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Abstract

We consider a new model for computing with uncertainty. It is desired to compute
a function f(Xy,...,X,) where Xy,..., X, are unknown, but guaranteed to lie in
specified intervals Iy,...,1,. It is possible to query the precise value of any X; at a
cost ¢;. The goal is to pin down the value of f to within a precision 4 at a minimum
possible cost. We focus on the selection function f which returns the value of the kth
smallest argument. We present optimal offline and online algorithms for this problem.

1 Introduction

Consider the following model for computing with uncertainty. We wish to compute a function
f(X1,...,X,) over n real-valued arguments. The values of the variables X, ..., X, are not
known in advance; however, we are provided with real intervals [,..., [, along with a
guarantee that for each j, X; € [;. Furthermore, it is possible to query the true value z;
of each X; at a cost ¢;. The goal is to pin down the value of f into an interval of size
0 > 0. Thus, we are faced with the following optimization problem: Given a function f,
precision parameter §, real intervals I, ..., 1,, and query costs ¢y, ..., c,, pin down the value
of [ to an interval of size 6 using a sel of queries of minimum total cost. Note that there
are two natural versions of this problem: in the online version, the sequence of queries is
chosen adaptively in that each successive query is answered before the next one is chosen;
and, the offline version, where the entire set of queries must be specified completely before
the answers are provided and it must be guaranteed that f can be pinned down as desired
regardless of the results of the queries.
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This model is motivated by the work of Olston and Widom [4] on query processing
over replicated databases, where local cached copies of databases are used to support quick
processing of queries at client sites. There is a master copy of the data where all the updates
to the database are maintained. The frequency of updates makes it infeasible to maintain
consistency between the cached copies and the master copy, and the data values in the cache
are likely to become stale and drift from the master values. However, the cached copies store
for each data value an interval that is guaranteed to contain the master value. In processing
an aggregation query at a client cache, it is desired to compute a function f defined over
the data values to within a specified precision 4. For each data value Xj, it is possible to
query the master copy for the exact value at a cost ¢;, rather than using the interval [; at
the cached copy. The goal then is to compute the result of an aggregation query to within
the desired precision at minimum possible cost. Systems considerations sometimes make it
desirable to perform all queries to the master copy en masse, motivating the offline version
of the problem.

Olston and Widom [4] considered functions f which are simple aggregation functions,
including:

SUM(f(X1,...,X,) = > X;);

i=1n
MIN(f(Xy,..., X)) = m}an); and,
i=ln
MAX(f(X1,...,X,) = m%XX]').
i=l,n

It was observed that the SUM problem is isomorphic to the knapsack problem [2]: Consider
the set of X;’s that are not queried; clearly, the sum of the corresponding interval sizes must
be at most § and the objective function is equivalent to maximizing the corresponding costs.
The case of the selection function, i.e., where the function f returns the value of its kth
smallest argument, and particularly the median, was left open.

In this paper, we resolve the complexity of the problem of computing the median (and, in
general, the kth smallest element) under the model of computing with uncertainty, in both
the offline and the online settings. We begin by expressing the offline selection problem in
terms of an integer linear program (Section 3). Not only is this integer program’s structure
critical to the development of our offline algorithms, but it also helps provide a useful lower
bound for the online selection problem. Based on these insights, we provide a polynomial-
time algorithm for the offline case with unit costs and a general offline algorithm with
running time exponential in k (Section 4). Then we apply this tool to the development of
an optimal online algorithm and provide a tight relationship between the performance of
the optimal online and offline algorithms (Section 5). We extend our results to obtaining a
polynomial-time algorithm for the general offline case based on the use of linear programming
(Section 6). We also present a simple approximation algorithm that does not rely on linear
programming. Finally, we define a class of problems called interval problems and show that
this 1s equivalent to the offline median problem, and includes weighted bipartite matching
as a special case (Section 7). It also turns out that our offline selection problem can be
expressed as a min-cost network flow problem (Section 7). Finally we demonstrate that a
mild generalization of our selection problem is NP-hard.



A preliminary version of this paper has appeared as an extended abstract in a conference
proceedings [1].

