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Abstract. In this paper we present a novel analysis of a random samplingap-
proach for three clustering problems in metric spaces:k-median, min-sumk-
clustering, andbalancedk-median. For all these problems we consider the fol-
lowing simple sampling scheme: select a small sample set of points uniformly at
random fromV and then run some approximation algorithm on this sample set
to compute an approximation of the best possible clusteringof this set. Our main
technical contribution is a significantly strengthened analysis of the approxima-
tion guarantee by this scheme for the clustering problems.
The main motivation behind our analyses was to designsublinear-timealgorithms
for clustering problems. Our second contribution is the development of new ap-
proximation algorithms for the aforementioned clusteringproblems. Using our
random sampling approach we obtain for the first time approximation algorithms
that have the running time independent of the input size, anddepending onk and
the diameter of the metric space only.

1 Introduction

The problem of clustering large data sets into subsets (clusters) of similar character-
istics has been extensively studied in computer science, operations research, and re-
lated fields. Clustering problems arise in various applications, for example, in data min-
ing, data compression, bioinformatics, pattern recognition and pattern classification. In
some of these applications massive datasets have to be processed, e.g., web pages, net-
work flow statistics, or call-detail records in telecommunication industry. Processing
such massive data sets in more than linear time is by far too expensive and often even
linear time algorithms may be too slow. One reason for this phenomenon is that massive
data sets do not fit into main memory and sometimes even secondary memory capacities
are too low. Hence, there is the desire to develop algorithmswhose running times are
not only polynomial, but in fact aresublinearin n (for very recent survey expositions,
see, e.g., [7, 16]). In a typical sublinear-time algorithm asubset of the input is selected
according to some random process and then processed by an algorithm. With high prob-
ability the outcome of this algorithm should be some approximation of the outcome of
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an exact algorithm running on the whole input. In many cases the randomized process
that selects the sample is very simple, e.g., a uniformly random subset is selected.

In this paper we address the problem of designingsublinear-timeapproximation
algorithms usinguniformly random samplingfor clustering problems in metric spaces.
We consider three clustering problems: thek-median problem, themin-sumk-clustering
problem, and thebalancedk-median problem. Given a finite metric space(V, µ), the
k-median problemis to find a setC ⊆ V of k-centers that minimizes

∑
p∈V µ(p, C),

whereµ(p, C) denotes the distance fromp to the nearest point inC. Themin-sumk-
clustering problemfor a metric space(V, µ) is to find a partition ofV into k subsets
C1, . . . , Ck such that

∑
1≤i≤k

∑
p,q∈Ci

µ(p, q) is minimized. Thebalancedk-median
problem(which is perhaps less standard than the other two problems)for a metric space
(V, µ) is to find a set{c1, . . . , ck} ⊆ V of k-centers and a partition ofV into k subsets
C1, . . . , Ck that minimizes

∑
1≤i≤k |Ci| ·

∑
p∈Ci

µ(p, ci).
For all these three clustering problems we study the following “simple sampling”

algorithm: pick a random sampleS of points, run an approximation algorithm for the
sample, and return the clustering induced by the solution for the sample. The main goal
of this paper is to design a generic method of analyzing this sampling scheme and to
obtain a significantly stronger quantitative bounds for theperformance of this method.
Using our approach, for a large spectrum of input parameterswe obtainsublinear-time
algorithmsfor the three clustering problems above. These are the first approximation
algorithms for these problems whose running time isindependent of the input size, |V |.

1.1 Previous research

k-median. The k-median clustering problem is perhaps the most studied clustering
problem in the literature, both, in theoretical research and in applications. It is well
known that thek-median clustering in metric spaces isNP-hard and it is evenNP-
hard to approximate within a factor of1 + 2

e [13]. There exist polynomial time ap-
proximation algorithms with constant approximation ratios [2, 4, 5, 11, 14, 17]. When
the underlying space is the Euclidean plane, Arora et al. [1]obtained even a PTAS for
k-median (extension to higher dimensions and improvements in the running time have
been obtained in [15], and more recently in [10]). Thek-median problem has been also
extensively investigated in the data stream model, see e.g., recent works in [6, 10].

