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Abstract. In this paper we present a novel analysis of a random sampjirg
proach for three clustering problems in metric spademedian min-sumk-
clustering andbalancedk-median For all these problems we consider the fol-
lowing simple sampling scheme: select a small sample setinfgpuniformly at
random fromV and then run some approximation algorithm on this sample set
to compute an approximation of the best possible clusterinkis set. Our main
technical contribution is a significantly strengthenedlgsia of the approxima-
tion guarantee by this scheme for the clustering problems.

The main motivation behind our analyses was to desidpinear-timealgorithms
for clustering problems. Our second contribution is theettgyment of new ap-
proximation algorithms for the aforementioned clustenmgblems. Using our
random sampling approach we obtain for the first time appnetion algorithms
that have the running time independent of the input size depénding ork and
the diameter of the metric space only.

1 Introduction

The problem of clustering large data sets into subsetstérkjsof similar character-
istics has been extensively studied in computer scienceratipns research, and re-
lated fields. Clustering problems arise in various apglbcet, for example, in data min-
ing, data compression, bioinformatics, pattern recogniéind pattern classification. In
some of these applications massive datasets have to bespeace.g., web pages, net-
work flow statistics, or call-detail records in telecommnuation industry. Processing
such massive data sets in more than linear time is by far tperesive and often even
linear time algorithms may be too slow. One reason for themypimenon is that massive
data sets do not fit into main memory and sometimes even sappom#gmory capacities
are too low. Hence, there is the desire to develop algoritivinsse running times are
not only polynomial, but in fact arsublinearin n (for very recent survey expositions,
see, e.g., [7,16]). In a typical sublinear-time algorithsuaset of the input is selected
according to some random process and then processed byoaithatg With high prob-
ability the outcome of this algorithm should be some appration of the outcome of
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an exact algorithm running on the whole input. In many calsesandomized process
that selects the sample is very simple, e.g., a uniformlgoamsubset is selected.

In this paper we address the problem of desigrgnglinear-timeapproximation
algorithms usinginiformly random samplinépr clustering problems in metric spaces.
We consider three clustering problems: kamedian problenthemin-sumk-clustering
problem and thebalancedk-median problemGiven a finite metric spac@/, ), the
k-median problents to find a se”’ C V' of k-centers that minimize}_ . 1(p, C),
wherepu(p, C') denotes the distance fromto the nearest point i’. The min-sumé-
clustering problenfor a metric spacéV, 1) is to find a partition ofl” into £ subsets
Ci,...,Cy suchthaty ., > . u(p,q) is minimized. Thebalancedk-median
problem(which is perhaps less standard than the other two problema)metric space
(V,p)istofind asefcy,...,c,} C V of k-centers and a partition &f into k£ subsets
Ci,...,Ck that minimizeszlgigk |C;] - Zpeci, w(p, c;i).

For all these three clustering problems we study the folgwisimple sampling”
algorithm: pick a random sample of points, run an approximation algorithm for the
sample, and return the clustering induced by the solutiothfvbsample. The main goal
of this paper is to design a generic method of analyzing tspding scheme and to
obtain a significantly stronger quantitative bounds forgheormance of this method.
Using our approach, for a large spectrum of input parametersbtainsublinear-time
algorithmsfor the three clustering problems above. These are the fitoaimation
algorithms for these problems whose running timedependent of the input siZé&’|.