2 Preliminaries

An instance of the selection problem consists of n intervals Iy, I, ..., I,, an associated real
cost ¢; > 0 for each interval I; = [I(1;),r(1;)], an integer 1 < k < [Z], and a value ¢ > 0.
Each interval [; has an unknown point p;. The aim is to estimate the value of the kth
smallest p; with precision d. An algorithm can query an interval /;, paying cost ¢;, and
obtain the point p;. The interval I; is then replaced with the interval I} = [p;, p;]. At any
point in time, for the current intervals [;, the £th smallest point can be pinned down into

an interval [/, r]:

Lemma 1 Given the intervals I;, the kth smallest point must lie in the interval [I,r], where

[ is the kth smallest I[(1;), and r is the (n — k + 1)th largest v(1;).

Note that this is the smallest interval to which the kth smallest point can be pinned, in
absence of any other information.

When the algorithm terminates, we must have r — [ < §. We seek an algorithm that
minimizes the worst-case total cost to achieve this bound. In the unit-cost case, all ¢; =1,
and the aim is to minimize the number of intervals queried. Two special cases of interest
seek the smallest element, with & = 1, or the median of the elements, with n odd and
k = [5]. The special case where k& = 1 has been addressed in [4] and turns out to have
linear complexity. There are two variants of the problem we are interested in. In the online
version of the problem, that was stated above, we can use the points returned by previous
queries to decide which interval to query next. We are also interested in the offline problem,
where the algorithm must decide which intervals to query at the same time, and guarantee
that regardless of the points obtained in these queries, the estimate [{, r] will have r — [ < 4.

3 An Integer Programming Formulation

We shall express the offline problem as an integer linear program. The structure of this
integer program is critical to the development of our algorithms; also, we obtain from the
constraints of this integer program a lower bound on the worst-case online cost. The integer
program has a variable x; € {0,1} that expresses whether the interval [; is queried. The
aim is then to minimize )" ¢;z;. To describe the constraints, we introduce some terminology.
Consider an interval O = [[(0),r(0)] of size |O] = r(0) —(O) > 4. Let a be the number
of I; with I(1;) < I(O), and let b be the number of [; with r(I;) > r(0). If @ > k and
b>n—k+1, then we say that O is an obstruction. We shall show that, for all obstructions
O, the offline algorithm must satisfy >~ z; > a + b — n, where the sum is over the z; such
that I; contains 0. That is, at least a + b — n intervals containing O must be queried in
order to guarantee the bound § on the final estimate.

To obtain a finite number of constraints, we introduce some additional terminology. A
proper obslruction is an obstruction O such that for some input intervals [;, [;;, we have



1(0) =1({;) and r(O) = r(I;;). A minimal proper obstruction is a proper obstruction that
does not contain any other proper obstructions. The integer program is then to minimize
> ¢z, with z; € {0,1}, subject to the constraints, for each minimal proper obstruction O;,
that 3~ x; > a; + b; — n. where the sum is over the z; such that I; contains O;. Notice that
there are at most k& minimal proper obstructions, since 7(O;) must be one of the k smallest
T(Ij).

It will sometimes be convenient, for an obstruction O, to write a4+b—n = d—e, where d is
the number of I; containing O, and e is the number of [; inside O, that is, with I(/;) > [(O)
and r(/;) < r(O). To see why this equality holds, write it as n = a + b — d + ¢; that is, the
n intervals can be counted as a intervals with I(1;) < I(O), b intervals with r(1;) > r(O),
subtracting the d intervals that satisfy both conditions, and adding the e intervals that
satisfy neither condition.

For the online problem, we let V' be the maximum over all minimal proper obstructions
O; of the minimum of 3" ¢;x; with 3~ z; = a; + b; — n, where the sums are over the z; with
I; containing O;. That is, for each minimal proper obstruction O;, we determine the sum of
the (a; + b; — n) smallest costs of intervals containing O;, and find the worst such O;.

Proposition 1 The integer program solves the offline selection problem. The quantily V is
a lower bound on the maximum total cost for the online selection problem.

PROOF: Say that a choice of queried intervals I; clears an obstruction O if, regardless of
the points p; returned for the queried intervals, the interval O will no longer be an obstruction
after the queried I; are replaced by I} = [p;, p;]. We show that O is cleared if and only if
Y. x; > a+ b—n, where the sum is over the intervals I; containing O.