There exist a few sublinear-time algorithms for thek-median problem, that is algo-
rithms with the running time ofo(n2) (if we consider an arbitrary metric space(V, µ)
with |V | = n, then its description size isΘ(n2)), see, e.g., [11, 17–19]. The algorithm
of Indyk [11] computes inO(n k) time a set ofO(k) centers whose cost approximates
the value of thek-median by a constant factor. Mettu and Plaxton [17] gave a random-
izedO(1)-approximatek-median algorithm that runs in timeO(n(k + log n)) subject
to the constraintR = 2O(n/ log(n/k)), whereR denotes the ratio between the maximum
and the minimum distance between any pair of distinct pointsin the metric space. Very
recently, Meyerson et al. [18] presented a sublinear-time for thek-median problem un-
der an assumption that each cluster has sizeΩ(n k/ε); their algorithm requires time
O((k2/ε) log(k/ε)) and gives aO(1)-approximation guarantee with high probability.

Notice that all the sublinear-time (o(n2)-time) algorithms mentioned above made
some assumptions about the input. We follow this approach and in this paper we con-



sider a model with the diameter of the metric space∆ given, that is, withµ : V ×V →
[0, ∆]. Such a model has been investigated before by Mishra et al. [19], who studied
the quality ofk-median clusterings obtained by random sampling. LetAα be an ar-
bitrary α-approximation algorithm fork-median. Using techniques from statistics and
computational learning theory, Mishra et al. [19] proved that if we sample a setS of
s = Õ

( (
α ∆

ε

)2
(k lnn + ln(1/δ))

)
points fromV i.u.r. (independently and uniformly

at random) and run algorithmAα to find an approximation ofk-median forS, then
with probability at least1 − δ the outputted set ofk centers has theaverage distance
to the nearest center of at most2 αmedavg(V, k) + ε, wheremedavg(V, k) denotes the

average distanceto thek-medianC, that is,medavg(V, k) =
∑

v∈V µ(v,C)

n . Using this
result, Mishra et al. [19] developed a generic sublinear-time approximation algorithm
for k-median. If the algorithmAα has the running time ofT (s), then the resulting algo-

rithm runs inT (s) time for s = Õ
((

α ∆
ε

)2 · (k lnn + ln(1/δ))
)

and computes with

probability at least1− δ a set ofk centers such that theaverage distanceto the nearest
center is at most2 αmedavg(V, k)+ε. Notice that since there existO(1)-approximation
algorithms fork-median withT (s) = O(s2), this approach leads to an approximation
algorithm for thek-median problem whose dependency onn is only Õ(log2 n), rather
thanΩ(n2) or Ω(n k) as in the algorithms discussed above. On the other hand, the run-
ning time of this algorithm depends on∆, and as discussed in [19] (see also [17, 18]),
such a dependency is necessary to obtain this kind of approximation guarantee.

Min-sum k-clustering. The min-sumk-clustering problem was first formulated (for
general graphs) by Sahni and Gonzales [21]. There is a2-approximation algorithm by
Guttman-Beck and Hassin [9] with running timenO(k). Recently, Bartal et al. [3] pre-
sented anO(1

ε log1+ε n)-approximation algorithm withO(n1/ε) running time and then
Fernandez de la Vega et al. [8] gave an(1 + ε)-approximation algorithm with the run-

ning time ofO(n3k · 2O((1/ε)k2
)). For point sets in theRd, Schulman [20] introduced

an algorithm for distance functions`2
2, `1 and`2 that computes a solution that is either

within (1+ε) of the optimum or that disagrees with the optimum in at most anε fraction
of points. For the basic case ofk = 2 (which is complement to the Max-Cut), Indyk
[12] gave an(1 + ε)-approximation algorithm that runs inO(n1+γ · (log n)(1/ε)O(1)

)
time for anyγ > 0, which is sublinear in the full input description size but superlinear
in n.

Balanced k-median. It is known that in metric spaces the solution to balancedk-
median is to within a factor of2 of that of min-sumk-clustering, see, e.g. [3, Claim 1].
Therefore, balancedk-median has been usually considered in connection with the min-
sumk-clustering problem discussed above. The problem was first studied by Guttman-
Beck and Hassin [9] who gave an exactO(nk+1)-time algorithm and Bartal et al. [3]
obtained anO(1

ε log1+ε n)-approximation in timenO(1/ε) based on metric embeddings
into HSTs. We are not aware of any sublinear-time algorithm for balancedk-median.