1.1 Previousresearch

k-median. The k-median clustering problem is perhaps the most studiedesing
problem in the literature, both, in theoretical researct Bmapplications. It is well
known that thek-median clustering in metric spacesN§P-hard and it is evetP-
hard to approximate within a factor af-+ % [13]. There exist polynomial time ap-
proximation algorithms with constant approximation rat[@, 4,5, 11, 14,17]. When
the underlying space is the Euclidean plane, Arora et alolptdined even a PTAS for
k-median (extension to higher dimensions and improvemarttss running time have
been obtained in [15], and more recently in [10]). Thmedian problem has been also
extensively investigated in the data stream model, segreagnt works in [6, 10].
There exist a few sublinear-time algorithms for thenedian problem, that is algo-
rithms with the running time of(n?) (if we consider an arbitrary metric spac¥, ;1)
with |V | = n, then its description size ®@(n?)), see, e.g., [11, 17-19]. The algorithm
of Indyk [11] computes irO(n k) time a set 0ofO(k) centers whose cost approximates
the value of thé-median by a constant factor. Mettu and Plaxton [17] gavendam-
ized O(1)-approximatek-median algorithm that runs in tin@(n(k + logn)) subject
to the constraink = 20(*/1°8(n/k)) ‘whereR denotes the ratio between the maximum
and the minimum distance between any pair of distinct pamtise metric space. Very
recently, Meyerson et al. [18] presented a sublinear-tionéfe£-median problem un-
der an assumption that each cluster has §ize k/¢); their algorithm requires time
O((k?/e) log(k/¢)) and gives @(1)-approximation guarantee with high probability.
Notice that all the sublinear-time((?)-time) algorithms mentioned above made
some assumptions about the input. We follow this approadhrathis paper we con-



sider a model with the diameter of the metric spdcgiven, that is, with : V- x V —

[0, A]. Such a model has been investigated before by Mishra et3l. \who studied
the quality of k.-median clusterings obtained by random sampling. Agtbe an ar-
bitrary a-approximation algorithm fok-median. Using techniques from statistics and
computational learning theory, Mishra et al. [19] provedtth we sample a sef of

s =0 (%)2 (k Inn +1In(1/6))) points fromV i.u.r. (independently and uniformly
at randon) and run algorithmA,, to find an approximation of-median forS, then
with probability at leasti — § the outputted set of centers has thaverage distance
to the nearest center of at mast: med 4,4 (V, k) + €, Wheremed 4., (V, k) denotes the

average distance thek-medianC, that is,med vq (V, k) = M Using this
result, Mishra et al. [19] developed a generic sublineaetapproximation algorithm
for k-median. If the algorithnd, has the running time df'(s), then the resulting algo-
rithm runs inT'(s) time fors = O ((%)2 - (kInn + 1n(1/6))) and computes with
probability at least — ¢ a set ofk centers such that theverage distancto the nearest
center is at most e med 4,4 (V, k) +€. Notice that since there exiék(1)-approximation
algorithms fork-median withT'(s) = O(s?), this approach leads to an approximation
algorithm for thek-median problem whose dependencyrois only 5(log2 n), rather
than(2(n?) or 2(n k) as in the algorithms discussed above. On the other handjithe r
ning time of this algorithm depends af, and as discussed in [19] (see also [17, 18]),
such a dependency is necessary to obtain this kind of appadixin guarantee.

Min-sum k-clustering. The min-sumk-clustering problem was first formulated (for
general graphs) by Sahni and Gonzales [21]. Thereispproximation algorithm by
Guttman-Beck and Hassin [9] with running tim& (%), Recently, Bartal et al. [3] pre-
sented arD (2 log' ™ n)-approximation algorithm witi®(n'/¢) running time and then
Fernandez de la Vega et al. [8] gave(@nt ¢)-approximation algorithm with the run-

ning time of O (n3* - 20((1/5>k2)). For point sets in th&®<, Schulman [20] introduced
an algorithm for distance functiorfs, ¢/, and/, that computes a solution that is either
within (1+¢) of the optimum or that disagrees with the optimum in at mostfaaction

of points. For the basic case bf= 2 (which is complement to the Max-Cut), Indyk
[12] gave an(1 + ¢)-approximation algorithm that runs i@ (n'+7 - (logn)1/9°")
time for anyy > 0, which is sublinear in the full input description size bupetlinear
inn.

Balanced k-median. It is known that in metric spaces the solution to balanged
median is to within a factor df of that of min-sun%-clustering, see, e.qg. [3, Claim 1].
Therefore, balanceltmedian has been usually considered in connection with the m
sumk-clustering problem discussed above. The problem was firdiesd by Guttman-
Beck and Hassin [9] who gave an ex@tn*+!)-time algorithm and Bartal et al. [3]
obtained arD( % log'** n)-approximation in timex®1/) based on metric embeddings
into HSTs. We are not aware of any sublinear-time algoritbnbflanced:-median.



1.2 New contribution

In this paper we investigate the quality of a simpléform samplingapproach to clus-
tering problems and apply our analyzes to obtain new andawgat bounds for the
running time of clustering algorithms.