IfYz; <a+b—n—-1=(a—k)+ (b—(n—k+1)), then for each I; queried not
containing O, we can return p; = [(1;) if r(I;) < r(O), and return p; = r(I;) otherwise, with
I(1;) > I(O). Clearly, this choice of p; does not decrease the values a,b for O. For the I,
queried containing O, we can return p; = [(/;) for at most b— (n —k+1) of them, and return
p; = r(l;) for at most a — k of them. Then O will still be an obstruction, since there will be
still at least k intervals with ((I}) <1(O), and at least n —k 41 intervals with r(I}) > r(O).
That is, the obstruction is not cleared.

For the converse, suppose > z; > a+b—n=(a—k)+(b—(n—k+1))+1. Then each
interval /; containing O queried, either a decreases by 1 if p; > [(O), or b decreases by 1
if p; < r(O). Thus, in the end, we will have either ¢’ < k or &’ < n —k + 1, so O will no
longer be an obstruction. That is, the obstruction is cleared. This completes the proof of
the equivalence.

A choice of intervals to be queried solves the offline problem if and only if it clears all
obstructions. We show that it is sufficient to consider minimal proper obstructions. For
an obstruction O, the smallest proper obstruction O’ containing it has '’ = a, & = b, and
the intervals [; containing O are the same as those containing O’. Therefore the linear
constraints for O and O’ are the same, and it is sufficient to consider proper obstructions. If
an obstruction is cleared, then every obstruction containing it is also cleared, so it is sufficient
to consider minimal proper obstructions. This completes the proof of the characterization
of the offline problem as an integer program.



We prove the lower bound V for the online problem. Let O be an obstruction giving the
value V. In the proof that if 3" 2; < a4 b —n — 1, then the obstruction is not cleared, we
could have chosen the points returned for the queries one by one, as the queried intervals
are chosen; that is, in an online fashion. Therefore we must have 3~ z; > a + b — n, paying
for the a + b — n intervals of least cost containing O.

4 Offline Problem with Unit Costs

We now show how to solve the offline problem efficiently, in the unit-cost case, using the
integer program described above. List the minimal proper obstructions in order, letting
O1 < Og if [(O1) < [(O2) and r(Oy) < r(O,). For the leftmost minimal proper obstruction
01, since all the intervals [; containing it have the same cost, we can greedily select I; with
r(1;) as large as possible, so as to possibly cover as many O; as possible with it, until we have
chosen a; + by — n intervals containing O;. We then move on to O,, with O; already covered,
and chose additional intervals to cover O as needed, again with their right endpoint as far
to the right as possible, until we have chosen at least a; + by — n intervals to cover Oy. We
proceed in this fashion, satisfying the constraints on minimal proper obstructions in order,
from left to right.

Theorem 1 In the unit-cost case, the integer program that characterizes the offline selection
problem can be solved in polynomial time by a greedy algorithm.

This approach does not seem to work in the general offline case with arbitrary costs,
since longer intervals might have a larger cost, so that it is not clearly an advantage to
choose them. However, we can obtain an exponential-time algorithm as follows. Let r be
the (n — k + 1)th largest r(/;). At most & — 1 intervals [; have r([;) < r. Call these the
special intervals, and chose which ones will be queried in all possible ways, that is, 2*~! ways.
All obstructions have r(0) < r, so we can again examine the minimal proper obstructions
in order from left to right, covering them with intervals [; of least possible cost which are
not special, as many as needed. The right endpoint of intervals that are not special does not
matter, since it is at least r.

This gives an algorithm with a time bound of 2*poly(n). A tighter time bound follows
from observing that there are at most & minimal proper obstructions O;, and by writing
a; + b; — n = d; — e;, we observe that the number ¢; of intervals inside O; is at most £ — 1,
so at most k£ — 1 intervals containing O; will not be queried. We can then just identify the
at most k — 1 intervals of largest cost that are not special and have O; as the first minimal
proper obstruction they cover. That is, after poly(n) preprocessing time, each of the 2F~1
cases involves at most & obstructions and k* identified intervals, so it uses poly(k) time.

Theorem 2 With arbitrary costs, the integer program that characterizes the offline selection
problem can be solved in time poly(n) + 2¥poly(k).

A different approach will later enable us to obtain a polynomial-time algorithm for the
general offline case.



