. (Note that if
the g(p)( ) arise from some assignment 7" via (58) then {zp = |P N T|} will be feasible):

0 < < |P] YPeP

ggpq)( ) < Z zp < ggpq)( )+v fort,p,q,awitha, =1
Pl

ggpq)( ) < Z (|JP|—zp) < ggpq)( )+v fort,p,q,awith a; = 0.
PCR{)

Consider the Linear Programming relaxation of this Integer Program. There are two possibilities:
(a) it is infeasible in which case the Integer Program is also infeasible; (b) there is a feasible
solution zp to the Linear Program. We round down each zp to the nearest integer (below it)
to get yp. Then, we have for each ¢,p, ¢, a, with S,(a) = T, the upper bound on ZPCRY‘; zp is

still satisfied; and also we have

Z yp > g(P) ) 23

PCR{)
Similary for ¢, p, ¢, a with S;(a) = V \ T, we have

ST (1Pl —yp) < gP)a) + v+ 27,
PgRif‘;

So for any 7™ with |7*N P| = yp for all P € P (such T*’s obviously exist since P is a partition),
we have that

IRP) 11 S, (a)| - g7 (a)| < v+ 277 < 20,

for n high enough, since 2%/ = 20(*7%7),

This implies that (arguing as in (59), for each feasible set of g(p)( ), we find a T with the
difference between the actual number of functions satisfied by T* and the approximate value
given by g(p)(a) is at most en” /2, so it suffices to compute the best g(p)( ) among the enumerated
ones which is found to be (approximately) feasible by the above.

8 Continuous Case

We finally give an existence result where m and n are infinite. Let f : [0,1]> — R be a (Lebesgue)
measurable function and assume that

1= [ S dedy <

)

For measurable S, 7' C [0, 1] we let

F(S,T) = f(z,y)dzdy.
SxT

Then define
I[fllc = sup [f(S,T)].
ST

32



A function ¢ is a cut function if there exist measurable S, T" and real d such that

[ d (z,y)eSXT,
g(x,y) = { 0 otherwise.

We will use the notation ¢ = CUT(S,T,d).

Theorem 12 There exist cut functions fi, fa, ..., fs, s < 1/¢% such that if

wi=f—(h+fo+-+Ff)

then
llwslle < €| f]l2-
Proof Assume inductively that we have found cut functions
fi = CUT(S;,Tj,dj) 0<j<t (fo=0),
such that

w5 < (1= D)]If]]5-

(60)

Either (60) holds (with s = t) or there exist S,7" C [0, 1] such that |w:(S,T)| > €||f]]2. Let
Si41 =8, Tiy1 =T and d = digy1 = we (S, T)/(|S||T]). (]S] denotes the measure of S). Then

[lwiga |13 =[]

[ (o) = a7 = wi(a, g dody
SxT
S| [ja?
wt(S,T)2
ST
<~k

A

The theorem follows.

Acknowledgement: We thank two anonymous referees for their constructive comments.
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