We first study thé:-median problem. Our sampling is identical to the one by Mishra
et al. [19], however our analysis is stronger and leads tuifségntly better bounds. Let
a>1,0< 0 < 1,ande > 0 be arbitrary parameters. We prove that if we pick
a sample set of siz&(22 - (k + o In(1/§))) i.u.r., then am-approximation of the
optimal solution for the sample set yields an approximatibthe average distance to
the nearest median to withih(a + €) med 4,4 (V, k) + € with probability at least — §;
notice in particular, that this gives the sample simependent ofi. As noted in [19],
it is impossible to obtain a sample complexity independébbth A andn.

Comparing our result to the one from [19], we improve the danspmplexity by
a factor of A - logn while obtaining a slightly worse approximation ratio Dfa +
€) med 40 (V, k) + €, instead of2 a med 4,4 (V. k) + € as in [19]. However, since the
algorithm with the best known approximation guaranteedas 3 + % for the run-
ning time ofO(n¢) time [2], we significantly improve the running time of [19]rfall
realistic choices of the input parameters while achievireggtame approximation guar-
antee. As a highlight, we obtain an algorithm that in tiog 2= - (k + log(1/6)))?)

— fully independent ofi — has the average distance to the nearest median at most
O(med 404 (V, k)) + € with probability at least — 6.

Furthermore, our analysis can be significantly improved & assume the input
points are in Euclidean spaf. In this case we improve the approximation guarantee
to (v + €) med g (V, k) + € in the cost of increasing the sample sizeéxo%:~ - (kd +
log(1/4))). This bound also significantly improves an analysis fron][D@e to space
limitations we omit the corresponding proof in this extethdéstract.

Themin-sum k-clustering and thebalanced k-median problems are combinatori-
ally more complex than the-median problem. For these two problems we givfitts¢
sublinear-time algorithms. Since in metric spaces thetisoito the balance&-median
problem is within a factor o2 of that of the min-sunk-clustering problem, we will
consider the balancddmedian problem only.

We consider the problem of minimizing the average balaricetkdian cost, that
is, the cost of the balancédmedian normalized by the square of the number of input
elements. We use the same approach as foktmedian problem. Let > 0, o > 1,

8 > 0,and0 < § < 1 be arbitrary parameters. We prove that if we pick a sample

set of sizeO (% : (‘/Eo‘zﬁl“(l/‘s) + k+ln(1/5))) i.u.r., then am-approximation of the

€

optimal solution for the sample set approximates the aesbatance@-median cost to
b

within (2 + 3) medl[’wg (V, k) + e with probability at least — o, wheremed,,,,, (V, k)
denotes the average cost of the optimal solution for bathkemedian. Notice that
similarly as for thek-median problem, the sample size is independent of

Unlike in the k-median problem, the output of balanceanedian is supposed to
consist of a set of centers:, . . ., ¢, and a partition (clustering) of the inpltinto ;U
-+- U V4 that minimizes (or approximates the minimum)X))f:1 Vil > ey, (v, ci).

Our sampling algorithm leads to a randomized algorithmitnéime independent of



. VIS vev, Blvci) .
returns the set of centers:y, .. ., ¢ forwhlchthevalueofz“l| ‘%/Pew ( )|

mostO(medlng(V, k)) + € with probability at least — 4. If one also knows the number
of elements that are assigned to each cluster in an apprtxsoéaition, then one can
compute inO(n k) + O(k?5 \/n) time an optimal clustering [22]. Since our algorithm
can be modified to provide the cluster sizes we can use thimapipto compute a good

solution quickly from the implicit representation as a Ingledk-median.

s at

1.3 High level description of our approach

Before we begin to analyze specific problems we first discus$igh level approach.
We study the approximation guarantee of the following redtssmpling scheme. Choose
a multisetS of s elements i.u.r. fronV’, for some suitable chosen Then run am-
approximation algorithra for the problem of interest of. What is the quality of the
solution computed by on .S?