1.2 New contribution

In this paper we investigate the quality of a simpleuniform samplingapproach to clus-
tering problems and apply our analyzes to obtain new and improved bounds for the
running time of clustering algorithms.

We first study thek-median problem. Our sampling is identical to the one by Mishra
et al. [19], however our analysis is stronger and leads to significantly better bounds. Let
α ≥ 1, 0 < δ < 1, andε > 0 be arbitrary parameters. We prove that if we pick
a sample set of sizẽO(∆·α

ε2 · (k + α ln(1/δ))) i.u.r., then anα-approximation of the
optimal solution for the sample set yields an approximationof the average distance to
the nearest median to within2 (α + ε)medavg(V, k) + ε with probability at least1− δ;
notice in particular, that this gives the sample sizeindependent ofn. As noted in [19],
it is impossible to obtain a sample complexity independent of both∆ andn.

Comparing our result to the one from [19], we improve the sample complexity by
a factor of∆ · log n while obtaining a slightly worse approximation ratio of2 (α +
ε)medavg(V, k) + ε, instead of2 αmedavg(V, k) + ε as in [19]. However, since the
algorithm with the best known approximation guarantee hasα = 3 + 1

c for the run-
ning time ofO(nc) time [2], we significantly improve the running time of [19] for all
realistic choices of the input parameters while achieving the same approximation guar-
antee. As a highlight, we obtain an algorithm that in timeÕ((∆ k

ε2 · (k + log(1/δ)))2)
— fully independent ofn — has the average distance to the nearest median at most
O(medavg(V, k)) + ε with probability at least1 − δ.

Furthermore, our analysis can be significantly improved if we assume the input
points are in Euclidean spaceRd. In this case we improve the approximation guarantee
to (α + ε)medavg(V, k) + ε in the cost of increasing the sample size toÕ(∆·α

ε2 · (k d +
log(1/δ))). This bound also significantly improves an analysis from [19]. Due to space
limitations we omit the corresponding proof in this extended abstract.

Themin-sum k-clustering and thebalanced k-median problems are combinatori-
ally more complex than thek-median problem. For these two problems we give thefirst
sublinear-time algorithms. Since in metric spaces the solution to the balancedk-median
problem is within a factor of2 of that of the min-sumk-clustering problem, we will
consider the balancedk-median problem only.

We consider the problem of minimizing the average balancedk-median cost, that
is, the cost of the balancedk-median normalized by the square of the number of input
elements. We use the same approach as for thek-median problem. Letε > 0, α ≥ 1,
β > 0, and0 < δ < 1 be arbitrary parameters. We prove that if we pick a sample

set of sizeÕ
(

∆
ε ·
(√

k α2 ln(1/δ)
β + k+ln(1/δ)

ε

))
i.u.r., then anα-approximation of the

optimal solution for the sample set approximates the average balancedk-median cost to
within (2 α + β)med

b
avg(V, k) + ε with probability at least1− δ, wheremed

b
avg(V, k)

denotes the average cost of the optimal solution for balanced k-median. Notice that
similarly as for thek-median problem, the sample size is independent ofn.

Unlike in thek-median problem, the output of balancedk-median is supposed to
consist of a set ofk centersc1, . . . , ck and a partition (clustering) of the inputV intoV1∪
· · · ∪ Vk that minimizes (or approximates the minimum) of

∑k
i=1 |Vi|

∑
v∈Vi

µ(v, ci).
Our sampling algorithm leads to a randomized algorithm thatin time independent ofn



returns the set ofk centersc1, . . . , ck for which the value of
∑k

i=1 |Vi|
∑

v∈Vi
µ(v,ci)

|V |2 is at

mostO(med
b
avg(V, k))+ ε with probability at least1−δ. If one also knows the number

of elements that are assigned to each cluster in an approximate solution, then one can
compute inO(n k) + Õ(k2.5

√
n) time an optimal clustering [22]. Since our algorithm

can be modified to provide the cluster sizes we can use this approach to compute a good
solution quickly from the implicit representation as a balancedk-median.