5 The Online Problem

We now turn to the online problem, and consider an algorithm for the general case with
arbitrary costs. The greedy algorithm is as follows. Determine the interval [, r], where [ is
the kth smallest /(/;) and r is the (n — k + 1)th largest r(/;). If r — [ < § then we are done.
Otherwise [[,r] is an obstruction O. Query the [; containing O of least cost. Once the point
p; is obtained, replace I; by Il = [p;, p;], and go back to the beginning of the algorithm.

Consider an execution of the greedy algorithm. Let Oy, Oy, ..., Os be the sequence of
obstructions obtained, with O; containing O;;;. For the last obstruction Oy, let H be the
set of the as; + b; — n intervals of least cost containing O,. Clearly, the total cost of H is
at most V', the lower bound established in Section 6. We show that the interval queried at
stage t with 1 <t < s is in H, completing the proof.

The proof is by induction on ¢. Since the intervals in H clear the obstruction Oy, they
also clear the obstruction O; which contains 0. In fact the intervals in H containing O
clear the obstruction Oy, because only containing intervals matter in clearing an obstruction.
By inductive hypothesis, the ¢ — 1 intervals previously queried are in H. However, these
t — 1 intervals have not cleared O;. Therefore H must have some interval containing O; other
than the ¢ — 1 intervals previously queried, and such an interval in H of least cost ¢ will be
queried. In the case where there are also intervals of cost ¢ not in H (that is, ¢ is the largest
cost in H), then an interval of cost ¢ not in H may be queried; but, in that case, we can
change H by switching this interval for the interval of cost ¢ containing O; in H, without
increasing the total cost of H.

Theorem 3 With arbitrary costs, the greedy polynomial online selection algorithm achieves
the cost V' of Proposition 1, and is therefore optimal.

We will now compare the performance of the offline algorithm with the worst-case per-
formance of the online algorithm, both in the unit-cost case and in the general case with
arbitrary costs. For the unit-cost case, we will transform the problem, as follows.

Let P be an instance of the problem. Suppose P contains two intervals Iy and I, with I,
inside Iy, that is [(11) < [([3) and r(I3) < r(I1). We construct a new instance P’ by replacing
these two intervals by 17 = [[([1),r([2)] and I} = [I(13),r(I1)]. We repeatedly perform this
transformation until we obtain an instance P with no interval inside another interval.

We first look at the offline problem. Consider the optimal solution for P’. If both I] and
I} are queried in this solution, obtain a candidate solution for P by querying both I; and
I5. If only one of I] or I} is queried, then query only [;. If neither /] nor I} is queried, then
query neither [; nor I,.

Since P and P’ have the same left and right endpoints of intervals, the minimal proper
obstructions O are the same for P and P’, and have the same value of a + b — n. Suppose
O is such an obstruction. If both /] and I} contain O, then both I and I; contain O; and if
only one of I{ and I} contain O, then [; contains O. Therefore the candidate solution for P
is indeed a solution, with the same cost (number of queried intervals) as the solution for P’.

Consider now the online problem. Here, the worst-case performance is given by the
minimal proper obstruction O with the largest value a + b —n. This value, as we said before,
is the same for P and P’.



Proposition 2 Consider the unil-cost case. For the offline selection problem, the perfor-
mance on P is at least as bad as the performance on P. For the online selection problem,
the worst-case performance is the same for P as for P.

We can now compare the performance of the optimal offline algorithm with the worst-case
performance of the optimal online algorithm.

Theorem 4 The worst-case performance ratio between offline and online selection algo-

rithms is %7—1 < 2 in the unit-cost case. Therefore both algorithms have the same perfor-
mance for the smallest element problem, while the ratio for the median problem is % In

the case of arbitrary costs, the worst-case ratio equals k.

PROOF: We begin with the unit-cost case. By the preceding proposition, it is sufficient
to consider an instance P with no interval inside another interval. The intervals can then be
ordered from left to right, breaking ties between identical intervals arbitrarily, and letting
otherwise Iy < I if [(I) < I([3) and r(Iy) < r(ly), or if [(I1) < [([3) and r(I;) < r(1y).