Generic sampling scheme (V, A, s)

choose a multise$ C V of sizesi.u.r.
run a-approximation algorithnd\ on inputS to compute a solutiod'™ (set ofk centers)
return setC*

To analyze the approximation guarantee of this approach nweepd in two steps.
First, we show that w.h.p. and after normalizatiant(S, C,,:) is an approximation
of cost(V, Copt), WwhereC,,,, denotes an optimal solution f&f. SinceC,,, may not be
a feasible solution fof (e.g., in thek-median problend’,,; may not be contained ifi)
we show that there isfeasiblesolution inS which has cost at most- cost (S, Cop) for
some constant > a. Then we show that w.h.p. every possible solutioniforith cost
more thare - cost(V, C,pt) is either not a feasible solution féf or has cost more than
c- cost(S, Copt) for S. SinceS contains a solution with cost at mo$t: cost (S, Copt),
A will compute a solutiorC* with cost at most - cost (.S, Copt ). Since every solution
for V' with cost more tham - cost(V, Cop) has cost more thaa- cost(S, C,p:) for
S, we know thatA computes a solutio™ with cost at most - cost(V, Cop¢) for V.
Hence, our sampling is@approximation algorithm.

We apply this approach to study sampling algorithms forahmeblems: thé-median
problem, the balanceedmedian problem, and the min-suerclustering problem.

2 Analysisof the k-median problem

We first consider thé-median problem. &-median oV is a setC of k points Center$
in V that minimizes the value of’, ., mini<i<x p(v,¢;) = >, oy p(v, C). Thek-
median problenis to compute &-median for a given metric spac¥, ).

Let med opt (V, k) = mingcvy, o)1=k 2_,ey #(v, C) denote thecost of ak-median
of V. Let med gug (V, k) = ‘71‘ - med opt (V, k) denote theaverage cost of &-median
of V. In a similar manner, for a giveti C V andC C V, we define theaverage
costof solutionC' to be cost 4,q (U, C) = I_llf\ > vev #(v,C). The following theorem
summarizes our analysis and it is the main result of thisaect



Theorem 1. Let (V, 1) be a metric space. Lét < § < 1, &« > 1, ande > 0 be
approximation parameters. Lét be ana-approximation algorithm for thé&-median
problem in metric spaces. If we choose a sampl&'setV of sizes i.u.r., with

s > c-(1+afe- (k-l-é-(a-ln(1/5)+k-ln(7’“4(1:“/5)))> :

for some constant and we run algorithmA with input .S, then for the solutiorC*
obtained byA, with probability at leastt — ¢ it holds the following

costaug(V,C*) < (2a+€) - medang(V k) + € .

To begin our analysis of the quality of the approximatiof’éfand the proof of The-
orem 1, let us introduce some basic notation.£et 0, o > 1. A set ofk centerC' is
ap-bada-approximatiorof k-median ofV if cost 4ve(V, C) > (a4 3) - med goq (V) k).

If C is not ap-bada-approximation then it is g@-gooda-approximation

For thek-median problem we want to prove for certairthat our algorithm is a
(2 (a+ 3))-approximation algorithm. Following the approach desediim the previous
section, we have to show that our sampleSe&ontains w.h.p. a solution with cost at
most2 (1 + (/a) - medqg(V, k), and hence, ang-approximation forS returns a
2 (a + B)-approximation fo” w.h.p. We prove the following lemma.

Lemmal. LetS be a multiset of size > Mgiﬁjgz‘l}‘g/‘” chosen fron¥/ i.u.r. If an
a-approximation algorithm fok-medianA is run on inputS, then for the solutior©*

obtained byA holdsPr [costavg(& C*) < 2(a + ) - medang (V, k)} >1-4.

Proof. Let C,,; denote &-median ofl” and letX; denote the random variable for the
distance of theth point in S to the nearest center 6,,;. Then,cost 4,,4(S, Copt) =
% 21955 X,. Furthermore, SinCE[X;] = med q,4(V, k), we also havened 4, (V, k)