1.3 High level description of our approach

Before we begin to analyze specific problems we first discuss our high level approach.
We study the approximation guarantee of the following natural sampling scheme. Choose
a multisetS of s elements i.u.r. fromV , for some suitable chosens. Then run anα-
approximation algorithmA for the problem of interest onS. What is the quality of the
solution computed byA onS?�

�

�

�

Generic sampling scheme (V, A, s)

choose a multisetS ⊆ V of sizes i.u.r.
runα-approximation algorithmA on inputS to compute a solutionC∗ (set ofk centers)
return setC∗

To analyze the approximation guarantee of this approach we proceed in two steps.
First, we show that w.h.p. and after normalizationcost(S, Copt) is an approximation
of cost(V, Copt), whereCopt denotes an optimal solution forV . SinceCopt may not be
a feasible solution forS (e.g., in thek-median problemCopt may not be contained inS)
we show that there is afeasiblesolution inS which has cost at mostcα ·cost(S, Copt) for
some constantc ≥ α. Then we show that w.h.p. every possible solution forV with cost
more thanc · cost(V, Copt) is either not a feasible solution forS or has cost more than
c · cost(S, Copt) for S. SinceS contains a solution with cost at mostc

α · cost(S, Copt),
A will compute a solutionC∗ with cost at mostc · cost(S, Copt). Since every solution
for V with cost more thanc · cost(V, Copt) has cost more thanc · cost(S, Copt) for
S, we know thatA computes a solutionC∗ with cost at mostc · cost(V, Copt) for V .
Hence, our sampling is ac-approximation algorithm.
We apply this approach to study sampling algorithms for three problems: thek-median
problem, the balancedk-median problem, and the min-sumk-clustering problem.

2 Analysis of the k-median problem

We first consider thek-median problem. Ak-median ofV is a setC of k points (centers)
in V that minimizes the value of

∑
v∈V min1≤i≤k µ(v, ci) ≡ ∑

v∈V µ(v, C). Thek-
median problemis to compute ak-median for a given metric space(V, µ).

Let medopt (V, k) = minC⊆V, |C|=k

∑
v∈V µ(v, C) denote thecost of ak-median

of V . Let medavg(V, k) = 1
|V | · medopt (V, k) denote theaverage cost of ak-median

of V . In a similar manner, for a givenU ⊆ V andC ⊆ V , we define theaverage
costof solutionC to becostavg(U, C) = 1

|U|
∑

v∈U µ(v, C). The following theorem
summarizes our analysis and it is the main result of this section.



Theorem 1. Let (V, µ) be a metric space. Let0 < δ < 1, α ≥ 1, and ε > 0 be
approximation parameters. LetA be anα-approximation algorithm for thek-median
problem in metric spaces. If we choose a sample setS ⊆ V of sizes i.u.r., with

s ≥ c · (1 + α/ε) ·
(

k +
∆

ε
·
(
α · ln(1/δ) + k · ln

(
k ∆ (1+α/ε)

ε

)))
,

for some constantc and we run algorithmA with input S, then for the solutionC∗

obtained byA, with probability at least1 − δ it holds the following

costavg(V, C∗) ≤ (2 α + ε) · medavg(V, k) + ε .

To begin our analysis of the quality of the approximation ofC∗ and the proof of The-
orem 1, let us introduce some basic notation. Letβ > 0, α ≥ 1. A set ofk centersC is
aβ-badα-approximationof k-median ofV if costavg(V, C) > (α+β) ·medavg(V, k).
If C is not aβ-badα-approximation then it is aβ-goodα-approximation.

For thek-median problem we want to prove for certains that our algorithm is a
(2 (α+β))-approximation algorithm. Following the approach described in the previous
section, we have to show that our sample setS contains w.h.p. a solution with cost at
most 2 (1 + β/α) · medavg(V, k), and hence, anyα-approximation forS returns a
2 (α + β)-approximation forV w.h.p. We prove the following lemma.

Lemma 1. LetS be a multiset of sizes ≥ 3∆α(1+α/β) ln(1/δ)
β·medavg(V,k) chosen fromV i.u.r. If an

α-approximation algorithm fork-medianA is run on inputS, then for the solutionC∗

obtained byA holdsPr

[
costavg(S, C∗) ≤ 2 (α + β) · medavg(V, k)

]
≥ 1 − δ.