Let Iy, I,,..., I, be the intervals in this order. Consider the interval ;. Clearly [ is also
the largest obstruction, and so all minimal proper obstructions are contained in it. We can
assume |[;| > 4, otherwise no queries are needed. Since no interval is inside an obstruction,
all intervals containing an obstruction will be queried. Let [;_; be the first I; with 7 < k such
that r(/;) —I(Ix) > 4. Similarly, let I, be the last I; with 57 > k such that r([;) —I([;) > 4.
Clearly 0 < s<k—land 0<t<n—k.

The intervals preceding [;_; do not contain any obstruction and will therefore not be
queried by either algorithm. Similarly, the intervals following [;,; will not be queried by
either algorithm. The intervals from [;_; to [z4; contain at least one obstruction and will
therefore be queried by the offline algorithm. Therefore the offline algorithm makes s +¢ 41
queries.

For the online algorithm, it is sufficient to consider the minimal proper obstruction with
the largest number of intervals containing it. The first minimal proper obstruction is con-
tained at least in the intervals from [;_, to [p. The last minimal proper obstruction is
contained at least in the intervals from [, to I1;. Thus, the online algorithm makes at least
max(s,?) + 1 queries in the worst case, and this quantity is the worst case when the [; with
J < k do not intersect the I; with 57 > k.

The ratio #ﬁ)lﬂwithOgs <k—land 0 <t<n—kismaximizedat s=¢t =%k —1,
and it then equals %T_l

Consider next the case of arbitrary costs. Since the performance of the online algorithm
is given by the worst constraint for a single minimal proper obstruction, and there are at
most k& such obstructions, the ratio is at most k. An example that achieves k has n = 2k —1,
and consists of k disjoint intervals I; of unit-cost, plus k£ —1 intervals I} of zero cost, with the
I containing all the [;. The offline algorithm will have to query all the intervals, incurring
in cost & with the intervals /;. The online algorithm queries the [ first, and depending on
the resulting answers, determines which single /; to query, with total cost 1.



6 Offline Problem with Arbitrary Costs

The earlier algorithm for the offline selection problem with arbitrary costs has complexity
exponential in k. We now provide a polynomial-time algorithm for this problem, but this
algorithm is non-combinatorial and relies on linear programming.

The polytope of the offline selection problem is defined by replacing in the integer program
the conditions z; € {0,1} with linear constraints 0 < z; < 1, with the remaining linear
constraints being the same.

Theorem 5 The vertices of the polytope of the offline selection problem are all integer ver-
tices (i.e., 01 vertices). Therefore, with arbitrary costs, the problem can be solved in poly-
nomial time by linear programming.

PrOOF: Consider a vertex z of the polytope. If some z; is either 0 or 1 for z, then
use this value in the constraints where z; occurs. We are thus left with some A variables
with 0 < z; < 1. Since z is a vertex of the polytope, there must be some h constraints
satisfied with equality that define  uniquely. The corresponding h-by-h square matrix M
is a 0—1 matrix M, with the property that for every column of M, the value 1 occurs in
consecutive rows, since a variable z; occurs in consecutive linear constraints. We show that
the determinant of such a matrix M is either 0, 1 or —1. Therefore the solution must be
integer, that is, all ; for the vertex x are either 0 or 1, completing the proof of optimality.

Assume M has a nonzero determinant. Then some column must have a 1 in the first row.
Consider the column with a 1 in the first row that has the least number r of 1s, say it is
the first column. Then the 1s in the first column occur in rows 1,2,...,r. After subtracting
the first row from rows 2,...,r, we can remove the first row and the first column, and argue
inductively for the resulting submatrix M’. Notice that the only columns affected by the
subtraction are the columns that have a 1 in the first row. These columns, however, have a 1
inrows 1,2,...,r by the choice of the first column. For such a column, after the subtraction,
the 1s in rows 2,...,r become 0s, and after the first row is removed, the remaining 1s in the
column will be in consecutive rows. Therefore the matrix M’ has the property of consecutive
Is in each column, and the induction goes through.

A linear programming algorithm that finds a vertex of the polytope minimizing the ob-
jective function ) ¢;x; thus solves the problem.

Unfortunately, a linear-programming algorithm is not very practical for the applica-
tions at hand. It therefore becomes interesting to seek a combinatorial algorithm that is
polynomial-time. As shown in the next section, the weighted bipartite matching problem is
a special case of our offline selection problem, and therefore we cannot really hope for a simple
combinatorial algorithm. In practice, it might be better to use the following approximation
algorithm.