E{Z Xz} . Therefore,

Pr [costwg(s, Copt) > (1+ Ymed g (V, k) } [ )E[Z Xlﬂ

<i<s 1<i<s

Observe that eacl(; satisfies) < X; < A. Therefore, we can apply a Hoeffding
bound to obtain:

s medaug (V,k)-min{(8/a),(8/a)?}
Pr| > Xi>(1+p/a) B[ 3 x| < e ES <5,

1<i<s 1<i<s

Let C be the set of: centers inS obtained by replacing eache C,,; by its nearest
neighbor inS. By the triangle inequality, we gebst 4,4 (S, C) < 2+ c08t g4 (S, Copt)-
Hence, multisetS contains a set of centers whose cost is at mast (1 + 3/«) -
med 404 (V, k) With probability at least — 6. Therefore, the lemma follows because
returns arx-approximationC™* of the k-median forS. O

Next, we show that any solutiaf}, C S thatis a(6 3)-bad(2 «)-approximation of &:-
median ofV satisfiescost 4. (S, Cp) > 2 (a+ 3) - med 404 (V, k) with high probability.



Lemma 2. LetS be a multiset of points chosen i.u.r. frori’ with s such that

(a+8)- A (In(1/6) + b In (A2
e ((Ha/ﬁ)k ! 32 med gy (V, k) ’

wherec is a certain positive constant. LEtbe the set of6,5)-bad (2«)-approximations
C of ak-median ofl/. Then,

Pr [acb €C:CyC S and costauy(S,Ch) < 2 (v + B) medang(V, k)} <.

Proof. Let s > 22220 k. Let us consider an arbitrary solutidh, that is a(6 3)-bad
(2 av)-approximation of &-median ofl” and letS* be a multiset of — k points chosen
i.u.rfromV. Then,

Pr[C, C S and cost auy (S, Cy) < 2 (o + B) med auy (V, k)]

= Pr[costany (5, Co) < 2(a+ B) medany (V. F) |Cy € S| - Pr|Cy C 5]

= Prcostany (5%, Cb) < 2+ —— ((a+ B) meday (V.R))| - Pr[Ch € ] ()
< Pr[costang(*,Cb) <2 (@ + 1.5 8) medany (V.)) | - Pr[CyC 5], @)

where (1) holds because the elements are chosen with iepetitd (2) follows from
s > 2294308 . Furthermore, similarly as in the proof of Lemma 1, we carvprthe
following inequality

—s B2 medavg (V. k)

Pr{costwg(s, Cy) < 2(a+ 1.508) medang(V, k) |] < e @Ema . (3)

Therefore, we can plug inequality (3) and the idenPt[C,, C S] = (s/n)* into (2),
and combine this with the upper bouf@ < n*, to conclude the proof. a

Proof of Theorem 1. Let s be chosen such that the prerequisites of Lemmas 1 and 2
hold, that is,

A

k(atpB)A
6 medavg(v’ k) (Oé 1n(1/5) + kln (52 med g (V,K) ) )) (4)

for certain constant. Let S be a multiset ofs points chosen i.u.r. fron¥. Then, by
Lemma 2 with probability at least — §, no setC C S that is a(6 §)-bad (2 «)-
approximation of &-median ofl/ satisfies the inequality

s > c(l4+a/B) (k—i—

€08t g (S, C) < 2(a+ B) med 4y (V, k) .

On the other hand, if we run algorithfnfor setS, then the resulting sét* of k centers
with probability at least — § satisfies

oSt aug (S, C*) < 2 (a + B) medang(V, k) .



This, together with the claim above implies that with proligbat leastl — 2 § the set
C* is a(6 (3)-good(2 «)-approximation of &-median ofl”. Hence,

o8t aug(V,C*) < (2a + 6 3) - med g (V, k) .

This implies immediately the following bound:
Pr [costwg(V, C*) < (2a+60) - medgu(V, k)} >1-2§.

To complete the proof we only must remove the dependengedf,.., (V, k) in the
bound ofs in (4) and relate? to . For med .4 (V, k) > 1, Theorem 1 follows directly
from our discussion above by replaciig by e. For med .,4(V, k) < 1, Theorem 1
follows by replacing3 by ¢/ med .4 (V, k). For more details we refer to the full version
of the paper. O

3 Min-sum k-clustering and balanced k-median in metric spaces

As we mentioned in Introduction, we follow the approach fri@yand [9] and consider
the balanced-median problem instead of analyzing min-skralustering.