Proof. Let Copt denote ak-median ofV and letXi denote the random variable for the
distance of theith point inS to the nearest center ofCopt. Then,costavg(S, Copt) =
1
s

∑
1≤i≤s Xi. Furthermore, sinceE[Xi] = medavg(V, k), we also havemedavg(V, k)

= 1
s · E

[∑
Xi

]
. Therefore,

Pr

[
costavg(S, Copt) > (1+ β

α )medavg(V, k)
]

= Pr

[∑

1≤i≤s

Xi > (1+ β
α )E

[∑

1≤i≤s

Xi

]]
.

Observe that eachXi satisfies0 ≤ Xi ≤ ∆. Therefore, we can apply a Hoeffding
bound to obtain:

Pr

[ ∑

1≤i≤s

Xi > (1 + β/α) ·E
[ ∑

1≤i≤s

Xi

]]
≤ e−

s·medavg (V,k)·min{(β/α),(β/α)2}

3 ∆ ≤ δ .

Let C be the set ofk centers inS obtained by replacing eachc ∈ Copt by its nearest
neighbor inS. By the triangle inequality, we getcostavg(S, C) ≤ 2 · costavg(S, Copt).
Hence, multisetS contains a set ofk centers whose cost is at most2 · (1 + β/α) ·
medavg(V, k) with probability at least1 − δ. Therefore, the lemma follows becauseA

returns anα-approximationC∗ of thek-median forS. ut

Next, we show that any solutionCb ⊆ S that is a(6 β)-bad(2 α)-approximation of ak-
median ofV satisfiescostavg(S, Cb) > 2 (α+β) ·medavg(V, k) with high probability.



Lemma 2. LetS be a multiset ofs points chosen i.u.r. fromV with s such that

s ≥ c ·



(1 + α/β) k +
(α + β) · ∆ ·

(
ln(1/δ) + k ln

(
k (α+β) ∆

β2 medavg(V,k)

))

β2 medavg(V, k)



 ,

wherec is a certain positive constant. LetC be the set of(6β)-bad(2α)-approximations
C of ak-median ofV . Then,

Pr

[
∃Cb ∈ C : Cb ⊆ S and costavg(S, Cb) ≤ 2 (α + β)medavg(V, k)

]
≤ δ .

Proof. Let s ≥ 2 α+3 β
β k. Let us consider an arbitrary solutionCb that is a(6 β)-bad

(2 α)-approximation of ak-median ofV and letS∗ be a multiset ofs−k points chosen
i.u.r fromV . Then,

Pr

[
Cb ⊆ S and costavg(S, Cb) ≤ 2 (α + β)medavg(V, k)

]

= Pr

[
costavg(S, Cb) ≤ 2 (α + β)medavg(V, k)

∣∣∣Cb ⊆ S
]
·Pr

[
Cb ⊆ S

]

= Pr

[
costavg(S

∗, Cb) ≤ 2 · s

s − k
((α + β)medavg(V, k))

]
· Pr

[
Cb ⊆ S

]
(1)

≤ Pr

[
costavg(S

∗, Cb) ≤ 2 (α + 1.5 β)medavg(V, k))
]
·Pr

[
Cb ⊆ S

]
, (2)

where (1) holds because the elements are chosen with repetition and (2) follows from
s ≥ 2 α+3 β

β k. Furthermore, similarly as in the proof of Lemma 1, we can prove the
following inequality

Pr

[
costavg(S, Cb) ≤ 2 (α + 1.5 β)medavg(V, k)

∣∣
]

≤ e
−s β2 medavg (V,k)

(α+3 β) ∆ . (3)

Therefore, we can plug inequality (3) and the identityPr[Cb ⊆ S] = (s/n)k into (2),
and combine this with the upper bound|C| ≤ nk, to conclude the proof. ut

Proof of Theorem 1. Let s be chosen such that the prerequisites of Lemmas 1 and 2
hold, that is,

s ≥ c (1 + α/β)

(
k +

∆

β medavg(V, k)

(
α ln(1/δ) + k ln

(
k(α+β)∆

β2 medavg(V,k)

)))
(4)

for certain constantc. Let S be a multiset ofs points chosen i.u.r. fromV . Then, by
Lemma 2 with probability at least1 − δ, no setC ⊆ S that is a(6 β)-bad (2 α)-
approximation of ak-median ofV satisfies the inequality

costavg(S, C) ≤ 2 (α + β)medavg(V, k) .