Theorem 6 The offline selection problem with arbitrary costs has a 2log, k-approzimation
polynomial-time algorithm.



PrROOF: Construct a binary tree whose leaves are the minimal proper obstructions
01,0s,. .., O inleft to right order, with & < k. Place an interval at a node ¢ if the minimal
proper obstructions it contains, Oy, Ogyq, ..., Oy, are precisely the leaves below node gq.

Unfortunately, not all intervals correspond to a single node; we argue that in general, the
minimal proper obstructions covered by an interval can be decomposed into at most 2log, k&
groups, with each group corresponding to a single node ¢. To show this, let P; be the set
of nodes on the path from the root to the leaf O;, and consider in particular P;_; and Py,
which are taken to be empty if s = 1 or t = &/, respectively. Then the nodes selected are
precisely the nodes ¢ not on F;_; such that g is the right child of a node on P;_y — P44, plus
the nodes ¢ not on P,y such that ¢ is the left child of node on P,y 1 — Ps_y. If the binary tree
is chosen to be balanced, the bound of 2log, & on the number of nodes ¢ selected follows.
(By carefully choosing the binary tree, the bound can be improved by an asymptotic factor
of 2.)

The algorithm then represents each interval by at most 2log, £ intervals at nodes ¢, each
with the same cost as the original interval. This may increase the cost of an optimal solution
by a factor of 2log, k. The algorithm then solves the problem with each interval at a single
node ¢ in polynomial time.

The algorithm computes at each node ¢, starting at the leaves O; and moving up to the
root, how to select intervals at node g so as to leave a requirement of r intervals having to
be chosen at nodes higher than ¢, on the path from the root to ¢, for all possible values r,
which we call the demand at node ¢. Initially, at a leaf O;, before choosing which intervals
to select at O;, we have r = a; + b; — n. Suppose a node ¢ has inherited demands of r’ and
r” from its children, and wishes to achieve demand r < max(r’,r"), to pass on to its parent.
(At a leaf, there is a single inherited demand r’ as described above.) Then we must select
the max(r’,r"”) — r intervals of least cost at g. For a given r, we carry out the calculation of
total cost with the possible choices of ', r”, and select the one that gives the least total cost
for the intervals chosen at ¢ and its descendants, for the demand r under consideration. At
the root, we force r = 0, since no demand can be satisfied at nodes higher than the root.

7 Interval Problems and Weighted Bipartite Matching

We now examine the expressive power of the offline selection problem. Specifically, we define
the notion of an “interval problem,” show that it is equivalent to the offline median problem,
and includes weighted bipartite matching as a special case. It turns out that every interval
problem can be expressed as a min-cost network flow problem [3]. This allows us to apply
combinatorial algorithms for min-cost flow to our selection problem. We will also show that
a mild generalization of the interval problem is in fact NP-hard.

Definition 1 Define an interval problem to be to minimize Y c;jx; with x; € {0,1} subject
to k constraints 3 g, x; > f;, with the property thatl each x; occurs in consecutive constraints.



We know that the offline selection problem is an interval problem. We now show the
1

converse. The median problem will have § = 1 — ) and & minimal proper obstructions
O;, = [1 — 1,i] for 1 <7 < k. If a variable x; occurs in constraints s,s 4+ 1,...,¢, then we
represent it by the interval I; = [s — 1,¢]. We must also have f; = a; + b, —n = d; — ¢;,
with a;,b; > [%'\ In order to have f; = d; — ¢;, where d; is the number of variables in
the constraint and e; is the number of intervals inside O;, we put e; single-point intervals
I; = [p;, pj] inside O; at i — kZ? To make O; a proper obstruction, we add a zero-cost interval
I; = O;. To ensure that a;,b; > [%L we add a sufficiently large number of zero-cost intervals
I; = [0,k]. 1t is then clear that the O; will be the minimal proper obstructions and will give

the corresponding constraint when the zero cost intervals that were added are selected.
Proposition 3 FEvery interval problem is an offline median problem.

We may sometimes want to force a constraint }°g xz; > f; to hold with equality. To
achieve this, we choose a large L > 3" ¢; and add L} g x; to the objective function. If the
constraint can be satisfied with equality, this will be forced by the minimization, making the
added term equal Lf;. The same L can be used to force several different constraints to hold
with equality, when this is feasible.