Let (V, 1) be a metric space. Balancedk-median ofl is a setC' = {ci,...,c;}
of k points (centers) i that minimizes the value of

k
min E Vil - E U, Ci) .
partition of V' into V1 U---UV}, ‘ | l| M( ’ l)
=1 uevV;

The balancedk-median problenis for a given(V, 1) to compute a balancekt
median ofl/ and a partition ol into 1, U - - - U V}, that minimizes the sum above.
Let

k
b . .
med V.k) = min min g Vil - g u, ¢;
Opt( k) C={c1,...,c, }CV  partition of V" into Vi U---UV, Vil ulu, i)

""" i=1 ueV;

denote theost of a balanced-median o/, and letmeds,,,, (V, k) = g medg,,, (V. k)

denote theverage cost of a balancédmedian ofli’. For a given set/ C V and a set

of k center<” = {c1,...,cx} C V, letus define
k b
b _ . _ _ b _ cost’(U,C)
cost”(U, C) _panﬁlﬁlom Z |U;| Z p(u,c;) and cost,, (U, C) = 7|U|2 .

into Uy U---UU,, #=1 u€eU;

A set of k centers is called a(e, 5)-bad a-approximationof balanced:-median
of V if costl, (V,C) > (a+ B) - meds, (V,k) + e. If C is not a(e, 8)-bad a-

avg avg

approximation then it is &, 3)-gooda-approximation



3.1 Sampling algorithmsfor the balanced k-median problem in metric spaces

Our high level approach of analyzing the balanéethedian problem is essentially
the same as for the-median problem. We investigate the generic sampling sehem
described in Section 1.3, and in Section 3.2 we prove thewiatlg main theorem.

Theorem 2. Let (V, ) be a metric space. Lét be ana-approximation algorithm for

balancedk-median in metric spaces and let< ¢ < 1/4, 8 > 14}22, 0<d<1be

approximation parameters. If we choose a sampleSset V' of sizes i.u.r., where

- c-A_<\/E1n(§/5)a2 . 1n(k/6)+k-1n(kA/e)> |

€

and we run algorithmA with input .S, then for the solutiorC* obtained byA, with
probability at leastl — § it holds the following

cost’,,(V,C*) < (2a+ B) med’,,(V,k) +e .
Furthermore, in time)(n k) + O (k5 n%-%) one can find a clustering df that satisfies
the above approximation guarantee.

Moreover, the solutiorC* approximates an optimal solution for the min-sém
clustering problem within a factor two times larger thanioted above.

The last claim in Theorem 2 follows from the fact that in mespaces the solution
to balanced:-median is within a factor of of that of min-sun¥-clustering.

3.2 Analysisof Generic sampling scheme for balanced k-median

Our analysis follows the path used in Section 2. The mairecéfice is that we must
explicitly use “outliers” in our analysis, what makes itsificantly more complicated.
We begin with a result corresponding to Lemma 14enedian.

Lemma3. LetC,,: be abalanced-medianof’. Let0 < v,d < 1, ¢ > 0 be arbitrary

parameters. If we choose a multisetC V of sizes > %‘W i.u.r., then
6kAIn(3k/6
Pr [costzvg(S, Copt) < (1+ 7)3med?wg(V, k) + 71217!(92/) +e/al >1-6 .

Proof. To simplify the notation, lef; = 1 6/k. LetCop = {c1, ..., cr}. LetVi U - -U
V;* be the optimal partition oF, i.e.,med" ,(V, k) = Zle Vi D wevs m(u, c).

opt
Let us call seV;* densef |V*| > M . '—‘S/‘; V.* is sparseotherwise. LetS; be
the random variable that denotes the multiSet V;* (we assume; is a multiset, that
is, an element can appear multiple timesijrif it belongs toV;* and it appears multiple

times in.S). Our first observation (that can be easily proven using a@iebound)

is that if V* is dense, then we har ||S;] < (1 — ) - S'I%*'} < 41 andPr[|Si| >

(I+7)- 5"%*'} < 4;, and if V;* is sparse, then we ha\m[|Si| > %} < 6.




Therefore, from now on, let us condition on the event thatdemse set¥;* we have

(1—7)-3"“‘,/{‘ < |8 < (147)- S'"ﬁ' and for sparse sei§* we have(S;| < SnU/%),
This event holds with probability at leakt- 2 - k - 4;.