On the other hand, if we run algorithmA for setS, then the resulting setC∗ of k centers
with probability at least1 − δ satisfies

costavg(S, C∗) ≤ 2 (α + β)medavg(V, k) .



This, together with the claim above implies that with probability at least1 − 2 δ the set
C∗ is a(6 β)-good(2 α)-approximation of ak-median ofV . Hence,

costavg(V, C∗) ≤ (2 α + 6 β) · medavg(V, k) .

This implies immediately the following bound:

Pr

[
costavg(V, C∗) ≤ (2 α + 6 β) · medavg(V, k)

]
≥ 1 − 2 δ .

To complete the proof we only must remove the dependence ofmedavg(V, k) in the
bound ofs in (4) and relateβ to ε. Formedavg(V, k) ≥ 1, Theorem 1 follows directly
from our discussion above by replacing6 β by ε. For medavg(V, k) < 1, Theorem 1
follows by replacingβ by ε/medavg(V, k). For more details we refer to the full version
of the paper. ut

3 Min-sum k-clustering and balanced k-median in metric spaces

As we mentioned in Introduction, we follow the approach from[3] and [9] and consider
the balancedk-median problem instead of analyzing min-sumk-clustering.

Let (V, µ) be a metric space. Abalancedk-median ofV is a setC = {c1, . . . , ck}
of k points (centers) inV that minimizes the value of

min
partition ofV into V1∪···∪Vk

k∑

i=1

|Vi| ·
∑

u∈Vi

µ(u, ci) .

The balancedk-median problemis for a given(V, µ) to compute a balancedk-
median ofV and a partition ofV into V1 ∪ · · · ∪ Vk that minimizes the sum above.

Let

med
b
opt(V, k) = min

C={c1,...,ck}⊆V
min

partition ofV into V1∪···∪Vk

k∑

i=1

|Vi| ·
∑

u∈Vi

µ(u, ci)

denote thecost of a balancedk-median ofV , and letmed
b
avg(V, k) = 1

|V |2 med
b
opt (V, k)

denote theaverage cost of a balancedk-median ofV . For a given setU ⊆ V and a set
of k centersC = {c1, . . . , ck} ⊆ V , let us define

cost
b(U, C) = min

partition ofU
into U1∪···∪Uk

k∑

i=1

|Ui|
∑

u∈Ui

µ(u, ci) and cost
b
avg(U, C) =

cost
b(U, C)

|U |2 .

A set ofk centersC is called a(ε, β)-badα-approximationof balancedk-median
of V if cost

b
avg(V, C) > (α + β) · med

b
avg(V, k) + ε. If C is not a(ε, β)-bad α-

approximation then it is a(ε, β)-goodα-approximation.



3.1 Sampling algorithms for the balanced k-median problem in metric spaces

Our high level approach of analyzing the balancedk-median problem is essentially
the same as for thek-median problem. We investigate the generic sampling scheme
described in Section 1.3, and in Section 3.2 we prove the following main theorem.

Theorem 2. Let (V, µ) be a metric space. LetA be anα-approximation algorithm for
balancedk-median in metric spaces and let0 ≤ ε ≤ 1/4, β ≥ 4 α ε

1−2 ε , 0 < δ < 1 be
approximation parameters. If we choose a sample setS ⊆ V of sizes i.u.r., where

s ≥ c · ∆
ε

·
(√

k ln(k/δ)α2

β
+

ln(k/δ) + k · ln(k ∆/ε)

ε

)
,

and we run algorithmA with input S, then for the solutionC∗ obtained byA, with
probability at least1 − δ it holds the following

cost
b
avg(V, C∗) ≤ (2 α + β) · med

b
avg(V, k) + ε .

Furthermore, in timeO(n k)+ Õ(k2.5 n0.5) one can find a clustering ofV that satisfies
the above approximation guarantee.