It turns out that every interval problem can be expressed as a min-cost network flow
problem and vice versa [3]. We now prove a simpler statement.

Theorem 7 The interval problem can express the weighted bipartite matching problem.

PROOF: The case where all constraints must hold with equality can express the minimum
cost bipartite perfect matching problem. To see this, consider a bipartite graph G with &
vertices on each side and costs on the edges, that has a perfect matching; we seek a minimum
cost perfect matching. Let 1,2,...,k be the k vertices on the left and let 1",2',... kK" be
the k vertices on the right. The corresponding interval problem will have 2k constraints
corresponding to these vertices, in the order 1,2,... k k',...,2".1". An edge from 7 to 5’
will correspond to a variable occurring in the constraints from ¢ to j' in this order. To force
exactly one of the edges incident to vertex 1 to be selected, we use the bound f; = 1 for the
first constraint, with equality. To force exactly one additional edge incident to vertex 2 to
be selected, we use the bound f; = 2 for the second constraint, with equality. In general, we

have f; = fi = ¢, with equality. This completes the representation.
|

Consequently, the weighted bipartite matching problem is a special case of the weighted
offline median problem. We use this expressiveness of the weighted offline median problem
to show that a slight generalization is computationally hard.

The median problem with multiplicities is the median problem with the additional provi-
sion that some specified intervals, when queried, return two points instead of just one. This
is like having, in the median problem, pairs of identical intervals that must be simultaneously
queried or not queried.

Theorem 8 The weighted offline median problem with multiplicities is NP-complete.
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PROOF: The problem corresponds as before to a general interval problem, except that
now, for some of the variables, the quantity 2z; instead of z; appears in the constraints. We
can again force equality to hold in the constraints by using appropriate costs. The special
case of bipartite matching from before now generalizes to a bipartite flow problem. In this
problem, vertices on the left have a given supply amount, vertices on the right have a given
demand amount, and vertices on the left are joined to vertices on the right by edges of
capacity 1 or 2. The supplies and demands must be satisfied by sending flow across the
edges, but in such a way that the flow across an edge is either zero or the full capacity of
the edge.

We show that this bipartite flow problem is NP-complete. The reduction is from 3SAT.
In fact, we assume that every variable = in the 3SAT instance occurs at most twice as a
positive literal z, and at most twice as a negative literal . Every 3SAT instance can be
made to satisfy this assumption, by replacing every variable with several variables forced to
be equal by a cycle of implications; the implications in the cycle account for one positive and
one negative occurrence, so each variable in the cycle can be used again, once as positive
and once as negative.

To express such a 3SAT instance as a bipartite flow problem, we put a vertex on the
right for each literal = or T, with demand 2. We put a vertex on the left for each clause, with
supply 1, and with three capacity 1 edges joining it to the literals occurring in the clause
on the right. Thus the supply 1 must be sent to one of the three literals occurring in the
clause, which we can take to be a satisfying literal for the clause. Notice that the demand
bound of 2 will hold, since no literal occurs in more than two clauses. We must ensure that
complementary literals are not both chosen as satisfying literals. To achieve this, we put a
vertex on the left for each variable x, with supply 2, and with capacity 2 edges joining it to
both literals x and T. Thus only one of the two literals will have demand left to be chosen by
the clauses on the left. Thus the supply on the left can be sent while satisfying the demand
bounds on the right if and only if the instance has a solution. It then remains to force the
demands of 2 to be met exactly, and this is done by providing additional 2v — w units of
supply to be sent along capacity 1 edges to any vertex on the right, where v is the number
of variables and w is the number of clauses. This completes the proof of NP-completeness.

It is natural to consider the related problem where, when an interval /; is queried, instead
of returning a single point p; in [;, we obtain a subinterval of [; of length at most ¢'. If
the new parameter ¢’ satisfies 6’ < §, where § is the parameter for the required precision
as before, then all the results obtained above go through (unit-cost or arbitrary cost, online
or offline), since an obstruction O has length greater than §, so that an interval containing
it will no longer contain it after the interval length is reduced to at most ¢’. On the other
hand, if §' > §, then the problem has no solution (unless no queries are needed), since queried
intervals [; can be answered so as to still contain a sufficiently small obstruction O.
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