For any set//*, let X7 be the random variable that denotes the distance between the
jth randomly selected element frafi and the centet;. Observe that for any sét*,

we haveE[X7] = Wlﬂ D ey~ 1u, c;). Letus fixi and let us first assume that

i

|S

il
2

IS4

|

. Z plu,c) > €/a . (5)

ueV;*

2.

Since0 < Xij < A, we use Hoeffding bound to prove

=

Pr|Y X7 > (149)- |- M} < exp
=1

v
where the last inequality follows from (5). If (5) does notdhahen lety*, v* > ~, be
such that

1Si . 1S4

S Y nlue) = efa

2 A
Notice that in that case,

[S:l 3 .
; u .*N(UaCZ) s ¢ S-€

E[E XJ]: S| 2 = > Y
R = N 14 >a s =2 O

Observe that since (5) does not hold and since 1, we havey < min{1,~v*}.
Therefore, we can use the Hoeffding bound to prove that

|S:] S| )
Pr[Sox! 2 (1477) B[ Y X7]] < oxp (-mntpibisd Duepriee))
j=1 Jj=1
y-s-€
SGXP(_G-A-Q) ' ®)

Notice that the inequalities (6) — (8) imply thatsif> % then

5 Sil Sev #lme) .
Pr(} X/ > (147)- Zuc, 0 c
j=1

< .
V7] *aal 0

Therefore, from now on, let us condition on the event thatfaryi:, we have

1Si] - ZueVi* p(u, c;) n S-€
A 2a

> e < (1+47)-

u€eS;



what holds with probability at least — & é;. Under the conditioning above, we can
proceed to the final conclusion:

costSC<Z|S|Z uci)§Z|Si|Z (u, ¢ +Z|S|Z (u,¢;)

u€S; i:V;* is sparse u€S; i:V* isdense u€sS;
6kAIn(1/6y) (1 + )|V (LIS Xuevs mlusci) e
< 2 +-§E: * - + 0=
v 4:V.* is dense |V| |V1 | 20

6kAIn(1/s § 1 i
g% _+(%) (1) medopn (V. K)

This yields the following bound that holds with probabilittieasti—3 k£ 6, = 1—¢:

6-k-A-In(3k/0)
72,52

(e’

cost®, (S,C) <

avg

+ =+ (14+7)° - medg, (V. k) |

Qlm

what concludes the proof of Lemma 3. a

Lemma 3 (withy =~ «/3) can be combined with arguments used in Lemma 1 to
prove the following.

Corollary 1. Let0 < 8 < a ande > 0. LetS be a multiset of size > YA/ o

Be
chosen fromV" i.u.r., wherec is some constant. If an-approximation algorithm for
balancedk-medianA is run with inputS, then for the solutio™ obtained byA holds
Pr|cost®, (S,C*) < 2(a + ) - med® (V,k)—i—e} >1-90. O

avg avg

The next step in our analysis is to consider bad approximstiour analysis follows
the approach used before in the proof of Lemma 2; the mairreéifice is a larger
number of parameters used in the analysis. Corollary 1 grithet typically there is a
set ofk centers in the samplg that has the average cost closertedzvg(v, k). Now,
we show that any’, C S thatis a(5¢,2 5)-bad (2 «)- approximation of a balanced
k-median of V' satisfiescost 4.,4(S,Cy) > 2(a + B) - medwq(v, k) + e with high
probability. Details of the proof of the following lemma ateferred to the full version
of the paper.

Lemma4. LetS be a multiset of points chosen i.u.r. frofy” with s such that:

s > c- (?2-(ln(k/(S)—i—k-ln(kA/e))—i—%) ,

wherec is a suitable positive constant. LEtbe the set of5e, 2 3)-bad (2 «)-approxi-
mationsC' of a balanced:-median oft”. Then,

Pr [30;, € C: Cy C S andcostan (S, Cy) < (1—€)* (2 a+3) med’,,, (V, k) +e| < 6.

Now Theorem 2 follows from Corollary 1 and Lemma 4. To expand implicit
representation of the clustering, we can use the valfiesbtained from the optimum
partition of our sample se&f as cluster sizes and then use the algorithm from [22].
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