Moreover, the solutionC∗ approximates an optimal solution for the min-sumk-
clustering problem within a factor two times larger than claimed above.

The last claim in Theorem 2 follows from the fact that in metric spaces the solution
to balancedk-median is within a factor of2 of that of min-sumk-clustering.

3.2 Analysis of Generic sampling scheme for balanced k-median

Our analysis follows the path used in Section 2. The main difference is that we must
explicitly use “outliers” in our analysis, what makes it significantly more complicated.

We begin with a result corresponding to Lemma 1 fork-median.

Lemma 3. LetCopt be a balancedk-median ofV . Let0 < γ, δ < 1, ε > 0 be arbitrary

parameters. If we choose a multisetS ⊆ V of sizes ≥ 6α·∆·ln(3k/δ)
γ·ε i.u.r., then

Pr

[
cost

b
avg(S, Copt) ≤ (1 + γ)3med

b
avg(V, k) +

6k∆ ln(3k/δ)

γ2s2
+ ε/α

]
≥ 1 − δ .

Proof. To simplify the notation, letδ1 = 1
3 δ/k. LetCopt = {c1, . . . , ck}. LetV ∗

1 ∪· · ·∪
V ∗

k be the optimal partition ofV , i.e.,med
b
opt (V, k) =

∑k
i=1 |V ∗

i | ·∑u∈V ∗
i

µ(u, ci).

Let us call setV ∗
i denseif |V ∗

i | ≥ 3·ln(1/δ1)
γ2 · |V |

s ; V ∗
i is sparseotherwise. LetSi be

the random variable that denotes the multisetS ∩ V ∗
i (we assumeSi is a multiset, that

is, an element can appear multiple times inSi if it belongs toV ∗
i and it appears multiple

times inS). Our first observation (that can be easily proven using a Chernoff bound)

is that if V ∗
i is dense, then we havePr

[
|Si| ≤ (1 − γ) · s·|V ∗

i |
|V |

]
≤ δ1 andPr

[
|Si| ≥

(1 + γ) · s·|V ∗
i |

|V |

]
≤ δ1, and ifV ∗

i is sparse, then we havePr

[
|Si| ≥ 6·ln(1/δ1)

γ2

]
≤ δ1.



Therefore, from now on, let us condition on the event that fordense setsV ∗
i we have

(1−γ)· s·|V ∗
i |

|V | < |Si| < (1+γ)· s·|V ∗
i |

|V | and for sparse setsV ∗
i we have|Si| < 6·ln(1/δ1)

γ2 .
This event holds with probability at least1 − 2 · k · δ1.

For any setV ∗
i , letXj

i be the random variable that denotes the distance between the
jth randomly selected element fromSi and the centerci. Observe that for any setV ∗

i ,
we haveE[Xj

i ] = 1
|V ∗

i | ·
∑

u∈V ∗
i

µ(u, ci). Let us fixi and let us first assume that

2 · |Si|
s2

· γ · |Si|
|V ∗

i | ·
∑

u∈V ∗
i

µ(u, ci) ≥ ε/α . (5)

Since0 ≤ Xj
i ≤ ∆, we use Hoeffding bound to prove

Pr

[ |Si|∑

j=1

Xj
i ≥ (1 + γ) · |Si| ·

∑
u∈V ∗

i
µ(u, ci)

|V ∗
i |

]
≤ exp

(
− γ

3 · ∆ · s · ε/(2α)
)

,(6)

where the last inequality follows from (5). If (5) does not hold, then letγ∗, γ∗ > γ, be
such that

2 · |Si|
s2

· γ∗ · |Si|
|V ∗

i | ·
∑

u∈V ∗
i

µ(u, ci) = ε/α .

Notice that in that case,

γ∗ ·E
[ |Si|∑

j=1

Xj
i

]
= γ∗ · |Si| ·

∑
u∈V ∗

i
µ(u, ci)

|V ∗
i | =

s2 · ε
2 · α · |Si|

≥ s · ε
2 · α . (7)

Observe that since (5) does not hold and sinceγ ≤ 1, we haveγ ≤ min{1, γ∗}.
Therefore, we can use the Hoeffding bound to prove that

Pr

[ |Si|∑

j=1

Xj
i ≥ (1 + γ∗) · E

[ |Si|∑

j=1

Xj
i

]]
≤ exp

(
−min{γ∗,γ∗2}·|Si|

3·∆ ·
∑

u∈V ∗
i

µ(u,ci)

|V ∗
i |

)

≤ exp
(
− γ · s · ε

6 · ∆ · α
)

. (8)

Notice that the inequalities (6) – (8) imply that ifs ≥ 6α·∆·ln(1/δ1)
γ·ε , then

Pr

[ |Si|∑

j=1

Xj
i ≥ (1 + γ) ·

|Si| ·
∑

u∈V ∗
i

µ(u, ci)

|V ∗
i | +

s · ε
2 · α

]
≤ δ1 .

Therefore, from now on, let us condition on the event that foreveryi, we have

∑

u∈Si

µ(u, ci) < (1 + γ) ·
|Si| ·

∑
u∈V ∗

i
µ(u, ci)

|V ∗
i | +

s · ε
2 · α ,



what holds with probability at least1 − k δ1. Under the conditioning above, we can
proceed to the final conclusion:

cost
b(S, C)≤

k∑

i=1

|Si| ·
∑

u∈Si

µ(u, ci) ≤
∑

i:V ∗
i is sparse

|Si| ·
∑

u∈Si

µ(u, ci) +
∑

i:V ∗
i is dense

|Si| ·
∑

u∈Si

µ(u, ci)

≤6k∆ ln(1/δ1)

γ2
+
∑

i:V ∗
i is dense

(1 + γ)s|V ∗
i |

|V |

(
(1 + γ)|Si|

∑
u∈V ∗

i
µ(u, ci)

|V ∗
i | +

sε

2α

)

≤6 k ∆ ln(1/δ1)

γ2
+

ε s2

α
+

(
(1 + γ) s

|V |

)2

(1 + γ)med
b
opt (V, k) .

This yields the following bound that holds with probabilityat least1−3 k δ1 = 1−δ:

cost
b
avg(S, C) ≤ 6 · k · ∆ · ln(3k/δ)

γ2 · s2
+

ε

α
+ (1 + γ)3 · med

b
avg(V, k) ,

what concludes the proof of Lemma 3. ut
Lemma 3 (withγ ≈ α/β) can be combined with arguments used in Lemma 1 to

prove the following.

Corollary 1. Let0 < β < α andε > 0. LetS be a multiset of sizes ≥ c
√

k∆ ln(3k/δ) α2

β ε
chosen fromV i.u.r., wherec is some constant. If anα-approximation algorithm for
balancedk-medianA is run with inputS, then for the solutionC∗ obtained byA holds

Pr

[
cost

b
avg(S, C∗) ≤ 2 (α + β) · med

b
avg(V, k) + ε

]
≥ 1 − δ . ut

The next step in our analysis is to consider bad approximations. Our analysis follows
the approach used before in the proof of Lemma 2; the main difference is a larger
number of parameters used in the analysis. Corollary 1 proves that typically there is a
set ofk centers in the sampleS that has the average cost close tomed

b
avg(V, k). Now,

we show that anyCb ⊆ S that is a(5 ε, 2 β)-bad(2 α)-approximation of a balanced
k-median ofV satisfiescostavg(S, Cb) > 2 (α + β) · med

b
avg(V, k) + ε with high

probability. Details of the proof of the following lemma aredeferred to the full version
of the paper.

Lemma 4. LetS be a multiset ofs points chosen i.u.r. fromV with s such that:

s ≥ c ·
(

∆

ε2
· (ln(k/δ) + k · ln(k ∆/ε)) +

1

β

)
,

wherec is a suitable positive constant. LetC be the set of(5ε, 2 β)-bad(2 α)-approxi-
mationsC of a balancedk-median ofV . Then,

Pr

[
∃Cb ∈ C : Cb ⊆ S andcostavg(S, Cb) ≤ (1−ε)2 (2 α+β)med

b
avg(V, k)+ε

]
≤ δ.

Now Theorem 2 follows from Corollary 1 and Lemma 4. To expand our implicit
representation of the clustering, we can use the valuesv∗i obtained from the optimum
partition of our sample setS as cluster sizes and then use the algorithm from [22].ut
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